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Abstract: Surgical simulators and injury-prediction human models require a combination of
representative tissue geometry and accurate tissue material properties to predict realistic tool–tissue
interaction forces and injury mechanisms, respectively. While biological tissues have been
individually characterized, the transition regions between tissues have received limited research
attention, potentially resulting in inaccuracies within simulations. In this work, an approach to
characterize the transition regions in transversely isotropic (TI) soft tissues using functionally graded
material (FGM) modeling is presented. The effect of nonlinearities and multi-regime nature of the TI
model on the functional grading process is discussed. The proposed approach has been implemented
to characterize the transition regions in the leaflet (LL), chordae tendinae (CT) and the papillary
muscle (PM) of porcine tricuspid valve (TV) and mitral valve (MV). The FGM model is informed using
high resolution morphological measurements of the collagen fiber orientation and tissue composition
in the transition regions, and deformation characteristics predicted by the FGM model are numerically
validated to experimental data using X-ray diffraction imaging. The results indicate feasibility of
using the FGM approach in modeling soft-tissue transitions and has implications in improving
physical representation of tissue deformation throughout the body using a scalable version of the
proposed approach.

Keywords: constitutive modeling; X-ray diffraction; anisotropy; functionally graded material model;
cardiac mechanics; multiscale modeling

1. Introduction

1.1. Background and Motivation

Recent technological advancements in three-dimensional imaging, computational power and
virtual reality have made it possible for digital human models to represent the human body with
enhanced biofidelity and realism. For instance, surgical simulators have shown great promise
in supplementing traditional training and planning of minimally invasive surgical procedures
by recreating the surgical scene, with applications ranging from neurological to cardiovascular
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interventions [1]. Additionally, several whole-body finite element (FE) models [2,3] have been
used to supplement post-mortem human subject impact data from mechanical insults such as blunt,
penetrating and blast events to advance the fields of crashworthiness and impact biomechanics research.
Both surgical simulators and whole-body injury-prediction models require detailed geometrical and
biomechanical characterization of soft tissue to predict accurate tool-tissue interaction forces and
damage propagation in the human body respectively. However, the vast body of literature on soft-tissue
characterization focus on organ-specific homogeneous tissue properties [1,3], with lesser emphasis on
the transition regions between various tissue types.

The study of morphological and biomechanical characteristics of tissue transition regions gains
prominence in light of increasing evidence associating these regions with injuries resulting from
multi-axial loading. For instance, the muscle–tendon junction (MTJ) has been hypothesized to
be the site of sports overuse injuries such as calf-muscle tear and delayed onset muscle soreness
(DOMS) [4]. In the case of cardiac tissue, the pathology of mitral valve insufficiency has been
localized to the rupture of the chordae tendinae (CT) just below the insertion to the heart wall leaflet
(LL) [5]. These observations have spurred researchers into investigating the damage mechanisms and
underlying physiological bases related to the microstructure and the biomechanical signatures in the
transition regions. Additionally, morphological and biomechanical models of these regions serve as
useful design tools in the fabrication of biomimetic materials such as osteoimplants [6] and engineered
tissue scaffolds [7].

Load bearing biological tissue are often uniquely characterized by multiscale hierarchical
components displaying a continuous change from one composition or structure into another at
their transition regions. For instance, the MTJ in the musculoskeletal system represents a transition
between two hierarchical tissue types—at the microscale, muscle comprises a collection of parallel
nerve-activated fibers, which transition into passive collagen-based fibers of the tendon through the
endomysium. This transition is characterized by actin microfilaments forming finger-like projections
into the tendinous extracellular matrix [8]. Analogous to skeletal MTJs, transitions from muscle to
tendons in cardiac tissues are localized in the connections between the papillary muscles (PM), and the
chordeae tendineae (CT) in the left and right ventricles. The CT are connected to the LL to prevent LL
folding and blowing out over themselves during a heart cycle. Structurally, the CT–LL transition is
characterized by a transition of two different arrangements of fibrillar collagen and proteoglycan (PG),
while the CT–PM transition consists chiefly of fibrillar collagen and PG blending into the PM [9] which
exhibits dissimilar sarcomere lengths compared to other cardiac tissue [10].

1.2. Prior Work in Constitutive Modeling of Anisotropic Soft-Tissue

Constitutive modeling techniques in the literature for anisotropic soft-tissue are briefly reviewed
next, with an emphasis on cardiac tissue. Broadly, continuum-based constitutive models can be
classified into (a) phenomenological models and (b) structural models. Phenomenological models
typically utilize anatomically relevant empirical observations without an explicit consideration
for the microstructural contribution of the tissue constituents. For instance, transversely isotropic
(TI) phenomenological models aggregate the hierarchical fiber microstructure into a lumped fiber
representation inside an isotropic matrix [11]. These approaches have been used to model mitral valve
(MV) mechanics [12,13], biaxial behavior of the myocardium [14] and bio-prosthetic human valves [15].
Additionally, orthotropic phenomenological models have been proposed using an anisotropic variant
of the Fung-type hyperelasticity [16,17], and these models have been applied to the myocardial
architecture, which has been shown to consist of sheets of fibers separated by cleavage planes [18].

In contrast to phenomenological models, structural models take into account the microstructural,
compositional and hierarchical characteristics of the tissue. Inclusion of statistically distributed
fibers in anisotropic tissue has been shown in the structural modeling of aortic valves [19–21] and
mitral valves [22,23]. Structural models accounting for the sheet-based layered microstructure of the
myocardium have been presented in [24,25]. Another structural model with a distributed collagen
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fiber network in hierarchical arterial layers is shown in [26]. A similar approach of piecewise modeling
of constituent cardiac tissue is presented in [27,28]. For a comprehensive review of biomechanical
continuum modeling of cardiac tissue, readers are referred to [11,29,30].

In light of the discussion in Section 1.1 indicating gradual changes in the tissue microstructure
and composition in the transition regions, there appears a need to account for the tissue transition
morphology in the constitutive model, which thus far has primarily focused on the hierarchical makeup
of tissue constituents [25–28], as discussed above. Early work in functional grading (gradual spatial
change in material properties) of cardiac tissue can be found in the works of Chen et al. [31], where a
TI model was used to account for the CT–LL transition, and the fiber orientations and the isotropic
matrix parameter in the TI strain energy density were assumed to vary along the CT–LL transition.
Recently, Rego et al. have proposed a functionally graded structural constitutive model to account
for transmural variations in the collagen composition and fiber orientation in the LL of porcine aortic
valves [32].

With this collective prior research in mind, it is important to state their applicability within
the context of simulators at the organ level. Typically, a surgical simulator (or whole-body FE
model) involves macroscale anatomical features, implying that any modeling approach accounting
for tissue transition has to be scaled up to the macroscale. This presents an additional challenge of
model validation and scalability-constitutive models of the transition properties developed based
on microscale data need to be placed in context of load distribution characteristics that are likely
to exist at the macroscale. In the case of cardiac simulators, for instance, there is a need to
equip existing macroscale heart simulators with integrated fluid–structure interaction (FSI) at the
organ/organelle level [22,33,34], with accurate constitutive material modeling capabilities at the cardiac
tissue transitions at the microscale [31,32] to enhance their anatomical realism.

It should also be emphasized here that most surgical simulators/whole-body injury prediction
tools currently assign phenomenological models to each macroscale organ/organelle [3,35–37]. As such,
incorporation of structural models to account for tissue transitions [32] in surgical simulators/
whole-body injury prediction tools presents an immediate integration and compatibility challenge—the
parameters of the structural model need re-calibration for backwards compatibility, particularly for
those tissue regions that are currently assigned homogeneous phenomenological material properties.
While structural models can offer potentially greater insights into the underlying tissue microstructure
and function, nevertheless, an approach to modify parameters of existing phenomenological models
in the tissue transition regions without reformulating the constitutive model to account for the
microstructural characteristics in the transition regions is particularly attractive, especially within the
context of surgical simulators/whole-body injury prediction tools.

1.3. Problem Statement and Scope

In this work, we report on the development of an approach for functional grading of a
phenomenological TI hyperelastic model capable of replicating macroscale deformation, while being
informed by high-resolution tissue composition and primary fiber orientation data (see Figure 1).
We focus on the TI formulation originally proposed by Weiss et al. [38], which admits an exponential
toe region followed by a linear extension regime. Our choice of this TI formulation (henceforth in this
work, the term “TI” refers to the Weiss et al. [38] formulation of transverse isotropy) is governed by
(a) its widespread utility in modeling anisotropic soft tissue such as such as knee ligaments [38,39],
fascia lata [40] and Achilles tendon [41], and (b) its availability in existing commercial finite element
solvers such as LS-DYNA [42] and FEBio [43]. There are two key sub-problems addressed within the
scope of this work:

1. FGM interpolation problem for the TI model: Given the TI model fits represented by θ1 and θT for the
terminal materials at either side of the transition which are assumed to be homogeneous (“pure”
tissue), and a user-defined distribution function φ(Xt, p) represented by shape parameters p,
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formulate an interpolation law to obtain functionally graded TI parameters θt at transition layer t
with coordinates given by Xt, where t = 1, . . . , T.

2. Shape parameter estimation problem: Given experimental data on the constituent composition and
molecular strain at the transition region, obtain the optimal shape parameter p of the distribution
function φ(Xt, p) using optimization techniques.

We assume that the deformation characteristics of both “pure” tissue and their transition regions
display transversely isotropic behavior adequately described by the TI formulation by Weiss et al. [38].
Previous experimental studies in our group showed that using a combination of optical microscopy
and XRD imaging techniques [44], dissimilar mechanical responses could be observed in CT–LL and
CT–PM transition regions in porcine tricuspid valve (TV) and mitral valve (MV) compared to the
the “pure” CT, LL and PM tissue under load. In this work, we utilize these experimental results to
characterize the CT–LL and CT–PM transition regions by solving the aforementioned two sub-problems
(see Figure 1). In this work, predictions of the collagen fiber orientations and the strain distribution
in the transition regions under tensile load using a FE implementation of our approach are validated
against XRD measurements. All simulation results showed good agreement with experimental data.2.5 mm FGM 
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Figure 1. Overview of the proposed functionally graded material (FGM) modeling framework.

In the subsequent Materials and Methods section, the theoretical details of the functionally graded
TI model, the proposed FGM interpolation law (sub-problem 1), the experimental protocol for model
validation and an FE implementation with the associated parameter estimation (sub-problem 2) are
discussed. Next, in the Results section, the proposed model is validated on uniaxial tension tests on
CT–LL and CT–PM transition regions of porcine heart valves. Finally, we conclude with the discussion
of our approach and future work.

2. Materials and Methods

2.1. FGM Modeling

2.1.1. TI Model Constitutive Law

In this section, the constitutive stress–strain relationship of the TI model is briefly reviewed.
The decoupled strain energy density for the TI model is given by [38]:

W =W̃(C̃) + U(J) (1)

= F̃1( Ĩ1, Ĩ2)︸ ︷︷ ︸
isotropic

+ F̃2( Ĩ4)︸ ︷︷ ︸
fiber

+ U(J)︸ ︷︷ ︸
volumetric
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where J is the Jacobian of the deformation, (̃·) indicates the deviatoric component of the terms in
parenthesis, and F1, F2 and U indicate the strain energy density components pertaining to the isotropic,
fiber and the volumetric contributions, respectively. The volumetric strain energy density U(J) and the
invariants Ĩl (where l ∈ {1, 2, 4}) of the right deviatoric Cauchy–Green strain tensor C̃ are given by:

U =
K
2
(ln J)2 (2a)

Ĩ1 = trC̃ = J−2/3trC (2b)

Ĩ2 =
1
2
(
(trC̃)2 − trC̃2) (2c)

Ĩ4 = aT
0 C̃a0 = J−2/3aT

0 Ca0 (2d)

where K is the bulk modulus and a0 is the unit vector along the fiber orientation in the undeformed
configuration.

The Cauchy stress can be derived from Equation (1) as follows [38]:

σ = p1 +
2
J

[
(W̃1 + W̃2 Ĩ1)B̃− W̃2B̃2 + W̃4 Ĩ4a⊗ a− 1

3
(
W̃1 Ĩ1 + 2W̃2 Ĩ2 + W̃4 Ĩ4

)
1
]

(3)

where W̃l = ∂W̃/∂ Ĩl , p is the hydrostatic pressure given by p = ∂U/∂J, a is the unit vector in the
fiber orientation in the deformed configuration, B is the left Cauchy–Green strain tensor and 1 is the
identity tensor. The unit vector a in the deformed configuration can be related to the undeformed fiber
orientation a0 by the deformation gradient tensor F as follows:

λa = Fa0 (4)

where λ is the magnitude of fiber stretch.
The strain energy function for the TI model uses a Mooney–Rivlin hyperelastic formulation for

the the isotropic terms and a multi-regime strain energy formulation for the fiber terms, as given
below [38]:

F̃1( Ĩ1, Ĩ2) = C1( Ĩ1 − 3) + C2( Ĩ2 − 3) (5)

λ̃
∂F̃2

∂λ̃
=


0 λ̃ ≤ 1

C3(eC4(λ̃−1) − 1) 1 ≤ λ̃ < λ∗

C5λ̃ + C6 λ̃ ≥ λ∗

where λ̃ is the deviatoric fiber stretch given by:

λ̃ =

√
Ĩ4 (6)

As seen from Equation (5), seven hyperelastic parameters θ = [C1, C2, C3, C4, λ∗, C5, C6]
T

completely characterize the deviatoric stress response of the TI model. The influence of each of
these parameters is enumerated as follows:

1. C1, C2: These correspond to the isotropic stiffness of the matrix component of the material.
2. C3, C4, λ∗: These correspond to the fiber component of the material and are used to model the

exponential toe region of the stress–strain curve. C3 and C4 control the degree of exponential rise,
while the critical fiber stretch, λ∗, controls the extent of the exponential regime (see Figure 2a).

3. C5, C6: These correspond to the post-exponential linear stretching of the fiber. C5 represents the
modulus of straightened fibers.



Int. J. Mol. Sci. 2020, 21, 6503 6 of 24

From Equation (5), it can be seen that the stress enhancement due to the embedded fibers is only
active in tension λ̃ > 1.

It should be noted herein that in Weiss’s formulation [38], C6 is dependent on C3–C5 and λ∗ due
to enforcement of C0 continuity at λ̃ = λ∗. In addition, if C1 continuity is assumed, C5 drops out as an
independent variable as well, leading to the following equations:

C5 = C3C4eC4(λ
∗−1) (7a)

C6 = C3(eC4(λ
∗−1) − 1)− C5λ∗ (7b)

The tensorial representation of the elasticity in the undeformed configuration is given by
4∂2W/∂C∂C. For the purposes of functional grading, some notion of the the instantaneous stiffness
along the fiber orientation is desired. We define a scalar metric called the grading stiffness, kg, to be the
rate of change of the traction stress vector along the fiber orientation a, as shown below (see Figure 2b):

kg ,
∂

∂λ̃
(aTσa) (8)

Using the expression for the Cauchy stress from Equation (3), the grading stiffness, kg, can be
written as:

kg =
∂

∂λ̃

[
2
J

[
(W̃1 + W̃2 Ĩ1)aTB̃a−W̃2aTB̃2a− 1

3
(
W̃1 Ĩ1 + 2W̃2 Ĩ2

)
(9)

+ W̃4 Ĩ4
(
aT(a⊗ a)a− 1

3
)]

+
K ln J

J

]

(a) (b)

Figure 2. (a) Regime-dependent nature of the transversely isotropic (TI) model and (b) schematic of
the continuum representation of the TI model directionality.

Soft tissues are generally assumed nearly-incompressibility due to high levels of hydration, due to
which it can be assumed that J ≈ 1 and ∂J/∂λ̃ ≈ 0. From the Caley–Hamilton theorem, it can be
shown that: B̃2 = Ĩ1B̃− Ĩ21 + J−1B̃−1. The final expression of kg is thus obtained by assembling the
hyperelastic parameters from Equation (9), as given below:

kg ≈ C1γ1(λ̃) + C2γ2(λ̃) +
2
3

∂

∂λ̃

[
λ̃

∂F̃2

∂λ̃

]
(10)
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where λ̃∂F2/∂λ̃ is given by Equation (5) and γ1(λ̃) and γ2(λ̃) are deformation dependent terms
given by:

γ1(λ̃) =2
∂aTB̃a

∂λ̃
− 2

3
∂ Ĩ1

∂λ̃

γ2(λ̃) =
2
3

∂ Ĩ2

∂λ̃
− 2

∂aTB̃−1a
∂λ̃

(11)

In the special case where the isotropic matrix is considerably less stiff than the fiber (C1, C2 << C5),
kg ≈ (2/3)C5 in the regime λ̃ > λ∗ (see Equations (5) and (10)).

2.1.2. Functional Grading of the TI Model

The proposed functional grading of the TI model seeks to obtain an expression for θt given by:

θt =
[
[C1]t, [C2]t, [C3]t, [C4]t, [C5]t, [C6]t, [λ]∗t

]T (12)

across T discrete material layers, where t = 1, . . . , T, subject to design constraints in the corresponding
grading stiffness, [kg]t. The terminal materials fits are given by θ1 and θT. It is assumed that θ1 and θT

are available beforehand.
Using a distribution function φ(p, Xt), and φ : R3 → [0, 1] to indicate the constituent fraction,

the grading stiffness at each transition layer t can be written as:

[kg]t = [kg]1 + ([kg]T − [kg]1)φ(p, Xt) (13)

where Xt refers to set of all material points belonging to transition layer t and p is a vector of shape
parameters. As will be demonstrated later in Section 2.4, φ(p, Xt) is informed by experimental data
to create the FGM model. By definition, φ(p, X1) = 0, φ(p, XT) = 1. For considerations of simplicity,
the distribution function φ(p, Xt) is henceforth denoted by φ(t), unless stated otherwise.

For single parameter material models, the grading stiffness is a function of a single material
parameter (such as the elastic modulus in linear elastic [45] or the shear modulus in neo-Hookean [46]
material model). In the case of the TI model, however, this process is complicated due to (a) nonlinearity
in its parameters and (b) multi-regime anisotropic nature of its formulation, as seen in the expression
for kg in Equation (10). If the hyperelastic parameters C4 and λ∗ are equal in both terminal materials,
the grading stiffness in each transition layer can be explicitly written as follows:

[kg]t ≈


[C1]tγ1(λ) + [C2]tγ2(λ) λ̃ ≤ 1

[C1]tγ1(λ) + [C2]tγ2(λ) +
2
3 [C3]t[C4]1e[C4]1(λ̃−1) 1 ≤ λ̃ < [λ∗]1

[C1]tγ1(λ) + [C2]tγ2(λ) +
2
3 [C5]t λ̃ ≥ [λ∗]1

(14)

where (·)t = (·)1 +
(
(·)T − (·)1

)
φ(t).

The results of Equation (14) indicate that nonlinearities in the grading stiffness are restricted
to parameters C4 and λ∗. This implies that the TI parameters C1 − C3 and C5 can be individually
interpolated using φ(t) while maintaining the corresponding distribution in the grading stiffness kg,
provided that C4 and λ∗ are constant in the grading process.

However, constraining the terminal material C4 and λ∗ in the grading process is not always
desirable because it can compromise the accuracy of the terminal fits (An example of this case is
presented in the experimental evaluation of the FGM model at the CT–LL transition regions of the TV
in Section 2.4.1, where the CT and LL fits have dissimilar C4 and λ∗). At the same time, interpolating C4

and λ∗ eliminates the linear structure of the expression for kg. However, we note here most applications
of the TI model (and other hyperelastic models, in general) involve large deformations extending into
the linear regime of the fiber characterized by λ̃ > λ∗. In the deformation regime characterized by
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λ̃ > max([λ∗]1, [λ∗]T), the fiber component of kg is dependent on C5, which it varies linearly with.
This implies that if the critical fiber stretch can be interpolated monotonically as follows:

[λ∗]t = [λ∗]1 + ([λ∗]T − [λ∗]1)ψ(t) (15)

where ψ(t) is a monotonic function, the desired distribution φ(t) in kg in the transition regime can be
maintained in the regime λ̃ > max([λ∗]1, [λ∗]T).

Next, the FGM process for the the parameter C4 is described. In order to quantify the discontinuity
at the exponential-linear interface, we define a discontinuity index, f :

f ,
C5

C3C4eC4(λ∗−1)
(16)

When C1 continuity is preserved at λ̃ = λ∗, f = 1. However, in the Weiss TI model, C1 continuity
is not assumed, due to which the discontinuity index f may be dissimilar in the terminal material fits,
i.e., [ f ]1 6= [ f ]T 6= 1. To ensure that the the discontinuity at the exponential–linear interface remains
bounded, the discontinuity index f is subsequently interpolated using a monotonic function ψ(t),
as given below:

[ f ]t = [ f ]1 + ([ f ]T − [ f ]1)ψ(t) (17)

This process ensures discontinuity at the exponential–linear interface remains bounded, i.e., [ f ]t ∈
[[ f ]1, [ f ]T], and sharp material stiffness discontinuities do not occur at this interface. The hyperelastic
parameter [C4]t can then be computed by solving the following nonlinear equation:

g
(
[C4]t

)
:= [ f ]t[C3]t[C4]te[C4]t([λ

∗ ]t−1) − [C5]t = 0 (18)

The remaining parameter [C6]t is computed by enforcing C0 continuity in Equation (7b) at λ̃ = λ∗.

2.1.3. Interpolation Law for Functional Grading of TI Model

The discussions in the preceding sections are used as a basis for proposing a general interpolation
law for functional grading of the TI model (Algorithm 1).

The inputs to the interpolation law for T − 2 transition layers consist of the terminal material
fits θ1, θT, a vector of shape parameters p used to define the distribution function φ(t), a monotonic
function ψ(t) to interpolate the parameter λ∗ and the discontinuity index f , and the maximum stretch
used in the terminal fits, given by [λmax]1, [λmax]T. The output from the interpolation law are the
graded properties θt for t = 1, . . . , T. Based on the discussions in Section 2.1.2, the steps of the
algorithm are self-evident, except two special cases, which are elaborated next.

Firstly, it may so happen that one or both of the terminal materials fits are obtained from
experimental data where the fibers were still uncrimping in the exponential regime (λmax < λ∗)
and linear fiber extension regime of the TI model was not utilized in the fitting process. Since the
underlying experimental data in these fits did not capture the fiber extension phase characterized
by C5, it is likely that the fitting process would be insensitive to variations fitted terminal C5. Functional
grading based on ill-defined C5 could potentially lead to spurious grading results. To account for these
fitting scenarios, the C5 term in those terminal fits corresponding to uncrimped fibers is recomputed to
enforce C1 continuity using Equation (16) with the discontinuity index f = 1. This process ensures that
the interpolation law is independent of the underlying experimental data or optimization framework
used to obtain the terminal fits. Lines 7–18 of Algorithm 1 address this particular scenario. For well
defined C5, the process outlined in the preceding section suffices (lines 20–22 of Algorithm 1).
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Algorithm 1 FGM Interpolation Law for the TI model

1: procedure θt=GenerateFGM(θ1, θT,T,p,ψ(t),[λmax]1,[λmax]T )
2: ### Grade Matrix Properties ###
3: [C1]t ← interpolate([C1]1, [C1]T, T, p), [C2]t ← interpolate([C2]1, [C2]T, T, p)
4: ### Grade Fiber Properties ###
5: [C3]t ← interpolate([C3]1, [C3]T, T, p)
6: [λ∗]t ← interpolate([λ∗]1, [λ∗]T, T, ψ(t))
7: if [λmax]1 < [λ∗]1 and [λmax]T ≥ [λ∗]T then
8: ### Terminal Material 1 fibers still uncrimping (exponential regime)
9: [ f ]1 ← 1

10: Recompute [C5]1 according to Equation (16).
11: else if [λmax]T < [λ∗]T and [λmax]1 ≥ [λ∗]1 then
12: ### Terminal Material T fibers still uncrimping (exponential regime)
13: [ f ]T ← 1
14: Recompute [C5]T according to Equation (16).
15: else if [λmax]T < [λ∗]T and [λmax]1 < [λ∗]1 then
16: ### Both Terminal Material fibers still uncrimping (exponential regime)
17: [ f ]1 ← 1, [ f ]T ← 1
18: Recompute [C5]1 and [C5]T according to Equation (16).
19: else
20: ### Both Terminal Material 1 and T fibers extending (linear regime)
21: [ f ]1 ← [C5]1/[C3]1[C4]1e[C4]1([λ

∗ ]1−1)

22: [ f ]T ← [C5]T/[C3]T[C4]Te[C4]T([λ
∗ ]T−1)

23: [C5]t ← interpolate([C5]1, [C5]T, T, p)
24: [ f ]t ← interpolate([ f ]1, [ f ]T, T, ψ(t))
25: Solve for [C4]t: g

(
[C4]t

)
:= [ f ]t[C3]t[C4]te[C4]t([λ

∗ ]t−1) − [C5]t = 0 ∀t
26: Compute [C6]t using Equation (7b).
27: θt ←

[
[C1]t, [C2]t, [C3]t, [C4]t, [C5]t, [C6]t, [λ∗]t

]
28: return θt

Secondly, it may also happen that one of the terminal materials is isotropic, with an ill-defined
discontinuity index f and critical fiber stretch λ∗. In these cases, these parameters are set to 1, and are
subsequently graded using the distribution function φ(t).

The efficacy of the proposed interpolation law is shown next using a unit cell tension study with
six transition regions (T = 8). The terminal material fits are chosen to be the LL and CT in TV specimens
(see Table 1). For purposes of comparison, three case studies are described, as enumerated below:

1. Case 1. All TI parameters except C5 are interpolated individually with φ(t) represented by a
symmetric sigmoid (The explicit expression for the sigmoid is given later in Section 2.4.2—see
Equation (21)). C5 is computed by enforcing C1 continuity at λ̃ = λ∗ and using the other
interpolated parameters.

2. Case 2. All TI parameters are interpolated using φ(t) used in Case 1.
3. Case 3: TI parameters interpolated with Algorithm 1 using φ(t), as in Cases 1 and 2. Without loss

of generality, the function ψ(t) for interpolating the parameter λ∗ and the discontinuity index
f is set to φ(t), since a sigmoid is by definition monotonic, i.e., ψ(t) ≡ φ(t). The resulting TI
parameter distribution is shown in Figure 3a.
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Table 1. Fitted TI parameters in porcine tricuspid valve (TV) and mitral valve (MV). Units of C1–C3

and C5 in Pa. C4 and λ∗ are dimensionless. A bulk modulus of K = 1.464 × 108 Pa was assumed [39].
The parameter C6 has not been shown since C0 continuity has been assumed in Equation (5), however,
C1 continuity has not been assumed at λ̃ = λ∗. Additionally shown are the R2 for the fits.

Porcine TV

C1 C2 C3 C4 C5 λ∗ R2

CT 3.00 × 107 0.0 0.70 × 104 80.00 5.441 × 108 1.086 0.996
LL 1.95 × 104 0.0 1.00 × 105 13.50 4.80 × 107 1.28 0.995
PM 0.30 × 104 0.0 0.50 × 102 28.50 1.024 × 105 1.15 0.814

Porcine MV

C1 C2 C3 C4 C5 λ∗ R2

CT 3.37 × 106 0.0 8.82 × 103 60.00 9.21 × 107 1.086 0.991
LL 3.00 × 105 0.0 9.00 × 104 40.00 5.38 × 106 1.010 0.956
PM 1.05 × 104 0.0 0.50 × 103 24.50 1.111 × 105 1.09 0.996
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Figure 3. (a) Distribution of C1, f , C3, C4, C5 and λ∗ in the chordea tendinea–leaflet (CT–LL) transition
region of TV using the interpolation law proposed in Algorithm 1, used for the uniaxial tension tests in
Case 3. Additionally overlaid in the distribution for C4 is the corresponding graded parameter using a
sigmoidal function, shown in red, corresponding to the C4 distribution for Case 2. (b) Tensile force in
the unit cell along the fiber orientation for Cases 1–3.

The tension response from the unit cells at each transition layer is shown in Figure 3b for Cases 1–3.
It can be seen that the tensile responses for the transition layers all remain unbounded by those
corresponding to the terminal fits (LL and CT) in Cases 1 and 2. More specifically, the tensile response
in the transition regions in Case 1 shows enhanced stiffening behavior compared the upper-bounded
response of the terminal material, whereas in Case 2, the tensile response is characterized by a
sharp change at the λ̃ = λ∗. Both these cases are highly undesirable, particularly because the
underlying distribution function φ(t) was chosen to be smooth and monotonic. These effects are a
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direct consequence of the dissimilar C4 and λ∗ in the LL and CT fits. In contrast, the tensile responses
in Case 3 are bounded by the corresponding terminal responses with no sharp discontinuities in the
tensile response.

In addition, shown in Figure 3b is the distribution of C4 when it is independently interpolated
(shown in red) using the sigmoidal function φ(t), which corresponding to the results of Case 2 in the
unit cell study. It is noteworthy that while the distribution of C4 in Cases 2 and 3 do not differ by
much, the tensile response in the unit cell study is considerable, indicating a high sensitivity to the
parameter C4.

2.2. Experimental Methods

As discussed previously, the proposed FGM model is informed by (a) the terminal material TI
fits acquired from tissue at either side of the transition which are assumed to be homogeneous (“pure”
tissue) and (b) tissue composition data at the transition regions. Experimental characterization of the
papillary muscle (PM), chordea tendinea (CT) and leaflet (LL) in excised porcine tricuspid valve (TV)
and mitral valve (MV) and their transition regions were used to inform the FGM model as well as
provide the experimental datasets for model validation. Due to the multiscale and anisotropic nature
of these tissues with a primary fiber orientation [44], these anatomical regions are good candidates for
development and validation of the proposed FGM model. The experimental protocol, setup and the
actual datasets used in this work are presented in detail in our previous work [44]. An overview of the
experimental procedures relevant to this study are briefly stated herein for purposes of completeness.

Uniaxial tensile tests were carried on the “pure” CT, LL and PM tissues, and the
force–displacement data were fitted to the TI model to obtain the terminal fits. Details of the fitting
procedure are described in Section 2.4.1.

In addition to the conventional mechanical testing, X-Ray diffraction (XRD) imaging techniques
were employed to obtain morphological and composition data about the tissue transition regions
necessary to develop and validate the FGM models. Previous work in our group showed XRD
imaging of musculoskeletal tissues resulted in unique diffraction patterns for “pure” muscle and “pure”
tendon [47], while transition regions showed characteristics of both “pure” muscle and “pure” tendon
diffraction patterns. Building upon these results, XRD imaging was utilized to investigate the relative
tissue composition within the transition regions for the TV and MV specimens. Figure 4a shows the
XRD scanning process and the relative tissue composition across the CT–PM transitions for a porcine
MV specimen.

The collagen fiber orientation could also be obtained from processing of the XRD images [44], and
these data were used in model development and validation in the CT–LL transition region where the
local fiber orientation changes significantly between the CT and LL tissue (Figure 4b). Changes to the
collagen fiber orientation under load were recorded for the CT–LL specimen to capture the localized
tissue response for use in FGM model validation (described in Section 2.4.2).

Additionally, the XRD imaging process also provided a means to record local tissue response under
load at the molecular level, which was used during the FGM model validation process for the CT–PM
transition regions (described in Section 2.4.3). Tracking the local D-period change (Figure 4c) within the
specimen under load provided a measure of the local strain distribution within the tissue, which was
subsequently validated against the simulated strain distribution predicted by the FGM model.

2.3. Virtual Matched Pair FE Mesh Setup

The proposed FGM model was implemented numerically and an FE analysis approach was
adopted to (a) characterize the “pure” CT, PM and LL tissue, and to (b) validate the FGM model at
the CT–LL and CT–PM transitions using XRD data. The details of the FE mesh generation from the
specimen geometry is discussed next.

Optical images of the experimental setup were imported into a computer aided design (CAD)
program and scaled to the appropriate dimensions. Using the images as a guide, a solid model of the
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strain rig, load cell and tissue specimens were developed, which were then imported into a meshing
tool and a solid hexahedral mesh was applied to the geometry using a commercial meshing software.
This mesh development process was undertaken for the “pure” CT, PM and LL specimen tension
simulations to determine the “pure” tissue fits, as well as the FGM model validation study in the
CT–LL and CT–PM transition regions. Boundary conditions were explicitly modeled either using a
rigid tie constraint or using contact formulations in the numerical solver between the tissue specimen
and its attachment to the rig.

(a) (b)

(c)

Figure 4. (a) XRD scanning process and relative tissue composition along CT–papillary muscle (PM)
specimens, (b) collagen fiber orientation in the CT–LL specimens under 5% and 10% stretch and
(c) D-period measurements in the CT–PM transition under load.

2.4. FE Simulation Setup and Parameter Estimation

Specimen-specific simulation details and the associated parameter estimation are described
as follows:

2.4.1. “Pure” CT, LL and PM Characterization

A displacement-controlled virtual matched pair simulation was set to replicate a uniaxial tension
test along the predominant fiber orientation for the characterizing the individual specimens in porcine
TV and MV. An inverse FE analysis was then carried out using a single objective genetic algorithm in
DAKOTA [48] to fit the force–displacement experimental data to the TI model. The fitting process was
limited to the deviatoric parameters of the TI model and a large bulk modulus of K = 1.464 × 108 Pa
was assumed, based on earlier fitting results from Pena et al. [39] where the TI model was used to
characterize the human anterior cruciate ligament (ACL) knee ligament. This choice was governed by
the range of the other TI deviatoric parameters of the ACL fit in [39], which were close to the fitted
deviatoric TI parameters obtained in our study, leading to similar levels of slight compressibility in the
numerical implementation. The fitted TI parameters for the CT, LL and PM specimens are given in
Table 1. An example demonstrating the fitting process for the PM specimen of TV is shown in Figure 5
along with the optimal TI fits for all specimens.
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(a) (b) (c)

(d) (e) MVTV

Figure 5. Uniaxial tension tests to characterize “pure” tissue specimens. (a) PM tissue in TV
under uniaxial tension test, (b) corresponding virtual matched pair test, (c) strain distribution in
specimen, (d) force–displacement data for CT, LL and PM in TV specimens with their overlaid fits
and (e) force–displacement data for CT, LL and PM specimens in MV with overlaid fits. Scale bar in
(a) represents 15 mm.

2.4.2. CT–LL transition

A virtual matched pair test was set up to develop and validate the FGM model to experimental
data at the CT–LL transition under load. In addition to the specimen geometry, collagen fiber
orientation and tissue composition details in the transition region were extracted from the XRD
data (see Figure 6). The collagen fiber orientation was incorporated into the FE model using the
following steps:

1. First, the experimental specimen frame was rigidly registered to the FE mesh of the
CT–LL specimen.

2. After registration, the collagen orientations in the transition region obtained from XRD were
mapped to the corresponding mesh by assigning to each element of the mesh the corresponding
collagen orientation using a KD-tree based nearest-neighbor search.

3. Fiber orientations were subsequently propagated to the whole CT–LL mesh (regions outside of
the scanned region of the specimen), by extrapolating the XRD orientation data.

Next, the relative diffraction signal intensity between the LL and CT constituents was used to
parameterize the constituent distribution function φ(t) to generate the FGM model. Several smooth,
monotonic distribution functions have been suggested to grade FGM in the literature; in particular,
it has been reported that for unidirectional FGM applications, sigmoidally varying FGM leads to the
reduced stress concentrations at the transition regions compared to linear, power and exponential
distributions in transversely loaded linear elastic plates [45,49]. However, in the CT–LL regions of TV,
it was found that the diffraction signal intensities varied both along, and transverse, to the CT–LL
transition region, most likely due to the influence of a neighboring CT in the LL insertion. This led us
to propose a bidirectional distribution function expressed as a product of two unidirectional monotonic
functions with saturation, as shown below:

φ(Xt, p) = max
(
0, min

(
1, φ(X1t , p)φ(X2t , p)

)
(19)
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where φ(X1t , p) and φ(X2t , p) are given by:

φ(X1t , p) = p1

(
ep2(X1t−p3) − e−p2(X1t−p3)

ep2(X1t−p3) − e−p2(X1t−p3)

)
+ p4 (20)

φ(X2t , p) =

{
0.50

(
1 + 2X2t

)p5 for− 0.5 ≤ X2t ≤ 0

1− 0.5
(
1− 2X2t

)p6 for 0 ≤ X2t ≤ 0.5
(21)

where

X2t =
X2t − X21

X2T − X21

− 1
2

(22)

and p = [p1, . . . , p6]
T is a vector of shape parameters. The distribution φ(X1t , p) is a modified

tan-hyperbolic function, used to model the relative intensity changes within the leaflet, while φ(X2t , p)
is a symmetric sigmoid

(
φ(X2t , p) = 0.5 at X2t = 0, i.e., midway in the transition region

)
, used for

unidirectional FGM problems [45,49]. The shape parameters p were estimated using a simplex
fitting algorithm to parameterize the distribution function, and the resulting surface fit overlaid with
the relative intensity data from XRD is shown in Figure 6d. The interpolation law (Algorithm 1)
outlined in Section 2.1.3 was then invoked to complete the FGM model. Since both φ(X1t , p) and
φ(X2t , p) are monotonic, the parameter λ∗ and the discontinuity index f were graded using φ(Xt, p).
i.e., ψ(t) ≡ φ(Xt, p). The interpolated TI parameters were then mapped onto the individual elements
(Figure 6e) using a custom-developed keyword, ∗STATE MATERIAL DEFINITION, implemented within
Velodyne—the finite element solver used in this study (see Section 2.5).

(a) (b) (c)

(d) (e)

Figure 6. FGM model setup in CT–LL transition of TV. (a) XRD diffraction imaging producing fiber
orientation and collagen intensity at grid points in the transition region, (b) fiber orientations mapped
to a virtual matched pair finite element (FE) model, (c) fiber orientations assigned to the mesh on a
per-element basis, (d) normalized intensity overlaid with fitted distribution function φ(Xt, p) and (e)
functionally graded parameter C1 assigned on a per-element basis to the mesh using φ(Xt, p) in (d).
Scale bar in (a) represents 2.5 mm.
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2.4.3. CT–PM Transition

The simulation setup for the FGM model implementation and validation on the CT–PM transition
regions under load are described next. Due to the relatively large compliance of the PM specimens
compared to the CT (see Table 1), and the observation that microtears are initiated at the CT–PM
transition during uniaxial tension in whole LL–CT–PM specimen [44], the local strain distribution at
the CT–PM transition was considered to be a strong determinant of the mechanical characteristics at
this transition. Hence, the strain distribution in the transition region was used for validation against
the simulation predictions from the FGM model.

The experimental strain information at the CT–PM transition was obtained as follows. Ten fiducial
points along the CT–PM were selected along the sample centerline (see Figure 7a,b), while the
specimen was under tensile load. The D-period change in fibrillar collagen at these ten locations
were obtained by processing XRD images for each of these ten points under load (0–10% stretch),
and the relative measure compared to the resting (no-load) configuration was used to denote the
collagen molecular strain [47,50]. Similar to the simulation setup in Section 2.4.2, virtual matched pair
tests were set up using the optical image of the specimen clamped in the strain rig, and the nodal
coordinates in the FE model corresponding to the fiducials were tracked during the tension simulation
to calculate the macroscale strain in the specimen. In contrast to the CT–LL specimens, the fiber
orientation distribution and the collagen intensity distribution were not available for the CT–PM
specimens, largely due to the small size of the transition region (∼2.7 mm) compared to the CT–LL
transition (∼5.1 mm), which prevented an accurate extrapolated map of the fiber orientations and
collagen intensity throughout the CT–PM transition. Consequently, the fiber orientations were aligned
uniformly with the global X2 direction. The constituent distribution function φ(Xt, p) was assumed
unknown and estimated using the molecular strain information. This methodology is described next.

TV MV
(a) (b)

Figure 7. Virtual matched pair test setup for porcine (a) TV and (b) MV specimens with fiducial
markers shown in red. Scale bar represents 3 mm.

Previous works have demonstrated that affine fibril kinematics (i.e., microscopic fiber motion
follows macroscopic deformation) may be applied to model leaflet and the constituent collagen
fibers [51–53]. Other experimental and molecular dynamics simulations have also described the
nanomechanics of the various hierarchical levels of the fibrillar packing of collagen [54]. Specifically,
it has been shown previously that a linear relationship exists between the D-period change in fibrillar
collagen and the macroscopic engineering strain of the specimen at the linear extension regime of the
collagen fibrils in rat tail tendons [55], and more recently in the porcine heart tissue transitions [44].
We utilize this observation to relate the molecular strain (expressed as percentage change in the collagen
D-period) at the CT–PM transition to the engineering strain from the FE simulations to estimate the
distribution function. Specifically, an inverse FE analysis was used to iterate on the shape parameters
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p at the CT–PM transition to minimize the squared residual between the normalized molecular and
the normalized simulation strains at the fiducials, as shown below:

p̂ = argmin
p

i=n

∑
i=0

(ε̄expi
− ε̄simi )

2 (23)

where ε̄exp and ε̄sim are normalized molecular strains and normalized engineering strains, respectively,
obtained at n fiducials. It is worth mentioning here that while Fratzl et al. [55] reported a conversion
factor of 0.4 between the molecular and macroscopic engineering strains, respectively, we chose
normalized measures in Equation (23) to estimate the shape parameters, primarily to eliminate the
effect of sample-to-sample variations in the mechanical properties of “pure” CT and PM used in
the FGM model and those corresponding to the CT–PM specimen used in this study. In addition,
the optimization step in Equation (23) was restricted to strains at the maximum specimen stretch (10%),
in order to ensure that most of the fibrillar collagen in the CT–PM transition was in the extension
regime (where the linear relationship between the molecular and macroscopic strain holds [55]).

In the CT–LL transition, a two-dimensional distribution function was used to interpolate the TI
parameters due to experimental data that indicated existence of a transverse gradient in diffraction
signal intensities in the LL; in contrast, no such data were available in the CT–PM. Furthermore,
since the molecular strain was observed along the central axis of the CT, it is unlikely that any
transverse asymmetry would be captured using the fiducials shown in Figure 7a,b. This led us to
assume unidirectional grading along the X2 direction in the CT–PM transition model, and a modified
version of the distribution function from Equation (21) was proposed, as stated below:

φ(Xt, p) =

{
φ1(X2t , p) = φ11 + φ12

(
1 + 2X2t

)w for− 0.5 ≤ X2t ≤ p1

φ2(X2t , p) = φ21 + φ22
(
1− 2X2t

)p2 for p1 ≤ X2t ≤ 0.5
(24)

subject to the following smoothness constraints:

φ(−0.5, p) = 0, φ(0.5, p) = 1

φ1(p1, p) = φ2(p1, p) = 0.5

φ′1(p1, p) = φ′2(p1, p)

(25)

where p = [p1, p2]
T is a vector of shape parameters and X2t is given by Equation (22). The expression

in Equation (24) can be considered a generalized version the Equation (21), which admits asymmetry
in the sigmoidal shape. For known values of p1 and p2, the smoothness constraints in Equation (25)
can be solved numerically to obtain the parameters w and φij, i, j ∈ 1, 2.

The optimal shape parameters p̂ are obtained by solving Equation (23) using a single-objective
genetic algorithm using DAKOTA [48]. The transition properties were assigned to the mesh using
Algorithm 1, and similar to the CT–LL transition case, we assumed ψ(t) ≡ φ(Xt, p) since φ(Xt, p) in
Equation (24) is monotonic.

2.5. Numerical Implementation

The numerical implementation of aforementioned FE model was carried out in Velodyne v3.108,
which is a massively parallel nonlinear FE solver developed by Corvid Technologies. Several core
numerical schemes, such as single integration point solid elements, hourglass controls and central
difference time integration parallels their counterparts in LS-DYNA and DYNA3D [42]. The contact
force solver is based upon the slave–master formulation for node-segment contact, and is solved using
a Lagrange multiplier approach to ensure that Karush–Kuhn–Tucker (KKT) inequality holds. Velodyne
has been extensively utilized for investigation and validation of impact biomechanics problems [3,56]
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and underbody blast modeling [3]. For all simulations used in this study, an explicit FE solution
was used.

3. Results

3.1. FGM Model Validation in CT–LL Transition

Simulation results of the CT–LL specimen in porcine TV under load are shown in Figure 8.
The fiber orientations in the CT–LL specimen obtained from XRD measurements under load were
compared with their corresponding simulation predictions. The superimposed fiber orientations
obtained at resting (undeformed configuration), 5%, 10% and 15% stretch are shown in Figure 8a–d.

No FGM With FGM(e)

FEXRD
(a) (b)

(c) (d)

Figure 8. Local fiber orientation in the simulated CT–LL transition and the experimental data obtained
from the analysis of the X-ray diffraction images in TV for (a) resting configuration, (b) 5% stretch,
(c) 10% stretch and (d) 15% stretch. (e) Simulated strain distribution in the CT–LL transition in TV with
hard transition without FGM (left) and with FGM (right) using Algorithm 1.
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The fiber orientations at resting show a predominant longitudinal directionality near the “pure”
CT end of the transition (Figure 8a), which progressively changes to the transverse direction near the
LL insertion—an observation noted previously in [31]. Under load, the simulated fiber orientations
show good agreements with XRD datasets Figure 8b–d. The simulated fiber stretch (magnitude of the
orientation vectors) is also larger in regions closer to the LL than the CT, which is a consequence of
greater compliance in the “pure” LL tissue compared to “pure” CT tissue, and this is reflected in the
FGM model. In addition, certain outliers can be observed in the XRD orientations at 15% stretch which
are near-orthogonal to the simulated orientations—these are most likely attributed to XRD signals
from secondary fibers in the transition region [44].

For purposes of qualitative comparison, a tension simulation without the functional grading at
the transition (hard transition in the CT and LL properties) is also shown in Figure 8e. While the hard
transition case shows a pronounced necking leading to numerical instabilities due to the non-smooth
material distribution, a smooth strain distribution can be observed using the FGM approach.

A similar validation strategy was adopted for CT–LL transition regions in MV, and good
agreement was found between the experimental and the simulated fiber orientations under load.
These results have not been included in this work for purposes of brevity.

3.2. FGM Model Validation in CT–PM Transition

Colormaps representing the normalized strain distribution (0–10% in increments of 2%) on the
X-axis and the fiducial location on the Y-axis) are shown in Figure 9a,b for both the molecular strain
and the macroscopic simulated strain. The corresponding optimal shape parameters p̂ for TV and MV
porcine specimens using the inverse FE solution discussed in Section 2.4.3 are shown in Figure 9c.
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Figure 9. Colormaps indicating normalized strain distribution from XRD and inverse FE in the CT–PM
transition regions for (a) TV and (b) MV specimens. (c) Optimized constituent distribution function
φ(X2t , p) with p̂ = (0.301, 1.084) and p̂ = (0.26, 0.945) for the TV and MV specimens, respectively.
Additionally, overlaid in (c) is a symmetric sigmoid for purposes of comparison. (d) Strain distribution
in CT–PM transition in TV with hard transition (no FGM) and with FGM using Algorithm 1.
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From Figure 9a,b, quantitative agreement can be found between normalized molecular strains and
the macroscopic simulated strains. Despite the significantly reduced cross-section at the CT, most of the
deformation is located closer to the more compliant PM in the transition region-indicating a complex
interplay between geometric and material stiffness at the CT–PM transition regions. These results
are also consistent with recent findings of rupture occurring on the PM-side of the CT–PM transition
during uniaxial tension tests [44]. It is also noteworthy that the simulated strains agree most with the
molecular strains for the 10% loading case, since these data were used in the inverse FE analysis for
optimization of the shape parameters.

The rationale for the choice of an asymmetric sigmoidal shape in the constituent distribution
function for the CT–PM transition regions becomes immediately apparent from the distribution profile
in Figure 9c, which is characterized by a gradual change near the “pure” PM tissue followed by a steep
rise near the CT insertion. The deviation of the profile from a symmetrical sigmoid is also apparent,
which is shown overlaid in Figure 9c. These results indicate an asymmetric distribution of TI properties
at the CT–PM transition for both TV and MV specimens, which is consistent with the experimental
observation of a steep increase in collagen content near the CT in our previous work [44].

Qualitatively, the FGM model shows a smooth strain distribution compared to the hard transition
case (no FGM) where numerical instabilities and necking at the CT are seen (Figure 9d), paralleling the
observations in the CT–LL transition shown in Section 3.1.

4. Discussion

Despite increasing evidence suggesting unique morphological and biomechanical characteristics
at tissue transitions and its implications in potential injury localization, there is limited research in the
development of biomechanical models to replicate the deformation mechanics in surgical simulators
and injury-prediction tools. This work attempts to address this research gap by presenting an FGM
modeling approach wherein the transition properties are obtained as a function of the terminal material
properties and material composition data at the transition region.

There are two main contributions of our FGM modeling work. First, an approach to interpolate
the parameters of a phenomenological transversely isotropic (TI) model [38] was presented, which is
characterized by nonlinearity and a multi-regime nature in its formulation. An algorithm for
interpolating these parameters in order to ensure that the instantaneous stiffness in the fiber orientation
obeys a user-defined spatial distribution was discussed. Canonical numerical implementations of
the interpolation law using unit-cell tension studies (see Section 2.1.3) indicated that the tensile force
in the transition layers could be bounded by the tensile force in the terminal materials in the large
deformation regime.

Second, an approach to estimate the shape parameters of the distribution function using the XRD
collagen intensity at the tissue-transitions was presented. An FE implementation of the proposed
FGM model was carried out at the CT–LL and CT–PM tissue transitions in porcine TV and MV
specimens, and the deformation characteristics were validated against experimental data. Specifically,
the distribution function was informed directly from the collagen intensity in the CT–LL transition
and the simulated fiber orientations were compared against the orientations obtained from XRD
measurements under load (see Section 2.4.2). In the CT–PM transition, the distribution function shape
parameters were estimated using an inverse FE approach by comparing strain distributions from the
simulations with molecular strain obtained from XRD measurements under load (see Section 2.4.3).
All numerical simulations showed good agreement with the experimental data. Additionally,
the simulated strain distributions in the CT–LL and CT–PM transition regions (Figures 8e and 9d,
respectively) showed that in the absence of an explicit FGM model, numerical instabilities and
unrealistic deformation characterized these regions. These results indicate that it is necessary to
incorporate the graded properties in surgical simulators or whole-body FE models for injury prediction,
such as those presented in this work.
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It must be emphasized here that our approach is different from structural constitutive
models [20,24,28,32,57] as no new constitutive law is proposed to account for the spatial heterogeneity.
A lumped representation using phenomenological models potentially reduces insights into the tissue
substructure compared to structural models, nevertheless, the former is more amenable to numerical
implementation [21], and the proposed FGM model is designed with the intent of preserving scalability
and ease of backward integration in existing whole-body simulators that currently function without
explicit transition modeling. A preliminary mesh generation and TI property assignment on a full
system level model of the left ventricle of the human heart, developed from a commercial CAD
utilizing human computed tomography and magnetic resonance imaging scan data (Zygote Solid 3D
Human heart CAD [58]), is shown in Figure 10.

(a)

(b)

(c)

Figure 10. (a) Representative image of the whole heart and extracted left ventricle CAD (adopted
from the Zygote Media Group, Inc. [58]), (b) meshed representation and (c) transition regions in the
FGM model.

There are some limitations in our approach. First, the applicability of our approach is restricted
to the tissue components and their transitions, and the associated scale at which the predominant
deformation behavior in the tissue can be captured using the TI formulation from Weiss et al. [38].
For tissues such as the myocardium which exhibits strong orthotropy [16,17], or arterial walls with two
families of primary fiber orientation [59], the proposed FGM model in its current form is not suitable,
and standalone structural constitutive models might be necessitated for the tissue transition modeling.

Secondly, the uniaxial tension tests used to characterize the “pure” tissue specimens (PM, CT
and LL) properties were along the primary fiber component, implying that the matrix and fiber
responses could not be individually decomposed from the overall tension response. This could
potentially lead to some inaccuracies in the fitted C1 values in the these specimens. Use of biaxial
studies could potentially isolate the matrix response, leading to higher accuracy in C1 in these fits [60].
However, the matrix response is likely to be significantly lower than that of the fiber, which is also
borne out from our characterization results (see Table 1), implying that the tension response is most
likely dominated by the fiber stiffness terms (C3 − C5, λ∗) since the specimens were loaded along
their fiber orientation. This implies that any potential inaccuracy in the fitted C1 parameter does not
significantly impact the FGM model performance.

It should be mentioned here that due to the thinness of the specimens, (∼0.2 mm for LL and
∼0.9 mm for CT), it was not possible to measure fiber orientations and the molecular strains in the
through-thickness direction, due to which the symmetry was assumed in the assignment of fiber
orientation and collagen intensity data (through the corresponding distribution function) onto the
FE mesh in the CT–LL and CT–PM transition regions. Since the XRD measurements are obtained on
a volume-averaged basis, i.e., the XRD pattern is a cylindrical average of millions of collagen fibers
through the thickness at the scanned location [61,62], we believe that the experimental results presented
in Figures 8 and 9 do represent an aggregated response in the through-fiber thickness direction in the
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CT–LL and CT–PM. Nevertheless, additional 3D XRD scanning data might further elucidate spatial
variations in the through-thickness deformation characteristics.

It is also worth noting here that while we have assumed a monotonic variation of the constituent
material properties in the transition region, certain tissue transitions, such as bone–tendon junctions
display a non-monotonic stiffness variation [63]. While bone is typically modeled using elastic–plastic
material models, a corresponding non-monotonic distribution function φ(t) can be readily incorporated
in soft-tissue transitions if the underlying material composition data warrants such an implementation.

5. Conclusions and Future Work

Our eventual goal is to leverage the proposed FGM modeling work to develop a generalized
biomimetic approach for attaching two morphologically similar yet biomechanically dissimilar
materials using the CT–LL and CT–PM transition regions as a model biological system. We envision
that the proposed FGM modeling approach can be extended to other skeletal soft-tissue transitions
occurring within the human body.

Full characterization and validation of tissue transitions using the methods presented herein is
recommended for improving the FGM model’s predictive abilities; however, qualitative improvement
in the simulation kinematics can be produced even if the constituent distribution function and fiber
orientation data are not available. For instance, repositioning simulations of articulated limbs consisting
of hard transitions in bone–ligament–bone and bone–tendon–muscle complexes within whole-body
injury biomechanics models such as the GHBMC [2] and CAVEMAN [3] can be made more biofidelic
using the approaches outlined in this work.
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