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ABSTRACT 

 

 
Background and Objectives: Human T-lymphotropic virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL) and 

HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The present study aims to analyze gene expression 

patterns in ATL and HAM/TSP. 

Materials and Methods: Microarray gene expression profiling of T-lymphocytes from HTLV-1 associated disease and 

healthy control were obtained from Gene Expression Omnibus (GEO). Several bioinformatics tools were used to identify dif- 

ferentially expressed genes (DEGs). Among the generated DEGs, we constructed protein-protein interaction (PPI) between 

HAM/TSM and ATL in comparison to asymptomatic carriers (ACs). Subsequently, gene ontology (GO) and topological 

analysis were performed. 

Results: We found that the majority of DEGs in ATL and HAM/TSP were importantly implicated in immune response cat- 

egories. The nodes and edges number of normal-AC, AC-ATL and ATL-HAM/TSP PPIs were 168 and 145, 116 and 97, and 

275 and 327, respectively. Based on the topological analyses of protein-protein interaction networks, APP (Amyloid Beta 

Precursor Protein) was detected as a critical player in progression of HTLV-1 disease. 

Conclusion: Dysregulation of immune response associated transcripts play a critical role in HTLV-1 disease progression. 

Immune response associated genes may be biomarker for prognosis in cancer development and therapeutic targets. 
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INTRODUCTION 

 
Only a few retroviruses are associated with human 

malignancies.  Human  T-lymphotropic  virus  type 

1 (HTLV-1) has been established as the etiological 

agent of adult T-cell leukemia (ATL) as well as a 

nervous system degenerative disorder called HTLV- 

1 associated myelopathy/tropical spastic paraparesis 

(HAM/TSP) (1, 2). It is estimated that approximately 

between 15 and 20 million people are infected with 

HTLV-1 worldwide (3). HTLV-1 can be transmitted 

through unprotected sexual intercourse, intravenous 

drug use, blood transfusion and also from mother to 

child during pregnancy (4). Infection with HTLV-1 

is usually asymptomatic, but can develops to ATL 

in about 5% of infected patients over a period of 30 

to 50 years (5). Although the primary clinical pre- 

sentation is development of intensive weakness of 

the legs and lower body, the patient’s mental facul- 

ties remain intact (6, 7). HAM/TSP is described as 

being of the same magnitude and importance in the 

tropics as multiple sclerosis is in Western countries 

(8). Although the pathogenesis of HTLV-1 is impor- 

tantly related to viral structural and non-structural 

proteins, however the huge cellular proteins play a 

crucial roles in disease progression (9). Conception 

the molecular pathways of HTLV-1 and carcino- 

genesis is pivotal in developing new approaches of 

diagnosis and therapy, since ATL has a weak prog- 

nosis, despite severe chemotherapy (9). Accordingly, 

detection of prognostic gene signatures that involved 

in the pathogenesis is important to understanding of 

disease progression and can provide new strategies 

for treatment and diagnosis (10). 

Since the pathogenesis mechanism of HTLV-1, as 

a virus associated cancer and neurological illness, 

is poorly understood, identifying crucial expressed 

genes in asymptomatic carriers (ACs), ATL, and 

HAM/TSP will help to detect new functional players. 

One of the beneficial approaches of high-throughput 

microarray-based transcriptome investigations is 

their ability to discover a group or cluster of impor- 

tantly expressed genes that encode putative secreted 

or cell-surface proteins that deregulated in tissue or 

bodily fluids (11-13). Genome-wide gene expression 

profiling has been widely utilized to uncover crucial 

prospective transcriptional signatures for better un- 

derstanding of disease consequences and discover- 

ing new therapeutic targets (14, 15). Thus, the goal 

of this in silico study is to look more closely into 

microarray gene expression patterns and their im- 

portant outcomes in biological mechanisms as well, 

in  order  to  detect  the  representative  subnetworks 

in patients suffering from (ACs), ATL, and HAM/ 

TSP. 
 

 
 
MATERIALS AND METHODS 

 
T CD4+ affymetrix microarray gene expression 

data. A total 38 samples gene expression platform 

(GEO accession: GSE19080) consisting of 7 ATL, 

12 neurological disorders with tropical spastic para- 

paresis (HAM/TSP), 11 asymptomatic carriers and 

8 healthy donors were obtained from Gene Expres- 

sion Omnibus database (GEO; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE19080) (16). The differentially expressed genes 

(DEGs) were identi- fied using GEO2R tool (17). 

The study approved the following ethical committee 

approval of Tabriz Uni- versity of Medical Sciences 

(Approval Code: IR.TB- 

ZMED.VCR.REC.1398.284). 

 
Gene ontology (GO) and pathways data analy- 

sis. GO studies were carried out utilizing Biological 

Networks Gene Ontology tool (BiNGO), Cytoscape's 

most popular plugin (18). This plugin is a flexible and 

extendable tool used to analyze GO term overrepre- 

sentation in the given biological networks. We used the 

database for annotation, visualization, and integrated 

discovery (19) server as an alternative tool for validat- 

ing the GO results of BiNGO. A pathway enrichment 

was conducted using SPEED web tool to identify the 

signaling pathways underlying HTLV-1-associated 

diseases (20). This server is an intuitive approach for 

discovering signaling pathways responsible for reg- 

ulating various biological processes. In parallel, the 

signaling pathways corresponding to the DEGs were 

collected from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (21). The daily updated KEGG da- 

tabases consist of information about genomic, cellu- 

lar pathways and chemical compounds. 

 
Identification of regulatory relationships be- 

tween the DEGs. A protein-protein interaction (PPI) 

networks was constructed for each AC-normal, ALT- 

AC, and HAM/TSP-ATL stages using BisoGenet, a 

Cytoscape plugin (Version 3.9.0) (22). BisoGenet is a 

multi-tier tool which constructs the PPI based on the 

regulatory relationships data obtained from several 

http://ijm.tums.ac.ir/
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PPI databases. In parallel, some other relationships 

between the DEGs were collected from the most re- 

cent studies. 

 
Topological analysis of the PPIs. Topological 

properties of each PPI were measured using Network 

Analyzer, a network analysis plug-in of Cytoscape, 

to identify the most important functional hub genes 

within the networks. We used eight measures in- 

cluding, Degree Centrality, Betweenness Centrality, 

Clustering Coefficient, Closeness Centrality, Eccen- 

tricity, Neighborhood Connectivity, Topological Coef- 

ficient and Average Shortest Path Length for assess- 

ing topological properties of the PPIs. 
 

 
 

RESULTS 

 
General properties of DEGs, results of gene en- 

richment analysis, and KEGG pathways. After 

samples  have  been  considered  to  specific groups, 

we have obtained DEGs with default variable. After 

processing of non-informative genes, 167 DEGs in- 

cluding 116 upregulated genes and 51 downregulated 

genes were detected in AC groups compared to healthy 

control (Table 1). Also, 116 transcripts were differen- 

tially expressed between ATL and AC patients, which 

83 genes were upregulated and 33 genes downregulat- 

ed. Finally, 272 DEGs including 81 upregulated genes 

and 191 downregulated genes were detected in HAM/ 

TSP patients compared to ATL patients. 

Gene enrichment analysis and KEGG pathways eval- 

uation of obtained differentially expressed genes from 

AC- normal, ATL-AC and HAM/TSP-ATL subjects 

indicated that these DEGs shared some similar path- 

ways such as immune response, regulation of apop- 

tosis, cell cycle and intracellular signaling cascade. 

Among KEGG pathway analysis results, immune 

response and cell cycle pathways have a critical role 

in the HTLV-1 disease progression (Table 2). More- 

over, GO was carried out for AC-normal, ATL-AC 

and HAM/TSP-ATL subjects using several GO anal- 

ysis tools. In addition, the majority of DEGs were 

significantly enriched in immune response and cell 

cycle regulation (false discovery rate [FDR] <0.05). 

Interestingly, we found the association between these 

functional categories and pathways in comparative dif- 

ferentially expressed genes, which immune response 

and cell cycle were more correlated to ATL and HAM/ 

TSP patients. 

 

PPIs information. By integrating the regulatory 

relationships obtained from BisoGenet plugin as well 

as published data, a PPIs were constructed for each 

DEG lists resulted from processing AC-normal, ATL- 

AC and HAM/TSP-ATL gene expression profiles. The 

nodes and edges number of AC-normal, ATL-AC and 

HAM/TSP-ATL PPIs were 168 and 145, 116 and 97, 

and 275 and 327, respectively. After determination of 

each PPI’s sub-network, the most integrated sub-net- 

work consisting of 155 nodes was observed in PPI of 

HAM/TSP-ATL (Fig. 1). 

 
Table 1. The top 5 hub genes obtained from Analysis of the AC-normal, ATL-AC and HAM/TSP-ATL networks. 

 

Deregulated genes AC vs normal ATL vs AC HAM/TSP vs ATL 
Upregulated genes 

 

 
Downregulated genes 

MKI67, NT5E, RPS12, 

DMPK, RRM1 

ABCG2, ADAM8, ADORA2A, 

ADSL, AMPH 

STK39, CD48, KLRB1, 

SELPLG, CCL14 

COL6A1, PRKRIR, PBEF1, 

HLA-G, LGALS3BP 

COL6A1, PBEF1, HLA-G, 

PRKRIR, PRMT1 

CD48, GDF10, SELPLG, 

CCL14, KLRB1 
 

Table 2. GO and KEGG pathway analysis of DEGs. 

 
DEGs 

AC vs Normal 
 

 
ATL vs AC 

HAM/TSP vs ATL 

Biological processes and KEGG pathways 

Immune response, programmed cell death, regulation of apoptosis, regulation of cell death, Cellular 

response to DNA 

Immune response, positive regulation cytokine, regulation of programmed cell death, regulation of apop- 

tosis, regulation of cell death, Regulation of cell proliferation, intracellular signaling cascade, Regulation 

of phosphate metabolic process 

Phosphorus metabolic process, intracellular signaling cascade, regulation of programmed cell death, 

cellular response to stress, Response to organic substance, Positive regulation of biosynthetic process 

http://ijm.tums.ac.ir/
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Fig. 1. The most important sub-networks of PPI of (A) Healthy-AC, (B) AC-ATL and (C) ATL-HAM/TSP. The nodes with 

higher Betweenness centrality are shown in larger spots. 

 
APP is the most important hub gene of ATL-AC 

and HAM/TSP-ATL networks. Topological analysis 

of the PPIs revealed that APP gene has the most de- 

gree connectivity in the ATL-AC and HAM/TSP-ATL 

networks. In addition to Degree measure, this gene 

was identified as the highest-scored hub gene in the re- 

sult of the Betweenness centrality, Closeness centrali- 

ty and Radiality measures suggesting its critical role in 

the resulted PPIs. However, the expression of APP had 

a significant negative correlation in ATL (down-regu- 

lated) and HAM/TSP (up-regulated) samples. The top 

15 hub genes for each PPI are listed in Table 3. 
 

 
 

DISCUSSION 

 
Microarray technology is frequently used to inves- 

tigate gene expression alterations in cells or tissues 

of interest in a high-throughput manner. The appli- 

cation of this technology has reached a level where it 

can be employed to identify biomarkers and cellular 

mechanisms that regulate the progression of various 

http://ijm.tums.ac.ir/
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Table 3. The 15 top hub genes for each constructed PPI 

AC vs normal 
 

Hubs D BetCen CluCoe CloCen E NeiCon TopCoe Avg.ShoPat R 
BCR 7 0.42033543 0 0.335404 5 4.2 0.21333333 2.98148148 0.77983539 
HSPD1 6 0.33577918 0 0.333333 5 4.25 0.27083333 3 0.77777778 
YWHAQ 8 0.32914046 0 0.331288 5 2.66666667 0.18518519 3.01851852 0.77572016 
HNRPH1 4 0.25087352 0 0.305085 6 3.75 0.275 3.27777778 0.74691358 
SMARCA4 10 0.20824598 0 0.271357 7 1.875 0.14583333 3.68518519 0.70164609 
RAC1 8 0.20527603 0 0.272727 6 2 0.16666667 3.66666667 0.7037037 
PTPN6 6 0.19863732 0 0.27551 6 2.75 0.25 3.62962963 0.70781893 
ING1 4 0.16491964 0 0.295082 6 7 0.5 3.38888889 0.7345679 
CXCR4 6 0.1567086 0 0.241071 7 2.75 0.25 4.14814815 0.65020576 
ISG15 5 0.15571861 0 0.285714 6 2.2 0.2 3.5 0.72222222 
EIF5A 3 0.13883065 0 0.282723 6 3 0.33333333 3.53703704 0.718107 
TCF3 6 0.1219427 0.16666667 0.254717 7 4.5 0.30769231 3.92592593 0.67489712 
HNRPM 3 0.11565339 0 0.247706 7 3.33333333 0.38888889 4.03703704 0.66255144 
ID2 7 0.07791754 0.1 0.215139 8 2.2 0.32 4.64814815 0.59465021 
ELA2 5 0.07337526 0 0.197802 8 2 0.33333333 5.05555556 0.54938272 

ATL vs AC 
Hubs D BetCen CluCoe CloCen E NeiCon TopCoe Avg.ShoPat R 

APP 22 0.84126984 0.01052632 0.654545 3 1.9 0.065625 1.52777778 0.91203704 
COPS5 12 0.41904762 0.04444444 0.521739 4 3.5 0.12173913 1.91666667 0.84722222 
MAP2K4 6 0.21111111 0 0.439024 4 6 0.25 2.27777778 0.78703704 
LGALS3BP 5 0.10952381 0 0.36 5 4 0.33333333 2.77777778 0.7037037 
ACO1 3 0.07301587 0 0.418605 4 7.66666667 0.35087719 2.38888889 0.76851852 
GCH1 4 0.05555556 0 0.313043 5 2.5 0.5 3.19444444 0.63425926 
IGF1R 4 0.05555556 0 0.409091 4 10.5 0.5 2.44444444 0.75925926 
S100A8 5 0.05555556 0.33333333 0.461538 4 10.33333333 0.37037037 2.16666667 0.80555556 
FUBP1 2 0.01428571 0 0.36 5 6.5 0.55 2.77777778 0.7037037 
TLK1 2 0 0 0 0 0 0 0 9.22E+10 
PLCL2 0 0 0 0 0 0 0 0 9.22E+10 
ATP5J 0 0 0 0 0 0 0 0 9.22E+10 
CENTA2 3 0 0 0.4 4 20 0 2.5 0.75 
CDKN2D 1 0 0 0.4 4 20 0 2.5 0.75 
BAT2D1 1 0 0 0.266667 6 3 0 3.75 0.54166667 

HAM/TSP vs ATL 
Hubs D BetCen CluCoe CloCen E NeiCon TopCoe Avg.ShoPat R 
APP 40 0.49870398 0.0113798 0.404199 6 2.86842105 0.04048583 2.47402597 0.8771645 
PTK2 14 0.17760747 0.09090909 0.35 7 8.08333333 0.11029412 2.85714286 0.8452381 
PIK3R1 17 0.16081525 0.06666667 0.329764 8 4.2 0.10285714 3.03246753 0.83062771 
COPS5 16 0.15507314 0.04395604 0.346847 7 5.85714286 0.091133 2.88311688 0.84307359 
CALM1 12 0.12885899 0.02222222 0.29845 7 3.8 0.12 3.35064935 0.80411255 
HLA-B 12 0.11779117 0 0.281536 8 3.3 0.10952381 3.55194805 0.78733766 
MAP2K4 8 0.10715013 0.13333333 0.316222 7 8.83333333 0.18085106 3.16233766 0.81980519 
SHC1 15 0.09727594 0.12820513 0.35 7 7.07692308 0.10744811 2.85714286 0.8452381 
TBP 9 0.08791092 0.04761905 0.274021 8 2.85714286 0.17857143 3.64935065 0.77922078 
APC 10 0.08037233 0.03571429 0.309237 8 5.125 0.14583333 3.23376623 0.81385281 
HNRPM 7 0.07852977 0.04761905 0.309859 7 6 0.16017316 3.22727273 0.81439394 
NFKBIA 9 0.07579216 0.0952381 0.320166 7 5.85714286 0.16017316 3.12337662 0.82305195 
IKZF1 6 0.06445487 0 0.242138 9 4.25 0.25 4.12987013 0.73917749 
S100A8 7 0.06172106 0.3 0.329764 7 15 0.234375 3.03246753 0.83062771 
UBE3A 6 0.05242839 0 0.314286 7 12.5 0.25555556 3.18181818 0.81818182 
D: Degree, BetCen: Betweenness Centrality, CluCoe: Clustering Coefficient, CloCen: Closeness Centrality, E: Eccentricity, NeiCon: 

Neighborhood Connectivity, TopCoe: Topological Coefficient, Avg.ShoPat: Average Shortest Path Length, R: Radiality 
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diseases. One of the advantages of high-throughput 

microarray-based  analysis  is  its  ability  to  identi- 

fy clusters of genes that are simultaneously up- or 

down-regulated in body tissues or fluids. Due to this, 

data mining is an essential part of microarray stud- 

ies which requires accurate statistical analysis of the 

transcriptomic data by a systematic approach. As 

a potent tool, system biology is widely used to un- 

derstand the mechanism involved in the regulation 

of the cell components or the growth and develop- 

ment processes in the whole organism. By analyzing 

numerical data obtained from micro-array analysis, 

system biology can provide remarkable information 

describing the apparatus of biological systems, by 

predicting the interaction between gene expression 

processes and multiple cell components (19, 23). 

In this regard, systems biology is a suitable meth- 

od for identifying the effective genes and biomarkers 

involved in the progression of certain diseases, by 

examining the changes in gene expression on clini- 

cal specimens that can undergo phenotypic changes 

in different stages of the disease. In viral infections, 

viruses adapt to the topology of the host protein net- 

work and interact with the host proteins when they 

infect the host cell. Finally, despite their small ge- 

nomes and low protein content, viruses make new 

connections in the PPI network and alter cellular 

metabolic pathways. The present study investigated 

gene expression profiles in samples from asymptom- 

atic patients infected with HTLV-1, ATL and HAM/ 

TSP, using microarray data from the GEO database. 

Analysis of DEGs results and their evaluation using 

Gene enrichment examination and KEGG pathways, 

indicates the common biological processes such as 

immune response, programmed cell death, regula- 

tion of apoptosis, regulation of cell death, and cel- 

lular response to DNA, in AC-Normal and ATL-AC 

groups. The regulation of programmed cell death 

pathway was also observed among all three groups, 

indicating the importance of this biological pathway 

in the HTLV-1-induced disease. 

In general, once the DEGs were obtained from the 

microarray analysis, gene enrichment was evaluat- 

ed, and the PPI network was plotted for them. PPIs 

are interplays between certain proteins that interact 

with each other or other molecules inside a cell, thus 

controlling  mRNA  expression  and  protein  activi- 

ty. Considering the presence of multiple nodes and 

sub-networks, several protein-protein interaction 

networks might be created for a single subject. To- 

pological analysis for microarray results showed that 

some genes may play an important role in pathogen- 

esis and disease progression as well as diagnostic 

markers in patients with HTLV-1. The topological 

analyses aim to identify essential genes that play a 

biologically important function within the cell. 

In addition, analysis of PPI network and the highly 

connected sub-networks created by DEGs in ATL- 

AC and HAM/TSP-ATL groups revealed sub-net- 

works in which APP (amyloid-beta precursor pro- 

tein) gene functions as a hub gene. APP encodes a 

cell surface receptor and is expressed in all embryon- 

ic tissues and cerebrospinal fluid at the protein level; 

moreover, other isoforms of this gene are also ex- 

pressed in nerve cells and T lymphocytes. Glycopro- 

teins interaction between APP molecules on neigh- 

boring cells can powerfully regulate synaptogenesis, 

neural plasticity and cell excitability (24, 25). It has 

recently been shown that APP is associated with dis- 

eases such as neurodegenerative disorders, autism, 

amyotrophic lateral sclerosis (ALS), fragile X syn- 

drome (FXS), Alzheimer's disease (AD), multiple 

sclerosis (MS), cancers and diabetes (26-28). Previ- 

ous studies have shown that APP is also expressed 

in immune cells and plays a role in regulating cell 

phenotype,  secretion  and  different cell-to-cell  in- 

teractions (29, 30). It has also been shown that full- 

length or cleaved APP protein can be essential for 

an effective and complete response in innate immune 

cells to inflammatory damage (31). In HAM/TSP, 

HTLV-1-induced immune response leads to chronic 

inflammation in the central nervous system (CNS), 

but the mechanism of HTLV-1 interaction with the 

immune system and how its responses are regulated 

is still unclear. However, APP has been reported to 

increase when CNS is stressed (31, 32). 

Among the top 15 hub genes in the networks of 

AC-Normal, ATL-AC and HAM/TSP-ATL, HN- 

RPM (heterogeneous nuclear ribonucleoprotein M) 

gene was common in AC-Normal and HAM/TSP- 

ATL. The HNRPM binds to heterogeneous nuclear 

RNA and is involved in RNA processing and metab- 

olism, including transcription, splicing, stability, and 

translation. Its expression is involved in various neu- 

rodegenerative diseases and cancer (33-35). More- 

over, COPS5, APP, MAP2K4 and S100A8 gene shar- 

ing was observed between AC-ATL and ATL-HAM/ 

TSP groups. Induction of tumorigenesis is associated 

with deregulation of gene expression and leads to 

processes such as inflammation, inhibition of apop- 

http://ijm.tums.ac.ir/
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tosis, and cell survival. Lymphocyte activation plays 

an important role in the development of ATL, which 

occurs through the regulation of gene expression. 

One of the lymphocyte activation pathways is related 

to the MAP2K4 gene, which leads to the activation of 

the AP-1 transcription factor (AP-1) gene. The AP-1 

gene is a transcription factor that regulates gene ex- 

pression in response to various stimuli such as viral 

and bacterial infections and cytokines (36). Howev- 

er, this study showed that topological analysis of pro- 

tein-protein interaction networks could help finding 

potential biomarkers for diagnostics and therapeutic 

opportunities in patients infected with HTLV-1. 
 

 
 

CONCLUSION 

 
Understanding the complexity of proteins inter- 

action networks and other critical factors involved 

in the pathogenic processes in HTLV-1-related dis- 

eases,  provides  a  potential  opportunity  to  design 

new diagnostic and therapeutic models. The current 

study indicated that immune-response-associated 

transcripts may contribute to disease progression in 

AML and HAM/TSP patients. Bioinformatics analy- 

sis showed a positive correlation between hub genes 

such as APP with groups that were infected with 

HTLV-1. The results from our study provided the 

potential biomarker that can be used in prognostic 

and therapeutic targets in HTLV-1 patients, however, 

further experiments are still needed to confirm our 

results in future studies. 
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