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Abstract: A Drift-Free 3D Orientation and Displacement estimation method (DFOD) based on a single
inertial measurement unit (IMU) is proposed and validated. Typically, body segment orientation and
displacement methods rely on a constant- or zero-velocity point to correct for drift. Therefore, they
are not easily applicable to more proximal segments than the foot. DFOD uses an alternative single
sensor drift reduction strategy based on the quasi-cyclical nature of many human movements. DFOD
assumes that the quasi-cyclical movement occurs in a quasi-2D plane and with an approximately
constant cycle average velocity. DFOD is independent of a constant- or zero-velocity point, a
biomechanical model, Kalman filtering or a magnetometer. DFOD reduces orientation drift by
assuming a cyclical movement, and by defining a functional coordinate system with two functional
axes. These axes are based on the mean acceleration and rotation axes over multiple complete gait
cycles. Using this drift-free orientation estimate, the displacement of the sensor is computed by again
assuming a cyclical movement. Drift in displacement is reduced by subtracting the mean value over
five gait cycle from the free acceleration, velocity, and displacement. Estimated 3D sensor orientation
and displacement for an IMU on the lower leg were validated with an optical motion capture system
(OMCS) in four runners during constant velocity treadmill running. Root mean square errors for
sensor orientation differences between DFOD and OMCS were 3.1 ± 0.4◦ (sagittal plane), 5.3 ± 1.1◦

(frontal plane), and 5.0 ± 2.1◦ (transversal plane). Sensor displacement differences had a root mean
square error of 1.6 ± 0.2 cm (forward axis), 1.7 ± 0.6 cm (mediolateral axis), and 1.6 ± 0.2 cm (vertical
axis). Hence, DFOD is a promising 3D drift-free orientation and displacement estimation method
based on a single IMU in quasi-cyclical movements with many advantages over current methods.

Keywords: inertial measurement unit; drift-free; orientation; displacement; cyclical; running

1. Introduction

Activities like walking, running, swimming, rowing, and skating are all quasi-cyclical
in nature. The repetitiveness of these movements, and their associated loads on the human
body, can result in overuse injuries [1]. Repetitive movements are often studied inside
movement analysis laboratories for insight into overloading of the human body and
performance enhancement, among other applications. With the introduction of wearable
systems, motion analysis is no longer restricted to a controlled lab setting [2,3]. This opens
up new possibilities of analyzing movements that are difficult to measure in a lab, due to
technical constraints of optical motion capture systems (OMCS).

Inertial measurement units (IMUs) are widely used in wearable motion capture sys-
tems due to their small size and ease of use [4]. IMUs are composed of accelerometers,
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gyroscopes, and are often combined with magnetometers. The acceleration, orientation,
and displacement of a sensor are of interest for many motion analysis applications such as
impact analyses, monitoring the range of motion (ROM), or inclination of a body segment,
e.g., the lower leg [5,6]. To obtain orientation and displacement from sensor accelerations
and angular velocities, the orientation of the sensor in the global coordinate system (CS)
(Ψgl) is required. Displacement can then be obtained via strapdown inertial navigation,
although this process is prone to errors [7]. Drift in estimated 3D orientations should be
minimized as it strongly influences the estimated displacement in Ψgl . Drift can be compen-
sated for by incorporating other sensors (i.e., magnetometer). However, drift reduction and
3D orientation estimation become more challenging during highly dynamic movements,
prolonged measurements, or when magnetic distortions are present [8]. Drift can alter-
natively be reduced by applying domain-specific assumptions, such as the zero-velocity
update method [9,10].

The zero-velocity update method assumes that the velocity of the foot is zero and
the orientation of the foot is known during the stance phase. This information is used
to reset drift in orientation, velocity, and position during each gait cycle [9,10]. Similar
assumptions have been used in running in specific conditions. Bailey and Harle corrected
for positional drift of an IMU on the foot by using a constant-velocity update in runners
with a heel strike [11]. However, constant- or zero-velocity assumptions are not suitable for
more proximal segments or runners with a forefoot strike, since a constant- or zero-velocity
point is often not present [12].

To estimate orientation and displacement using a single IMU placed on body segments
without a constant- or zero-velocity point, the quasi-cyclical nature of numerous movements
can be used. Kalman filtering or analytical integration of acceleration in combination with
assumptions about the quasi-cyclical nature of movements have been used to estimate
displacements of, for example, the pelvis during walking [13–15]. These studies involved
relatively slow movements, required multiple sensors, a calibration procedure, or prior
information about the movements. As a solution to many of these drawbacks, we propose
to directly use the quasi-cyclical nature of movements to estimate 3D orientation and
displacement using a single IMU without the need for Kalman filtering.

Hence, the research question of this study was: How to estimate 3D orientation and
displacement of a single IMU on the lower leg using the quasi-cyclical nature of running?

To answer this research question, a method is proposed in which drift-free 3D ori-
entation and displacement of a single IMU are estimated using the quasi-cyclical nature
of numerous human movements. We call this method Drift-Free Orientation and Dis-
placement estimation (DFOD). DFOD assumes that the movement is quasi-cyclical, occurs
in a quasi-2D plane, and has an approximately constant cycle average velocity. DFOD
will be demonstrated in treadmill running, although it is expected to generalize to many
quasi-cyclical quasi-2D movements.

2. Materials and Methods

Validation of DFOD was part of a larger study. For sake of clarity, only measurement
systems and trials required for validation of DFOD will be described.

2.1. Participants

Four healthy recreational runners participated in this study (2M/2F, age: 30.6± 9.2 years,
height: 181 ± 4 cm, body mass: 65.0 ± 5.4 kg). The study was conducted according to the
guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of METC
Twente. All participants gave written informed consent before participating in the study.

2.2. Protocol

Subjects ran for 2 min on a level treadmill at 3.6 m/s. To validate DFOD with OMCS,
a calibration procedure was performed in which subjects stood still in a neutral pose and
flexed and extended their leg four times while keeping their upper leg horizontal. This
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calibration procedure was not required for DFOD but was used to convert the OMCS
orientation and displacement estimates to the same CS as used in DFOD for compari-
son purposes.

2.3. Measurement Systems

Subjects ran on a treadmill (C-Mill, ForceLink, Culemborg, The Netherlands) while
3D angular velocities and accelerations were captured by a single IMU on the lower leg at
240 Hz (MVN Link, Xsens, Enschede, The Netherlands). The ranges of the accelerometer
and angular velocity sensor were ±16 g and ±2000◦/s, respectively. Positional data from
a cluster marker set on the lower leg were captured for reference measurements with an
eight-camera optical motion capture system (OMCS) at 100 Hz (Vantage, Vicon, Oxford,
UK). The cluster marker set consisted of four individual markers attached to a rigid plate.
The IMU was placed medially to the tibial tuberosity and the cluster marker set was placed
below the IMU, both on the flat surface of the tibia to ensure measurements of tibia motion,
see Figure 1. Both systems were attached to the skin with double-sided tape and covered
with stretched strapping tape.

Figure 1. Overview of IMU and cluster marker set placement. “M1”,”M2”, and “M3” refer to
the individual markers of the cluster marker set. The shown coordinate system is the functional
coordinate system Ψ f . The X-axis points forward (running direction), the Y-axis mediolateral, and
the Z-axis upward.

2.4. Data Preparation

Optical and inertial data of the left or right lower leg were selected based on minimal
OMCS marker occlusion. Optical data were upsampled to 240 Hz with linear interpolation
and low-pass filtered with a recursive fourth-order 20 Hz Butterworth filter [16]. Inertial
data were not filtered.

Data were segmented into gait cycles based on falling edge angular velocity zero-
crossings in the sensor CS (Ψs) Y-axis, which was directed in the global CS (Ψgl) for-
ward/mediolateral direction. These zero-crossings occur shortly before initial contact. Data
were cropped to include all complete gait cycles during one minute of running, hereby
excluding around 30–45 s of data in which the subject increased their running speed from
standing still up to 3.6 m/s. Sensor acceleration and angular velocity in Ψs (i.e., input
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signals for DFOD) as a function of the time-normalized gait cycle for a representative
subject are shown in Figure 2. Data analysis was performed in MATLAB R2021a.

Figure 2. Three-dimensional sensor acceleration (i.e., including gravity) (left figure) and sensor
angular velocity (right) in Ψs as a function of the time-normalized gait cycle for a representative
subject. Solid lines represent the mean while shaded areas represent the standard deviationaround
the mean over one minute of running. Note that these two signals are the input for the orientation
and displacement estimation algorithm. Positive acceleration values represent an acceleration into
the upward, sideward (left), and forward direction of Ψs. Positive angular velocity values represent
anti-clockwise rotations in Ψs.

2.5. Estimate Sensor Orientation in a Functional CS (Ψ f )

The aim of DFOD is to estimate 3D orientation and displacement of a single sensor in
a functional CS (Ψ f ) of which the vertical and mediolateral axes are fixed and the origin
moves with the body at the cycle average velocity. Ψ f is defined in Figure 1; Figure 3.
DFOD assumes that the body segment on which the sensor is placed:

• moves quasi-cyclical (i.e., cycles are similar)
• moves in a quasi-2D plane (i.e., most movement occurs in a 2D plane)
• has an approximately constant cycle average velocity

The time- and gait cycle-dependent rotation matrix R f
s,i(t) from Ψs to Ψ f , representing

the sensor orientation in a functional drift-free CS of which the vertical and mediolateral
axes are fixed and the origin moves with the body at the cycle average velocity, can be
written as three subsequent rotations as in Equation (1):

R f
s,i(t) = R f

d f ,iR
d f
p f (t)Rp f

s (1)

where the sensor CS (Ψs) is first rotated to a sensor-fixed partly functional CS (Ψp f ) with
the time-independent rotation matrix from Ψs to Ψp f (Rp f

s ). Then, Ψp f is rotated to a
drifting partly functional CS (Ψd f ) with the time-dependent rotation matrix from Ψp f to
Ψd f (Rd f

p f (t)). Ψd f has an origin that moves with the cycle average velocity. Lastly, drift in

Ψd f is corrected for each gait cycle i by rotating to a functional drift free CS (Ψ f ) with the
gait cycle-dependent rotation matrix from Ψd f to Ψ f (R f

d f ,i). All rotations are visualized in
Figure 3.
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Figure 3. Summary of DFOD (left four columns) and the validation of DFOD (right two columns).
Columns represent different coordinate systems (CS). For each CS some basic information is stated:
symbol, name, measurement system on which the CS is based, origin, fixed functional axes (i.e.,
which axes have functional meaning), and the presence of drift. Available quantities in each CS are
shown in white squares (all time-dependent), rotation matrices from one CS to another are shown
in blue arrows, curved arrows at the top represent the different rotations which are referred to in
the text, integrations over time are shown as green arrows. At the bottom of the figure, a schematic
representation of the CS with respect to the lower leg of a runner is shown, orange boxes represent
the IMU, and blue dots represent the cluster marker set. DFOD is validated against an OMCS based
on the quantities in the red squares. Note that the CSs in grey (two right columns) are only used for
validation of DFOD and are not a part of DFOD. IMU = inertial measurement unit; OMCS = optical
motion capture system; GCZM = gait cycle zero mean (mean value over each gait cycle is subtracted
from the gait cycle); CS = coordinate system;

→
a CS = acceleration expressed in the CS in the subscript;

→
ωCS = angular velocity expressed in the CS in the subscript;

→
a f , f a,GCZM = free acceleration ( f a) with

a gait cycle zero mean average (GCZM) expressed in the functional CS ( f ); RCS2
CS1 = rotation matrix

from CS 1 to CS 2;
→
v = velocity;

→
s = displacement;

→
p = position, i = index of gait cycle.

2.5.1. Rotation 1: From Sensor CS (Ψs) to Partly Functional CS (Ψp f )

Integration error accumulation can be reduced by aligning the rotation axis of a quasi-
2D movement with one axis in 3D space to create a partly functional CS (Ψp f ) [17]. One axis
has functional and anatomical meaning in Ψp f . The functional axis (

→
y

s
p f , the y-axis of the

sensor-fixed partly functional CS (Ψp f ) expressed in the sensor CS (Ψs)) is perpendicular to
the plane of movement. Therefore, this axis is described by the first principal component of
the angular velocity in Ψs (

→
ωs), measured by the 3D angular velocity sensor of the IMU,

over one minute of running [18]:

→
y

s
p f = PCA1

(→
ωs

)
(2a)
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To create a rotation matrix from Ψp f to Ψs, a temporary X-axis is defined by arbitrarily
setting the X-axis of Ψp f (

→
x

,s
p f ) to the X-axis of Ψs:

→
x

,s
p f = [1, 0, 0] (2b)

The Z-axis of Ψp f (
→
z

s
p f ) was computed and

→
x

,s
p f updated to ensure an orthogonal CS

according to the TRIAD algorithm [19]:

→
z

s
p f =

→
x

,s
p f ×

→
y

s
p f (2c)

→
x

s
p f =

→
y

s
p f ×

→
z

s
p f (2d)

The time-invariant orthonormal rotation matrix from Ψp f to Ψs was:

Rs
p f =

 →
x

s
p f

‖→x
s
p f ‖

;

→
y

s
p f

‖→y
s
p f ‖

;
→
z

s
p f

‖→z
s
p f ‖

 (2e)

The time-invariant rotation matrix from Ψs to Ψp f (Rp f
s ) was obtained by taking the

inverse of Rs
p f Equation (2e):

Rp f
s = Rs

p f
−1 (2f)

2.5.2. Rotation 2: From Partly Functional CS (Ψp f ) to Drifting Partly Functional CS (Ψd f )

To go from a sensor-fixed CS to a drifting CS in which axes do not depend on the sensor
orientation, the angular velocity in Ψp f (

→
ωp f ) was integrated according to Bortz [20,21].

→
ωp f

was expressed as a skew-symmetric matrix (ω̃p f ), and the differential equation was solved

and used to obtain the rotation matrix from Ψp f to Ψd f (Rd f
p f ):

ω̃p f (t) =

 0 −ωp f ,z(t) ωp f ,y(t)
ωp f ,z(t) 0 −ωp f ,x(t)
−ωp f ,y(t) −ωp f ,x(t) 0

 (3a)

.
R

d f
p f (t) = Rd f

p f (t)ω̃p f (t) (3b)

.
R

d f
p f (t) is the time-derivative of Rd f

p f (t), and Rd f
p f (t) at t = 0 is the identity matrix. Note

that Ψd f drifts, predominantly around the y-axis (Ψd f
y ), due to accumulated integration

errors from Equation (3a,b). This drift needs to be corrected to get a useful orientation
estimate of the sensor (rotation 3 in Figure 3).

2.5.3. Rotation 3: From Drifting Partly Functional CS (Ψd f ) to Drift-Free Functional CS (Ψf)

Following an assumption of quasi-cyclical running, the lower leg keeps rotating
around the same mediolateral axis. By continuously calculating this rotation axis we can
correct for integration drift from Equation (3a,b). The rotation axis was again based on the
first principal component of the 3D angular velocity, now in Ψd f (

→
ωd f ), over five complete

gait cycles Equation (4a). Multiple gait cycles were included to obtain a more robust

estimate of
→
y

f
d f ,i (see also Section 2.7 for algorithm characteristics):

→
y

f
d f ,i = PCA1(

→
ωd f (t)) t0i − Ti−1 − Ti−2 < t < t0i + Ti + Ti+1 + Ti+2 (4a)

where t0i − Ti−1 − Ti−2 < t < t0i + Ti + Ti+1 + Ti+2 represents the interval of five complete
gait cycles, t0i stands for the first time point of gait cycle i, Ti stands for the duration
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of gait cycle i, and is obtained from the earlier described falling edge angular velocity
zero-crossings in Ψs

y (Section 2.4). Note that the first principal component of the angular

velocity is obtained twice Equations (2a) and (4a). In Equation (2a),
→
y

p f
s has a constant

value over a longer period of time since there is no drift in Ψs. In Equation (4a), the angular

velocity
→
ωd f is expressed in a drifting CS (Ψd f ). Therefore,

→
y

f
d f ,i differs for each gait cycle

to correct for the drift in Ψd f .
Following an assumption of approximately constant cycle average velocity running,

the free acceleration in Ψ f will be approximately zero-mean over a complete gait cycle.
Hence, the mean total acceleration (i.e., including gravity) over a complete number of gait
cycles represents the gravitational acceleration and is directed vertically. Therefore, the
temporary Z-axis of the functional CS Ψ f (

→
z

, f
d f ) was based on the average total acceleration

(i.e., including gravity) in Ψd f (
→
a d f ), over five complete gait cycles Equation (4b). Multiple

gait cycles were included to obtain a more robust estimate of
→
z

, f
d f (see also Section 2.7 for

algorithm characteristics):

→
z

, f
d f ,i =

1

∑+2
j=−2 Ti+j

∫ t0i+Ti+Ti+1+Ti+2

t0i−Ti−1−Ti−2

→
a d f (τ)dτ (4b)

where j is an index to define included gait cycles. The x-axis of Ψd f (
→
x

f
d f ) was computed

and
→
z

, f
d f ,i updated to ensure an orthogonal CS according to the TRIAD algorithm [19]:

→
x

f
d f ,i =

→
y

f
d f ,i ×

→
z

, f
d f ,i (4c)

→
z

f
d f ,i =

→
x

f
d f ,i ×

→
y

f
d f ,i (4d)

The orthonormal drift-correcting rotation matrix from Ψd f to Ψ f was:

R f
d f ,i =

 →
x

f
d f ,i

‖→x
f
d f ,i‖

;

→
y

f
d f ,i

‖→y
f
d f ,i‖

;
→
z

f
d f ,i

‖→z
f
d f ,i‖

 (4e)

where R f
d f ,i has a constant value within each cycle but varies over cycles to correct for drift.

The drift-free 3D rotation matrix of the sensor in a functional CS (R f
s,i) of which the vertical

and mediolateral axes are fixed, and the origin moves with the body at the cycle average
velocity was then computed with Equation (1).

2.5.4. From Sensor Orientation to Sensor Displacement

Three-dimensional angular velocity and total (i.e., including gravity) acceleration
in Ψ f (

→
ω f and

→
a f ) were obtained with Equation (1). Free acceleration in Ψ f (

→
a f , f a) was

obtained by subtracting the modulus of the gravitational acceleration (
→
g f ) from the total

acceleration (
→
a f ):

→
a f , f a(t) =

→
a f (t)−

[
0, 0, ‖→g f ‖

]
(5a)

Following an assumption of approximately constant cycle average velocity, the free
acceleration in Ψ f will be approximately zero-mean over a complete number of gait cycles.
Hence, the mean free acceleration value over a window of five gait cycle was subtracted to
correct for drift:

→
a f , f a,GZCM(t) =

→
a f , f a(t)−

1
Ti

∫ t0i+Ti+Ti+1+Ti+2

t0i−Ti−1−Ti−2

→
a f , f a(τ)dτ t0i ≤ t and t0i + Ti > t (5b)
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where
→
a f , f a,GZCM is the free acceleration with a gait cycle zero-mean (GCZM).

→
a f , f a,GZCM

was numerically integrated (Figure 3, Column Ψ f , upper green arrow) with the trapezoidal
rule to obtain the velocity (

→
v f ):

→
v f (t) =

∫ t

t0i

→
a f , f a,GZCM(τ)dτ (6a)

Following an assumption of approximately constant cycle average velocity, the mean
velocity in Ψ f over a complete number of gait cycles is approximately zero in all axes
since the origin of Ψ f moves with the body at the cycle average velocity. Hence, the drift-
corrected GCZM velocity was computed by subtracting the mean velocity over a window
of five gait cycles:

→
v f ,GCZM(t) =

→
v f (t)−

1
Ti

∫ t0i+Ti+Ti+1+Ti+2

t0i−Ti−1−Ti−2

→
v f (τ)dτ t0i ≤ t and t0i + Ti > t (6b)

Sensor displacement in Ψ f (
→
s f ) was obtained with the trapezoidal rule and numeric

integration of
→
v f ,GCZM (Figure 3, Column Ψ f , lower green arrow):

→
s f (t) =

∫ t

t0i

→
v f ,GCZM(τ)dτ (7a)

Following an assumption of approximately constant cycle average velocity, the mean
displacement in Ψ f approximates zero is all directions over a complete number of gait
cycles. Hence, the mean displacement over five gait cycles was subtracted and GCZM
displacement (

→
s f ,GCZM) was computed and used as outcome measure:

→
s f ,GCZM(t) =

→
s f (t)−

1
Ti

∫ t0i+Ti+Ti+1+Ti+2

t0i−Ti−1−Ti−2

→
s f (τ)dτ t0i ≤ t and t0i + Ti > t (7b)

2.6. Validation of Orientation and Displacement Estimates

The steps described below are used to validate DFOD and are not part of DFOD. To
compare the results of DFOD against OMCS, the orientation of the cluster marker set was
computed and both the orientation and displacement were transformed to Ψ f .

2.6.1. Rotation 4: From Optical Motion Capture CS (Ψcl) to Functional CS (Ψf)

The orientation of the OMCS cluster marker set in Ψgl was based on the relative
positions of three of its individual markers according to the TRIAD algorithm [19]:

→
z

gl
cl (t) =

→
p gl,m2(t)−

→
p gl,m1(t) (8a)

→
y

,gl
cl (t) =

→
p gl,m3(t)−

→
p gl,m1(t) (8b)

where
→
p gl,m refers to the position of the individual markers of the cluster marker set in

Ψgl , see Figure 1.
→
z

gl
cl and

→
y

,gl
cl represent the Z-axis and temporary Y-axis of the cluster

marker CS (Ψcl) in Ψgl . The X-axis of Ψcl (
→
x

gl
cl ) was computed and

→
y

,gl
cl updated to ensure

an orthogonal CS:
→
x

gl
cl (t) =

→
y

,gl
cl (t)×

→
z

gl
cl (t) (8c)

→
y

gl
cl (t) =

→
z

gl
cl (t)×

→
x

gl
cl (t) (8d)
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The orthonormal rotation matrix of Ψcl to Ψgl (Rgl
cl ) was:

Rgl
cl (t) =

 →
x

gl
cl (t)

‖→x
gl
cl (t)‖

;
→
y

gl
cl (t)

‖→y
gl
cl (t)‖

;
→
z

gl
cl (t)

‖→z
gl
cl (t)‖

 (8e)

To be comparable, the 3D orientation and position of the OMCS cluster marker set
need to be expressed in the same functional CS as used for the sensor orientation and

displacement estimate of DFOD. Therefore, the OMCS functional Y-axis (Ψ f
y) in Ψgl (

→
y

gl
f )

should be based on the same functional axis as in Equation (4a). However, differentiating
Rgl

cl (t) and computing the first principal component is prone to stochastic errors induced by
differentiating 3D orientations. Alternatively, we estimated the rotation axis of the lower

leg (
→
y

gl
f ) during the flexion–extension movements of the calibration trial, described in

Section 2.2. During the flexion–extension movements, the lower leg moves approximately

around the same rotation axis. This rotation axis (
→
y

gl
f ) was estimated by first dividing each

of the four flexion–extension movements into seven intervals of equal duration ( Ti
7 ), Ti

being the duration of cycle i. See Section 2.7 for algorithm characteristics. By using a larger
time interval, the change in rotation during this interval is relatively large compared to the
errors. The rotation matrix from time point tj= ti + j× Ti

7 to the next was then computed as
follows:

R
tj+1
tj

= Rgl
cl
(
tj
)−1Rgl

cl
(
tj+1

)
(9a)

Subsequently, R
tj+1
tj

of cycle i was transformed to a rotation axis (
→
v rot,i,j) which corre-

sponds to the vector part of a quaternion that can be derived from a rotation matrix [22].
→
v rot,i,j was multiplied by a factor −1 for the extension part of each calibration movement
cycle to ensure that the rotation axes were approximately equally directed for all intervals.

The functional coordinate axis
→
y

gl
f (i.e., the rotation axis of the lower leg during the flexion–

extension movements) was subsequently determined by averaging all resulting rectified
rotation axes

→
v

,
rot,i,j for all intervals j and all cycles i:

→
y

gl
f =

1
4× 7

4

∑
i=1

7

∑
j=1

→
v

,
rot,i,j (9b)

The temporary Z-axis of Ψ f (
→
z

,gl
f ) was chosen to be equal to Ψgl

z :

→
z

,gl
f = [0, 0, 1] (9c)

The X-axis of Ψ f (
→
x

gl
f ) was computed and

→
z

,gl
f corrected to create an orthogonal CS:

→
x

gl
f =

→
y

gl
f ×

→
z

,gl
f (9d)

→
z

gl
f =

→
x

gl
f ×

→
y

gl
f (9e)

The orthonormal time-invariant rotation matrix from Ψ f to Ψgl (Rgl
f ) was:

Rgl
f =

 →
x

gl
f

‖→x
gl
f ‖

;

→
y

gl
f

‖→y
gl
f ‖

;
→
z

gl
f

‖→z
gl
f ‖

 (9f)
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The time-dependent rotation matrix of Ψcl in Ψ f (R f
cl) was then computed and repre-

sented the orientation of the cluster marker set in Ψ f (rotation 4 in Figure 3):

R f
cl(t) = Rgl

f
−1Rgl

cl (t) (10)

2.6.2. Orientation and Displacement Validation

The sensor and cluster orientation estimates in Ψ f of DFOD and OMCS were expressed
in Euler angles (rotation order: YZX) for visualization purposes. To show the added drift-
reducing benefit of DFOD in estimating sensor orientation, sensor orientation was also
computed by integrating the sensor angular velocity in Ψs, similar to Equation (3a,b)
without any drift reducing methods. This resulted in the sensor orientation with respect
to the initial sensor orientation (Ψs,init) at the start of the first gait cycle. The position
of the marker closest to the IMU was selected and displacement during each gait cycle
was computed (similar procedure to Equation (7b)). OMCS and IMU data were time-
synchronized based on the GCZM displacement in the forward direction of the sensor
and cluster marker set (

→
s f ,GCZM,x). Three-dimensional differences in Euler angles and

displacement between DFOD and OMCS over time-normalized gait cycles were quantified
as root mean square errors (RMSE) and absolute mean differences. A 1D orientation error
was computed by transforming the difference in orientation between DFOD and OMCS
to an axis-angle representation and using the rotation angle as an outcome [23]. This 1D
angle represents the rotation that is necessary to align R f

s and R f
cl . A 1D displacement

error was defined as the root mean square of the 3D displacement errors. Additionally,
differences at the first and last sample of each gait cycle, differences in minimum and
maximum values, and the ROM between DFOD and OMCS for each gait cycle were
computed and correlations between extrema and ROM were quantified with Pearson
correlation coefficients. Correlations are interpreted as very strong for r = (0.90, 1.00), strong
for r = (0.70, 0.89), moderate for r = (0.40, 0.69), weak for r = (0.20, 0.39), and very weak for
r = (0.00, 0.19) [24]. The mediolateral and vertical axis of DFOD Equation (4a,b) were based
on five gait cycles unless stated otherwise.

2.7. Algorithm Characteristics

DFOD assumes that the sensor on the lower leg moves quasi-cyclically and in a
quasi-2D plane. To quantify how valid these assumptions are for the lower leg motion
during treadmill running, respectively the mean cycle time and standard deviation and the
explained variance of the first principal component of the angular velocity in Ψs over one
minute of running were computed.

The mediolateral (Equation (4a),
→
y

f
d f ,i) and vertical axes (Equation (4b),

→
z

f
d f ,i) of Ψ f

can be computed independently of each other and are not necessarily based on data of the
same number of gait cycles. The effect of using data of different numbers of gait cycles to
determine these axes of Ψ f and its error with respect to an OMCS was tested. Data of 1 up
to 15 gait cycles were used to define the mediolateral and vertical axes of Ψ f , resulting in a
total of 225 combinations which were tested. The outcome measure of this analysis was the
1D orientation and displacement estimate.

Full trust in the TRIAD algorithm [19] was given to the mediolateral functional axis
Equation (4a) since this axis is not influenced by the violation of the approximately constant
cycle average velocity assumption. The number of points used to estimate the rotation axis
of Equation (9a,b) was based on a trial and error procedure to obtain a small variation in
the obtained axes while using as few intervals as possible. Note that the results of this trial
and error process were only used to validate DFOD and were not part of DFOD.

To investigate the effect of sampling frequency on the performance of DFOD, IMU
data were resampled from 240 Hz to 120 Hz and 60 Hz before DFOD was used to estimate
orientation and displacement. For this analysis, the vertical and mediolateral axis of DFOD
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were both based on five gait cycles and the 1D orientation and displacement estimates were
used as outcome measures.

3. Results

An average of 79 gait cycles (range: 66–94) per subject were analyzed. When not stated
otherwise, the mediolateral and vertical axes of DFOD Equation (4a,b) were based on data
of five gait cycles.

3.1. Estimation of Orientation

Estimated lower leg sensor orientations without drift reduction, with drift reduction
according to DFOD and from an OMCS are shown in Figure 4.

Figure 4. Estimated sensor (inertial) and cluster marker set (optical) orientation for a representative
subject. The top figure shows estimated sensor orientation without drift reduction with respect to the
initial orientation of the sensor at the start of the first gait cycle (Ψs,init). The middle figure shows
the estimated sensor orientation obtained with DFOD in Ψ f . The bottom figure shows the actual
cluster orientation according to an optical motion capture system in Ψ f . Note that data of the top
graph are shown in a different coordinate system. This figure shows the added drift-reducing benefit
of DFOD compared to orientation estimation without drift reduction. Anti-clockwise rotations in
Ψs,init, (top figure), and Ψ f (middle and bottom figure) correspond to positive angles. An angle of
zero corresponds to the initial sensor orientation just before initial contact of the first gait cycle in
Ψs,init (top figure) or Ψ f (middle and bottom figure).

Estimated lower leg sensor orientations of DFOD were compared to an OMCS in
treadmill running. Mean RMSE for orientations in the sagittal plane were 3.1 ± 0.4◦ while
they were larger in the frontal (5.3 ± 1.1◦) and transversal plane (5.0 ± 2.1◦). The mean
1D rotation error (i.e., angle over which R f

s needs to be rotated to coincide with R f
cl) was

7.5 ± 1.7◦. The 3D mean difference at the start and end of the gait cycle, absolute difference,
and maximum and minimum difference in orientation together with the difference in ROM
of DFOD and OMCS are shown in Table 1. Correlations between the 3D maximal angle,
minimal angle, and ROM from DFOD and OMCS ranged from strong (0.768) to very strong
(0.99). Mean 3D orientations of DFOD and OMCS for a representative subject are shown in
Figure 5.
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Table 1. Mean orientation differences between DFOD and OMCS for all subjects combined. RMSE
refers to the root mean square difference in 3D orientation. “Difference start cycle” and “Difference
end cycle” refer to the difference between DFOD and OCMS (OMCS-DFOD) at the first and last
sample of the gait cycle. “∆ Maximal angle” and “∆ Minimal angle” refer to the differences in
the estimated maximal and minimal orientation during each gait cycle between DFOD and OMCS
(OMCS-DFOD). “∆ ROM” refers to the mean differences in the estimated range of motion during each
gait cycle for DFOD and OMCS. Pearson correlation coefficients (r) are provided between brackets.

Orientation (Ψf) RMSE
Mean

Absolute
Difference

Difference
Start Cycle

Difference
End Cycle

∆ Maximal
Angle

∆ Minimal
Angle ∆ ROM

X-axis/Forward
plane 5.3 ± 1.1◦ 4.3 ± 0.7◦ −6.1 ± 5.0◦ −6.2 ± 5.1◦ −4.7 ± 6.1◦ (r = 0.78) 3.0 ± 2.2◦ (r = 0.81) −7.6 ± 4.4◦ (r = 0.89)

Y-axis/Sagittal
plane 3.1 ± 0.4◦ 2.6 ± 0.3◦ 0.3 ± 3.7◦ 0.4 ± 4.0◦ −0.4 ± 3.4◦ (r = 0.95) −2.1 ± 1.7◦ (r = 0.99) 1.7 ± 3.1◦ (r = 0.96)

Z-axis/Transversal
plane 5.0 ± 2.1◦ 4.5 ± 2.1◦ −3.5 ± 3.4◦ 3.4 ± 3.7◦ −3.4 ± 3.2◦ (r = 0.96) 2.3 ± 5.0◦ (r = 0.97) −5.6 ± 2.1◦ (r = 0.81)

Figure 5. Top figure: Mean time-normalized orientation of a sensor (DFOD, dashed line) and cluster
marker (OMCS, solid line) on the lower leg (in Ψ f ) as a function of the gait cycle. Shaded areas
represent the standard deviation around the mean. Bottom figure: 1D orientation error as a function
of the gait cycle. The 1D orientation error is the angle of the axis-angle representation of the difference
in orientation between DFOD and OMCS [23]. Data are shown for a representative subject during
one minute of running. Positive orientations represent anti-clockwise rotations in Ψ f .

3.2. Estimation of Displacement

Estimated lower leg sensor displacements of DFOD were compared to an OMCS in
treadmill running. Mean RMSE for displacements in the forward direction were 1.6 ± 0.2 cm
and similar for the mediolateral (1.7± 0.6 cm) and vertical direction (1.6 ± 0.2 cm). The mean
1D displacement error (i.e., length of the vector between the estimated sensor position
of DFOD and OMCS) was 2.7 ± 0.4 cm. The 3D mean difference at the start and end
of the gait cycle, absolute difference, maximum difference, and minimum difference in
displacement, together with the difference in ROM of DFOD and OMCS, are shown in
Table 2. Correlations between the 3D maximal displacement, minimal displacement, and
ROM were moderate (r = 0.50) to strong (r = 0.82). Mean 3D displacements of DFOD and
OMCS for a representative subject are shown in Figure 6.
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Table 2. Mean displacement differences between DFOD and OMCS for all subjects combined. RMSE
refers to the root mean square difference in 3D sensor and cluster displacement. “Difference start
cycle” and “Difference end cycle” refer to the difference between DFOD and OCMS (OMCS-DFOD) at
the first and last sample of the gait cycle. “∆ Maximal displacement” and “∆ Minimal displacement”
refer to the differences in the estimated maximal and minimal displacement during each gait cycle
between DFOD and OMCS (OMCS-DFOD). “∆ ROM” refers to the mean differences in the estimated
range of motion during each gait cycle for DFOD and OMCS. Pearson correlation coefficients (r) are
provided between brackets.

Displacement (Ψf) RESE Mean Absolute
Difference

Difference Start
Cycle

Difference End
Cycle

∆ Maximal
Angle

∆ Minimal
Angle ∆ ROM

X-axis/Forward 1.6 ± 0.2 cm 1.4 ± 0.2 cm 2.7 ± 0.7 cm 2.8 ± 0.6 cm 2.4 ± 0.7 cm
(r = 0.72)

−1.1 ± 0.4 cm
(r = 0.79)

3.5 ± 0.9 cm
(r = 0.81)

Y-axis/Mediolateral 1.7 ± 0.6 cm 1.5 ± 0.5 cm −0.3 ± 2.1 cm −0.2 ± 2.2 cm −0.5 ± 1.6 cm
(r = 0.51)

0.6 ± 1.5 cm
(r = 0.65)

−1.1 ± 3.1 cm
(r = 0.59)

Z-axis/Vertical 1.6 ± 0.2 cm 1.3 ± 0.2 cm 1.9 ± 0.2 cm 2.0 ± 0.3 cm 0.0 ± 1.0 cm
(r = 0.50)

−0.4 ± 0.2 cm
(r = 0.82)

0.4 ± 1.1 cm
(r = 0.71)

Figure 6. (Top figure): Mean time-normalized displacement of a sensor (DFOD, dashed line) and
cluster marker (OMCS, solid line) on the lower leg (in Ψ f ) as a function of the gait cycle. Shaded
areas represent the standard deviation around the mean. (Bottom figure): 1D displacement error as a
function of the gait cycle. Data are shown for a representative subject during one minute of running.
Positive displacements in the X, Y, and Z-axis represent movement into the forward, sideward (left),
and upward direction, respectively. The origin moves forward with the cycle average velocity.

3.3. Algorithm Characteristics

Two metrics were computed to show how valid the assumptions of a quasi-cyclical and
quasi-2D movements were for treadmill running. The average cycle time was 0.68± 0.03 s/stride
and the standard deviation ranged from 0.8–1.9% of the average cycle time. The first princi-
pal component of the angular velocity explained on average 90.2± 5.7% (range: 84.6–95.8%)
of the variance.

The mediolateral and vertical axes of Ψ f Equation (4a,b) are based on data of five
complete gait cycles. The effect of using data of more or less gait cycles to define these axes
on the mean 1D orientation error is investigated and shown in Figure 7. The lowest mean
1D orientation error was found when the vertical axis was based on data of 11 gait cycles
and the mediolateral axis on data of 8 gait cycles (mean error: 7.5◦). The highest mean
orientation error was found when the vertical and mediolateral axes were both based on
data of 1 gait cycle (mean error: 7.7◦).
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Figure 7. Effect of the number of gait cycles used to determine the mediolateral Equation (4a) and
vertical axis Equation (4b) of Ψ f on the 1D angle error. The 1D angle error represents the angle of the
axis-angle representation of the difference in orientation between DFOD and OMCS.

The effect of the number of gait cycles on the mean 1D displacement error is shown
in Figure 8. The lowest mean displacement error was found when the vertical axis was
based on data of 10 gait cycles and the mediolateral axis on data of 15 gait cycles (mean
error: 2.6 cm). The highest mean displacement error was found when the vertical and
mediolateral axes were both based on data of 1 gait cycle (mean error: 4.5 cm).

Figure 8. Effect of the number of gait cycles used to determine the mediolateral Equation (4a) and
vertical axis Equation (4b) of Ψ f on the 1D displacement error between DFOD and OMCS.

To investigate the effect of sampling frequencies on DFOD, inertial data were resam-
pled from 240 Hz to 120 Hz and 60 Hz before applying DFOD. Compared to a sampling
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frequency of 240 Hz, the 1D orientation error increased with 0.3◦ for 120 Hz and 2.2◦ for
60 Hz. The 1D displacement error increased with 1.2 cm for 120 Hz and 12.7 cm for 60 Hz.

4. Discussion

A new method, called Drift-Free Orientation and Displacement estimation (DFOD), is
proposed to estimate drift-free 3D sensor orientation and displacement based on a single
IMU. DFOD uses the quasi-cyclical behavior of human movements and assumes a quasi-2D
movement with an approximately constant cycle average velocity. The performance of
DFOD for a sensor on the lower leg was validated with an optical motion capture system
(OMCS) in treadmill running. Errors in estimated sensor orientation and displacement
between DFOD and OMCS were comparable to errors of other orientation and displace-
ment algorithms. However, DFOD is independent of a constant- or zero-velocity point, a
biomechanical model, a magnetometer, Kalman filtering, or a calibration procedure. Hence,
DFOD is a promising method for quasi-cyclical motion analysis with a single IMU and has
many advantages over current methods.

4.1. Estimation of Orientation

Estimated lower leg sensor orientations of DFOD were compared to an OMCS in
treadmill running. DFOD performs best for orientation estimation in the sagittal plane,
possibly because the largest ROM occurs around the axis perpendicular to this plane
Equation (4a) in running.

To reduce drift in orientation estimation, a drift reducing rotation which was constant
within each cycle, but varied over cycles, was applied (rotation 3). Orientation drift is
relatively slow compared to the duration of a gait cycle (i.e., two min before Ψd f drifts 90◦,
or ±0.5◦/stride, around Ψ f

y). Hence, a constant drift reducing rotation for each gait cycle
seemed sufficient, although this did result in small discontinuities between gait cycles. In
future work, a continuous drift reducing rotation could improve the performance of DFOD.

Since we are not aware of studies that estimated lower leg orientations during run-
ning, the results of DFOD can only be compared with studies estimating foot and thigh
orientations during running and walking. Foot orientations during running have mostly
been based on constant- or zero-velocity updates with an additional drift reducing compo-
nent (e.g., based on joint center accelerations, filtering, or an orientation reset). At speeds
similar to our study, sagittal plane foot orientations could be estimated with errors varying
between 2.0◦ and 20.8◦ [11,12,25]. Frontal plane foot orientation errors differed from 2.6◦ to
4.4◦ [12,25]. Upper leg orientations during walking have been estimated with an RMSE of
1.9 ± 0.5◦, although the zero acceleration and angular velocity update used in that study
does not apply to continuous quasi-cyclical movements like running [26]. Orientation
errors in our study are similar or slightly larger than found in literature for other body
segments, although these studies used drift reducing methods unsuitable for a sensor on
the lower leg in running (i.e., based on a constant- or zero-velocity point).

Tibial orientations in the sagittal and transversal plane are commonly studied with
regard to running injuries [27–29]. The sagittal plane orientation of the tibia at initial contact
has been shown to be 4.9◦ larger in injured than in uninjured runners and the tibia ROM in
the transverse plane is around 15◦ in running [30]. With a mean difference of –0.3 ± 3.7◦ at
the start of the gait cycle (just before initial contact) and –5.6 ± 2.1◦ in the transversal plane
ROM, DFOD is capable to detect meaningful changes in tibia orientations during running.

4.2. Estimation of Displacement

Estimated lower leg sensor displacements of DFOD were compared to an OMCS in
treadmill running. OMCS cluster marker placement can explain some of the errors in the
forward and vertical directions. The OMCS cluster marker set is placed below the IMU (see
Figure 1). Lower placement of the cluster marker set results in a larger ROM for OMCS
compared to DFOD in the forward and vertical direction. Hence, actual displacement
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errors in the forward and vertical direction are expected to be smaller than those reported
in this study.

Since we are not aware of studies that estimated lower leg displacements during run-
ning, the results of DFOD can only be compared with studies estimating foot displacements
and stride length based on IMU data during running. In literature, estimates of sagittal
plane foot displacement during running at a speed similar to the speed in this study had
an absolute 1D positional error of 5 ± 2 cm at maximal foot height and initial contact [11].
The absolute 1D positional error in our study was 2.7 ± 0.4 cm. Previously, stride length
based on an IMU in a shoe could be estimated with a mean absolute error of 7.6 cm [31].
DFOD has a mean absolute displacement error of 1.4 ± 0.2 cm in the forward direction.
Hence, displacement errors of DFOD for the tibia sensor are smaller than those reported by
literature for the foot segment in running.

DFOD estimates the displacement of a sensor on the lower leg. However, the displace-
ment of each point on the tibia can be estimated based on the orientation of the sensor and
the distance from the sensor to the point of interest. When the distance from the sensor to
the ankle joint is known, the forward (step length) and upward (step height) displacement
of the ankle can be estimated. Running velocity can then be obtained with the step length
and cycle time. Hence, DFOD provides insight into the 3D trajectory of the lower leg during
running and can be used to estimate step length, step height, and running velocity based
on a single IMU on the lower leg.

4.3. Algorithm Characteristics

The assumptions that treadmill running is a quasi-cyclical and quasi-2D movement
seem to hold based on the standard deviation of the cycle times (0.8–1.9% of the cycle
time) and the explained variance of the first principal component for the angular velocity
in Ψs(84.6–95.8%). The explained variance shows that DFOD is capable of accurately
estimating orientation and displacement even when 15% of the angular velocity in Ψs

occurs outside the 2D plane of a movement.
The effect of computing the functional mediolateral Equation (4a) and vertical Equation

(4b) axes based on different numbers of gait cycles was found to be very small. The 1D
orientation and displacement errors differed only 0.2◦ and 1.9 cm between the best- and
worst-performing combination of the number of included gait cycles. Hence, during indoor
treadmill running at a constant velocity, the number of gait cycles for the vertical and
mediolateral axes has a limited influence on the results of DFOD.

However, the goal is to apply DFOD in less controlled environments such as outdoor
running. Outdoor running is likely to result in a less cyclical running pattern [32]. It is
hypothesized that for outdoor running, a smaller number of gait cycles to compute the
functional mediolateral Equation (4a) and vertical Equation (4b) axes is favored over a
larger number since assumptions are less likely to be violated over shorter periods. Five
gait cycles to define the vertical and mediolateral axes is expected to be a reasonable trade-
off between including more data to compensate for the increased variability in outdoor
running while still being able to adapt to sudden changes in the gait pattern and reduce
violations of assumptions. Hence, five gait cycles for both the mediolateral and vertical
axes Equation (4a,b) were used in this study as the default setting for DFOD.

To investigate the effect of sampling frequencies on DFOD, inertial data were resam-
pled from 240 Hz to 120 Hz and 60 Hz before applying DFOD. Orientation and displacement
errors drastically increased when IMU data resampled to 60 Hz were used as input for
DFOD. These results indicate that DFOD provides satisfactory results for a sampling
frequency of 240 Hz and 120 Hz, but not for 60 Hz.

4.4. Limitations

Multiple assumptions were made to create DFOD, which can be violated by running
outdoors. When runners run outside, they have a less constrained gait pattern than on a
treadmill [32], and can freely change their running velocity and run up or downhill, thereby
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violating some assumptions of DFOD. Violation of the assumption of an approximately
constant cycle average velocity does not influence the mediolateral axis of Ψ f Equation
(4a) since this axis is based on the first principal component of the angular velocity of the
lower leg sensor. Additionally, this axis is not influenced by taking a turn or running in
circles, since it moves with the body. However, the vertical axis of Ψ f Equation (4b) is
influenced by a violation of the approximately constant cycle average velocity assumption.
This axis is equal to the direction of the total acceleration (i.e., including gravity) over a
complete number of gait cycles when the cycle average velocity is constant. When a runner
accelerates or decelerates, the free acceleration will not have a zero-mean over a complete
number of gait cycles and will result in an offset in the estimated vertical axis proportional
to the magnitude of the acceleration or deceleration. Since five gait cycles are included to
estimate both functional axes, DFOD minimizes the effect of violated assumptions and is
expected to recover from a short violation of assumptions within five gait cycles.

Similarly, the assumption of a quasi-cyclical 2D movement might be violated more
often in running outdoors since impact accelerations are higher when running overground
compared to a treadmill [33], due to uneven terrain, stumbling, or taking a turn. DFOD
will recover from short violations of the quasi-cyclical 2D movement assumption within
five gait cycles. Running-induced fatigue has been shown to increase variability in the gait
pattern [34]. This increased variability and less cyclicity might cause the assumptions of
DFOD to be less valid in fatigued running, resulting in larger orientation and displacement
errors. Since DFOD has an origin that moves with the body at the cycle average velocity, a
change in elevation caused by running on a sloped surface will cause the origin of DFOD
to move up or down with the body. An elevation change will be visible over time; however,
the average displacement will still be zero.

This study aimed to propose and validate a new algorithm that makes use of the
quasi-cyclical nature of many movements. The algorithm was tested on treadmill running
data of four runners and provided satisfactory results for all runners. Hence, to test the
idea of using the quasi-cyclical nature of many human movements to estimate orientation
and displacement, a limited number of subjects is appropriate. However, before DFOD
can be used to study running kinematics it should be validated in more runners and
different conditions.

This study estimated sensor orientation and displacement during running while
segment orientations might provide more insight for motion analysis. For a sensor to
segment calibration, two axes that relate to both CSs are required. One of these axes is
already defined in DFOD Equation (2a). The other axis could be based on the direction
of the gravitational acceleration during neutral standing, in which the tibia is assumed
to be vertical. However, this sensor to segment calibration does require an additional
calibration procedure.

4.5. Future Research

In future work, DFOD should be validated in a less controlled setting, such as outdoor
running, in multiple body segments, and different quasi-2D movements like cycling and
skating. The influence of short violations of the assumptions of DFOD, increased variability
in the gait pattern (i.e., caused by fatigue), less cyclical movements, and different speeds
on estimated orientations and displacement should be assessed in (outdoor) running.
Additionally, the effect of continuous drift reduction instead of a drift reduction during
each gait cycle Equation (4e) could be evaluated to improve the performance of DFOD.
As long as two functional axes can be defined, DFOD should be able to estimate sensor
orientation and displacement. Hence, the generalized idea of DFOD could also be applied
to quasi-cyclical 3D movements like swimming. For 3D movements, the validity of the
functional mediolateral axis Equation (4a) based on the first principal component of the
angular velocity should be assessed. This component is expected to be less pronounced
in 3D versus 2D movements. Finally, a sensor to segment calibration procedure could be
added to enable DFOD to calculate segment orientations instead of sensor orientations.
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5. Conclusions

The Drift-Free Orientation and Displacement estimation method (DFOD) is proposed
and validated. DFOD estimates drift-free 3D sensor orientation and displacement with a
single IMU in quasi-cyclical quasi-2D plane movements with an approximately constant
cycle average velocity. DFOD does not require a calibration procedure, biomechanical
model, constant- or zero-velocity point, Kalman filtering, or magnetometer. Small errors
in lower leg sensor orientation and displacement were found when DFOD was validated
against an optical reference system in treadmill running. Hence, DFOD is a promising
method for quasi-cyclical motion analysis, especially when using a minimal sensor setup.
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