
1SCIeNtIfIC REPORTS |  (2018) 8:12034  | DOI:10.1038/s41598-018-30515-5

www.nature.com/scientificreports

Analysis of sequencing strategies 
and tools for taxonomic 
annotation: Defining standards for 
progressive metagenomics
Alejandra Escobar-Zepeda  1, Elizabeth Ernestina Godoy-Lozano  1, Luciana Raggi1, 
Lorenzo Segovia  1,2, Enrique Merino1,2, Rosa María Gutiérrez-Rios1,2, Katy Juarez1,2, 
Alexei F. Licea-Navarro  1,3, Liliana Pardo-Lopez1,2 & Alejandro Sanchez-Flores1,2

Metagenomics research has recently thrived due to DNA sequencing technologies improvement, 
driving the emergence of new analysis tools and the growth of taxonomic databases. However, there 
is no all-purpose strategy that can guarantee the best result for a given project and there are several 
combinations of software, parameters and databases that can be tested. Therefore, we performed 
an impartial comparison, using statistical measures of classification for eight bioinformatic tools and 
four taxonomic databases, defining a benchmark framework to evaluate each tool in a standardized 
context. Using in silico simulated data for 16S rRNA amplicons and whole metagenome shotgun data, 
we compared the results from different software and database combinations to detect biases related 
to algorithms or database annotation. Using our benchmark framework, researchers can define cut-off 
values to evaluate the expected error rate and coverage for their results, regardless the score used by 
each software. A quick guide to select the best tool, all datasets and scripts to reproduce our results and 
benchmark any new method are available at https://github.com/Ales-ibt/Metagenomic-benchmark. 
Finally, we stress out the importance of gold standards, database curation and manual inspection of 
taxonomic profiling results, for a better and more accurate microbial diversity description.

For decades, important advances in microbial ecology and many other fields, have been achieved thanks to 
the possibility of studying microbial communities by characterizing their genetic information. While the 16S 
rRNA gene has been widely accepted as a biological fingerprint for bacterial species, it presents some limitations. 
Many bacterial species have multiple 16S rRNA gene copies, leading to an artificial diversity overrepresentation1. 
Between some bacterial species, there are no significant differences in their 16S rRNA genes, but other genomic 
elements will confer them important features that will differentiate them as pathogens or harmless free-living 
organisms2,3. Other technical considerations regarding the characterization of the 16S rRNA gene, are primer 
and amplification biases4, chimera formation4,5 and other artifacts that make difficult the assessment of the real 
community structure, like the microheterogeneity of sequences between closely related strains, or the similarity 
of sequences between non-closely related species.

The use of high-throughput sequencing technologies has allowed the analysis of very complex environmental 
samples either by 16S rRNA gene amplification or Whole Metagenome Shotgun (WMS) sequencing which could 
retrieve the genomic information from all the organisms present in the sample. Also, bioinformatics tools have 
been redesigned to cope with the massive amount of data generated by high-throughput sequencing technolo-
gies. Advantages and limitations of sequencing strategies and metagenomic analysis software have been vastly 
described before4,6–11. However, the selection of sequencing or bioinformatic approaches for any project, remains 
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a challenge due to several factors such as the constant change of sequencing technologies, database updating and 
rapid software development.

Arguably, the biggest challenge is the reduction of introduced biases in metagenomic studies. Sample handling 
and preservation12–14; DNA extraction technical issues15; sequencing technology artifacts6,10,16 and bioinformatic 
analysis limitations17 contribute to analysis biases.

To understand these problems and to elucidate the origin of different biases in a real sample, it is necessary 
to analyze the contribution of individual variables to a certain bias. These biases could be reflected either in an 
over- or underestimation of diversity depending on the sample handling variables and software parameters used 
in the sequences analysis. There are few reference datasets18–20 which can be used as a gold standard for every 
metagenomic project, allowing the control of different variables to evaluate tools impartially. Researchers have 
to select one of the many available tools or develop a new one to analyze their metagenomic data. Usually, even if 
a benchmark is performed comparing different tools, authors often use distinct metrics to evaluate the method 
performance. Also, benchmark results will vary if databases change or the software parameters or version change.

Here, we performed an objective comparison based on performance statistical measures of classification and 
error rate at different taxonomic levels. We used three in silico datasets for WMS and V3-V4 16S rRNA ampli-
con Illumina simulated reads, to evaluate eight different bioinformatic tools and seven public databases. We 
standardize the taxonomic annotation lineage by correcting all results based on the NCBI taxonomy database. 
Additionally, we report coverages and cut-off score values at different error rates for all tested methods.

Our goal is to contribute to standards and metric definition for metagenomic analysis through a standardized 
benchmark framework to constantly evaluate sequencing strategies, taxonomic profiling tools and databases.

Materials and Methods
In this work, we chose a set of tools, used for taxonomic annotation of metagenomic samples, that could be 
installed in a local computer server. We used a 64 core/512 Gb of RAM PC server, using Ubuntu 16.04 Linux 
distribution, to perform all of the present work.

The performance of each program was evaluated with in silico sequences generated to simulate Illumina reads 
for whole metagenome shotgun (WMS) and amplicons from the V3-V4 variable region of 16S rRNA gene, in 
triplicate. We estimated, through error type and coverage calculation, the bias due to either the algorithm or the 
database used at different taxonomic levels from phylum to subspecies.

In silico datasets for WMS and 16S rRNA profiling. Datasets for WMS analysis were obtained from 
the data published by Lindgreen et al.17 In order to obtain triplicate information, we choose the A1, A2 and A3 
datasets which originally contained bacterial, archaea and eukarya genomes. However, in order to delimit our 
analysis, we removed eukaryotic genomes since the evaluated programs were not designed to evaluate eukaryotic 
information. Each dataset (A1, 673 genomes; A2, 678 genomes and A3, 674 genomes) had in silico simulated 
paired-end sequences of 100 bp length for each species genome. Lindgreen datasets also include divergent “shuf-
fled” sequences from some species that are not supposed to be annotated (true negatives) and simulated reads 
with variable evolutionary distances generated by phylogenetic modelling to mimic nonexistent close relatives 
from Leptospira interrogans genome, which are expected to be classified somewhere on the Leptospira taxonomic 
lineage but not necessarily at genus or species levels. Sequences can be found at http://www.ucbioinformatics.org/
metabenchmark.html.

To evaluate the performance of each program with amplicon datasets, we generated three amplicon librar-
ies from V3-V4 variable regions of ribosomal 16S rRNA gene using the Grinder v0.5.4 software21. For in silico 
PCR we used primers S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-2122 and, as template, we extract the 16 S 
ribosomal sequences from the gbk files of the 840 bacterial genomes used by Lindgreen et al.17. Amplicon librar-
ies shared the 90% of reference sequences and were constructed simulating 750,000 paired-end reads of 300 bp 
length using a linear abundance model and a per-base quality fixed in 30 Phred score. Additionally, we include 
in each library a set of 37,500 unclassifiable homemade shuffled sequences to assess as true negatives. The ampli-
cons were rebuilt by Flash v1.2.1123 and extended fragments were used to perform the taxonomic annotation. 
Sequences are available at https://github.com/Ales-ibt/Metagenomic-benchmark.

Taxonomic classification software. Four open source bioinformatic tools for WMS data24–27 and four 
different software for amplicon sequences28–31 were tested. In the particular case of Kraken and CLARK, specific 
databases based on k-mer spectra from RefSeq genomes were used. Uclust algorithm was used for clustering in 
QIIME pipeline as it is the default option. All methods based on ribosomal sequences annotation were tested 
using the main databases publicly available: Ribosomal Database Project (RDP) v11.532 available at https://rdp.
cme.msu.edu/misc/resources.jsp; SILVA v12833 can be downloaded from https://www.arb-silva.de/no_cache/
download/archive/release_128/; GreenGenes (GG) v13.534 from http://greengenes.secondgenome.com/down-
loads/database/13_5 as well as Metaxa2 database (MTX)31 that is included in the Metaxa2 software package. The 
database version could change if the program includes its own database with the software distribution as in the 
case of Parallel-meta. Specifications about the software tested are described in Supplementary Table 1.

Software performance evaluation. To evaluate the different methods of analysis for both amplicons and 
WMS, we performed a binary classification test of TRUE or FALSE assignments per read comparing the taxid of 
the expected lineage against the taxid of the taxonomic annotation at every taxonomic level (domain, phylum, 
class, order, family, genus, species and subspecies). The TRUE ratings could be due to a correct taxonomic iden-
tification, i.e. a true positive annotation (TP); or a non-classification of a “shuffled” sequence, i.e. a true negative 
(TN). A FALSE classification means a misclassification that implies an erroneous annotation, i.e. a false positive 
(FP); or a non-classification at an specific taxonomic level, that means a false negative (FN). If we have a correct 
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booked assignment up to family level, the table for this read looks like: TP, TP, TP, TP, TP, FN, FN, FN. However, 
in the case of a correct annotation to family level but erroneous genus level, we fill the table with TP, TP, TP, 
TP, TP, FP, FP, FP. Therefore, we are capable to differentiate between non-classification and misclassification at 
each taxonomic level. In the case of WMS data, the universe of classifiable sequences depends on the annotator 
approach (reads comparison with phylogenetic markers or k-mer spectra), The selection of the taxonomically 
informative sequences, depends on the extraction algorithm and is different for each method. Nevertheless, the 
above error definition works the same for amplicon and WMS data.

With this information, we built a confusion matrix from which we calculated performance statistical meas-
ures of classification such as sensitivity, specificity, and accuracy. Additionally, we used the Matthews Correlation 
Coefficient (MCC) as global description of the confusion matrices but weighing the compared classes (true or 
false positive and negatives). Values of MCC equal to zero, indicates that a tested combination generated results 
as good as obtaining them by random; a negative MCC score indicates results worse than obtaining them by ran-
dom35. Formula used to calculate each descriptor are below:

EPQ Error Per Query FP Total query number
Coverage Cov TP Total expected results number
Sensitivity a k a True Positive Rate or Recall TP TP FN
Specificity a k a True Negative Rate TN TN FP
Accuracy ACC TP TN TP FP FN TN
Matthews Correlation Coefficient MCC

TP TN FP FN TP FP TP FN TN FP TN FN
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Coverage versus error per query plots generation. We generated coverage versus error or CVEs plots. 
Sequences assigned by each method were ordered from best to worst according to the respective reported score, 
then, we summed the number of false positives in the total number of queries to obtain the Error per query 
(EPQ) and we plotted it against the number of true positives divided by the total number of expected results 
(Coverage)36–38. The CVE plots for each taxonomic level were elaborated using the R software39. Such graphical 
representation allows visualizing directly the error accumulation as a function of the proportion of sequences 
annotated at each taxonomic level, without needing to observe the areas under the curve. Besides, it is possible to 
obtain the score cut-off value where each method reaches a given error value (see Supplementary Table 2).

Each method reports a particular assignment score. In the case of Kraken, we used the k-mers percentage of 
allocation with respect to the reference that the program assigns for each read, in order to establish a classification 
score for each assignment. CLARK reports a confidence score. The ranking for Parallel-Meta was the E-value, 
for Metaxa2 was the reliability score and for MetaPhlAn2 and MOCAT the alignment score was taken. In the 
particular case of SPINGO, we rank the similarity score in the output file and in the cases where the annotation 
was found as AMBIGUOUS, we extracted the lowest common ancestor (LCA) from the list of reported species. 
All plots are available at https://github.com/Ales-ibt/Metagenomic-benchmark

Taxonomy lineage homogenization. In order to homogenize the assignments for each method and 
to determine the complete lineage adjusting to fill the eight basic ranks: domain, phylum, class, order, family, 
genus, species, and subspecies, we used the taxid according to NCBI Taxonomy database and we parsed the 
information by ETE 3 python library40. The process for obtaining an integrated matrix of all methods per sample 
required a set of scripts written in R, bash, perl and python, which are available at https://github.com/Ales-ibt/
Metagenomic-benchmark

Results
Score equivalence by error rate using CVE plots. We evaluated eight different methods to determine 
the relation between sensitivity and specificity for each tool/database combination at eight taxonomic classifi-
cation levels, using simulated data for either amplicons from 16S rRNA V3-V4 regions or Whole Metagenome 
Shotgun (WMS) reads. Some methods were combined with different databases but others only worked using their 
own database (see Materials and Methods). To compare results from different methods where each one uses a dif-
ferent score value, we used Coverage VS Error per query (CVE) plots (available from https://github.com/Ales-ibt/
Metagenomic-benchmark) to visualize the error rate and coverage associated with different score values. A better 
method would depict a graph with a lower slope, meaning a higher coverage at a lower error rate.

To address the great volume of generated results, we presented them in subsections from an algorithm per-
spective. We evaluated tools by classifying them in BLAST-alignment and BLAST-independent based methods 
for 16S rRNA amplicon or Whole Metagenome Shotgun data. The cut-off score, coverage and standard deviation 
values for each method at 1%, 5% and 10% error rate at the eight different taxonomic classification levels, can be 
found in Supplementary Table 1.

BLAST-alignment based methods using 16S rRNA amplicon sequencing. We evaluated a modi-
fied version of Parallel-meta v2.4.1 (Material and Methods) and Metaxa2 v2.1.1, in combination with four differ-
ent databases. As mentioned, we generated the CVEs plots at eight taxonomic levels. To observe the performance 
of each tool/database combination, we summarize in Fig. 1A–C the coverage results only at 1,5 and 10% error 
cut-off values, for all taxonomic levels.

At higher taxonomic levels (domain and phylum), Parallel-meta and Metaxa2 combinations, reported the 
highest coverage (>95%) even at the lowest error rate (1%). In the case of Metaxa2-SILVA combination, the 
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coverage dropped below 25% at phylum level being the lowest value of all method/database combinations and 
error rates (Fig. 1A–C). In a similar trend but with a less drastic drop, Parallel-meta-GG presented lower coverage 
values (<90%) at phylum level, at 1 and 5% error rate (Fig. 1A,B).

However, at intermediate taxonomic levels (class to family) the only method with coverage greater than 75% 
and a cumulative error equal or less than 1%, was Parallel-meta in combination with SILVA, RDP and MTX data-
bases (Fig. 1A). Interestingly, at the genus rank, the only tool-database combination that presented over ~87% of 
expected coverage at 1% error rate, was Parallel-meta-MTX and for this combination, at species and subspecies 
levels, the coverage at 1% error was the highest among all combinations.

To evaluate further, other metrics such as accuracy and specificity were used to evaluate the performance 
of each combination (Fig. 2A,B). Parallel-meta-GG had the lowest accuracy, even at phylum level, in con-
trast to Parallel-meta-MTX which presented the highest accuracy at all taxonomic levels. At the genus rank, 
Parallel-meta-MTX reached an accuracy of 93% followed by Metaxa2-MTX with an accuracy of 86% (Fig. 2A).

In terms of specificity, all methods presented low values at different taxonomic levels. In general, methods 
based on local alignment algorithms (BLAST), had a high true positives rate but also a high false positive rate. The 
lowest specificity values were observed at the family level, where all methods had a high number of false positives. 
At genus, species and subspecies ranks, the true negative rate increased gradually (Fig. 2B), consistently with the 
accuracy drop at these same taxonomic levels (Fig. 2A).

BLAST-independent based methods using 16S rRNA amplicon sequencing. We tested QIIME 
v1.9.1 and SPINGO v1.3 programs using the same datasets and database combinatorial design than described 
above. We found that SPINGO neither performed well with SILVA nor with GreenGenes databases, but in com-
bination with MTX or RDP databases had a better performance (Fig. 1D–F).

The method with the lowest performance between phylum and family taxonomic levels was QIIME-SILVA, 
with coverage values from 30 to 45% at 1% of error rate (Fig. 1D). At the same error rate, only QIIME using either 
RDP or MTX databases, presented coverage values higher than 90% at domain, phylum and class taxonomic 
levels. Both SPINGO and QIIME in combination with GG database, presented the highest result variation among 
replicates. At family and genus levels, both SPINGO-RDP, QIIME-RDP and SPINGO-MTX combinations, 

Figure 1. Maximum coverage reached at each taxonomic level for methods tested in 16S rRNA amplicon 
datasets. Panels from A-C corresponds to BLAST-alignment based methods and represents coverage at (A) 1%, 
(B) 5%, (C) 10% error cut-offs. Panels from (D–F) corresponds to BLAST-independent based methods and 
represents coverage at (A) 1%, (B) 5%, (C) 10% error cut-offs. The main differences are observed at class and 
order taxonomic levels for Metaxa2, SPINGO-GG and QIIME-GG methods.
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performed very similarly maintaining coverages above ~75%. Finally, at the genus level, both methods underper-
formed when combined with GG and SILVA databases (Fig. 1D).

The method with the best performance at less stringent error cut-off values (5% and 10%) was QIIME-MTX 
at the family and genus levels. (Fig. 1E,F). However, at the species level, the accuracy of QIIME-MTX dropped 
to values under 50%, similar to SPINGO-RDP combination. In general, both methods lost accuracy in their 
predictions in combination with SILVA database and both tools presented the highest accuracy at genus level in 
combination with MTX database (Fig. 2C).

BLAST-alignment based methods using Whole Metagenome Shotgun data. We evaluated the 
taxonomic annotation results by the same methods but using the extraction of 16S rRNA sequences from WMS 
data using Parallel-meta v2.4.1 and Metaxa2 v2.1.1. As depicted in the CVE plots and their summary in Fig. 3A–C,  
all combinations presented a drastic coverage droppage from class to family taxonomic levels at 1% of error rate. 
Some combinations like Metaxa2-SILVA, Metaxa2-RDP and Parallel-meta-GG had the lowest performance at 
any error rate (Fig. 3A–C). At higher error rates (5 and 10%) the methods reported the highest coverage values at 
class, order and family levels but only in combination with the MTX database (Fig. 3B,C).

Despite the observations in CVE plots, in terms of accuracy and specificity, all methods presented high values 
at all taxonomic levels (Fig. 4A,B). The difference between methods were observed in terms of sensitivity. The 
only method with the highest sensitivity from domain to species level was Parallel-meta-MTX. Actually, both 
methods combined with the MTX database and with GG showed results with a sensitivity >0.75 (up to family 
level). In contrast, the annotations of both methods in combination with the SILVA database, had the lowest sen-
sitivity even at phylum level (Supplementary Fig. S3).

BLAST-independent based methods using WMS data. Methods that do not rely solely on the tax-
onomic information from the 16S rRNA gene, are described in this section. Two of the most popular methods 
based on k-mer spectra comparison, Kraken v0.10.5-beta and CLARK v1.2.3.1, were used to annotate the WMS 
datasets. We also analyzed two annotation methods based on single copy marker genes (SCMG), MetaPhlAn2 
and MOCAT. Each SCMG method can be used only with its own database; therefore, those results have no data-
base combinations.

MetaPhlAn2 v2.2.0 and Kraken v1.3 reported the highest coverage until genus taxonomic level (75.5% and 
~89.4%, respectively) at 1% of error rate. MOCAT showed a coverage drop to ~65% and ~11% at family and 
genus levels, respectively. We observed an interesting trend for CLARK results, which showed a constant coverage 
between 60–50% from domain to species taxonomic levels. At species level, CLARK had the highest coverage in 
comparison to all other methods at 1% of error rate (Fig. 3D).

Figure 2. Performance descriptors plots calculated for methods tested in 16S rRNA amplicon datasets 
annotation. Panels A and B corresponds to accuracy and specificity for BLAST-alignment based methods. 
Panels C and D corresponds to accuracy and specificity for BLAST-independent based methods. The score scale 
from 0 to 1 correspond the order of inner to outer circles.
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Using more relaxed cut-off values of 5 and 10%, Kraken and MetaPhlAn2 coverage values at species level were 
improved. MOCAT showed a coverage value of ~98% up to family level, while CLARK remained with a constant 
coverage of ~60% from phylum to species (Fig. 3E,F). In general, at 10% error rate, all methods were capable of 
reporting coverage values above 80% until genus taxonomic level. At species level, MOCAT was the only method 
with a coverage drop below 30%, while the other methods kept values over 70%. K-mer based methods presented 
the highest coverage values until species taxonomic level at 5 and 10% of error rate. In terms of accuracy, Kraken 
and MOCAT performed better than CLARK and MetaPhlAn2 at all taxonomic levels (Fig. 4C). An abrupt accu-
racy decrease was observed in CLARK (below 25%) at subspecies levels.

The methods with lower false negative rate were MOCAT and Kraken, which maintained specificity values 
higher than 90% at all taxonomic levels. MetaPhlAn2 maintained values closer to 75% from phylum to genus 
taxonomic levels. The method with the lowest specificity was CLARK (Fig. 4D).

Observed biases at phylum level and cut-off error filtering. Since we found that methods can present 
errors even at higher taxonomic levels such as phylum, we determined if the false positive and false negative (type 
I and II) errors were distributed evenly among different phyla or had a specific phyla distribution.

For ribosomal amplicon data results, all BLAST-alignment based methods reported very similar abundances 
at the phylum level without any remarkable biases (Fig. 5A). Metaxa2-SILVA and Parallel-meta-GG combina-
tions presented different abundances than expected, the former presented false positive results referring to an 
unidentified_marine_bacterioplankton, while the latter had false positive results referring to Tenericutes and 
Thermotogae phyla (see Supplementary Table 2).

BLAST-independent methods showed a similar trend near to the expected abundance of the evaluated data. 
However, the SPINGO-SILVA combination overestimated the Firmicutes, Cyanobacteria, Bacteroidetes and 
Chlorobi phyla. This combination also underestimated the Proteobacteria phyla. The method with the greater 
bias at phyla taxonomic level was SPINGO in combination with GG, MTX and RDP databases according to MCC 
(Fig. 6A). These combinations presented false positive results distributed in up to 28 different phyla (collapsed in 
other phyla category in Fig. 5B), although in very low abundance.

In contrast to the results obtained in the taxonomic annotation of ribosomal amplicon sequences, other but 
more evident biases were observed in WMS data phyla abundances. In general, Metaxa2 and Parallel-meta in 

Figure 3. Maximum coverage reached at each taxonomic level for methods tested in whole metagenome 
shotgun datasets. Panels A-C corresponds to BLAST-alignment based methods and represents coverage at 
(A) 1%, (B) 5%, (C) 10% error cut-offs. Panels (D–F) corresponds to BLAST-independent based methods and 
represents coverage at (A) 1%, (B) 5%, (C) 10% error cut-offs. A coverage decrement is clear from class to family 
level in all the Blast-alignment based methods (A–C); Clark showed the lower coverages at 1 and 5% of error 
thresholds (D,E).
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combination with most databases, showed a very similar trend and bias. The most evident errors occurred due to 
overestimation of the Proteobacteria, Actinobacteria, Bacteroidetes and Chlorobi phyla; and by an underestima-
tion of the Acidobacteria, Firmicutes, Planctomycetes and Spirochaetes phyla. According to these observations, 

Figure 4. Performance descriptors plots calculated for methods tested in whole metagenome shotgun datasets 
annotation. Panels A and B corresponds to accuracy and specificity for BLAST-alignment based methods. 
Panels C and D corresponds to accuracy and specificity for BLAST-independent based methods. The score scale 
from 0 to 1 correspond the order of inner to outer circles.

Figure 5. Taxonomic abundance of annotation at phylum level. (A) BLAST-alignment based methods on 
16S rRNA amplicon data, (B) BLAST-independent methods on 16S rRNA amplicon data, (C) BLAST-based 
methods on whole metagenome shotgun data, (D) BLAST-independent methods on whole metagenome 
shotgun data. The black line represents the average of the expected abundance for each plot.
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Metaxa2-SILVA combination presented the closest expected abundance of the Spirochaetes phylum but also 
the most abundant false-positive rate for the not expected phyla category (Fig. 5C). On the other hand, the 
method with the lowest false positive rate was Metaxa2-GG with only a few bad annotations to Tenericutes and 
Nistropinae phyla. The rest of the methods had from 0.01 to 0.1% of annotation to Other phyla category in total 
relative abundance, pointing to a variety of 23 different phyla.

We observed some opposite biases between BLAST-based and -independent methods, for a given phylum, 
while using WMS data. In the case of Proteobacteria and Acidobacteria phyla, their abundances were under-
estimated by most of the BLAST-independent methods (Fig. 5D), while BLAST-dependent methods (Fig. 5C) 
overestimated them. Other phyla like Firmicutes and Spirochaetes were underestimated by most methods using 
WMS data, but in different magnitude. On the other hand, when comparing k-mers spectra methods to those 
using single copy marker genes (SCMG) for taxonomic assignation, we observed in the later a greater tendency to 
overestimate Chloroflexi, Chlorobi, Verrucomicrobia, and Crenarchaeota phyla (Fig. 5D).

Discussion
A well-known disadvantage of using 16S rRNA genes or its variables regions as phylogenetic marker is the 
similarity of sequences between non-closely related species41,42. Our datasets were constructed from reference 
genomes of isolated strains, so the presence of identical sequences from different organisms, could happen in real 
samples. After a clustering at 100% of identity, we observed that ~27–29% of the genomes had an identical V3-V4 
region. Notably, the most of these clusters were formed from genomes of the same species (~16.5% of ~27–29%) 
or genera (~8.5%); and only a small proportion contained genomes from different families (~3.20%) or classes 
(~0.3%) (https://github.com/Ales-ibt/Metagenomic-benchmark/tree/master/datasets_16SrRNA/clustering). This 
means that the lack of resolution at species level of the V3-V4 variable regions of the 16S rRNA phylogenetic 
marker is a biological issue. The methods tested in this work could either classify these sequences correctly (TP), 
don’t classify it (FN) or classify them wrongly (FP).

On the one hand, there are those algorithms which classify at the lower taxonomic levels when they find 
ambiguity in upper levels, reporting the LCA (Metaxa2 or SPINGO). In this case, the methods compromise their 
sensitivity at genus, species or subspecies level. On the other hand, the methods that use one of the best alignment 
hits to classify ambiguities (as Parallel-meta), were affected in the specificity, since they risk reporting an incorrect 
assignment. The chance of a correct assignment at a given taxonomic level will decrease according to the number 
of identical sequences in the database.

The Parallel-meta-MTX combination presented the best results among BLAST-alignment based methods for 
16S rRNA amplicon dataset analysis, overperforming the Metaxa2 algorithm. An important difference between 
Parallel-meta ad Metaxa2 is that the former use by default megablast settings (a bigger word size, different match/
mismatch scores and gap penalties), while the latter use the default blastn settings. According to this, we expected 
an improvement in the Metaxa2 assignments using the megablast option. A mini-test revealed that performance 
statistical descriptors was almost identical, indicating that the differences observed between Parallel-meta and 
Metaxa2 are independent of the blast parameters and can be attributed completely to the algorithm (find the 
results and a detailed discussion in https://github.com/Ales-ibt/Metagenomic-benchmark/Metaxa2_blast_mega-
blast.txt). Parallel-meta reports the best hit from the Blast search, while Metaxa2, among other things, performs 
a filter based on its reliability score.

Until class taxonomic level, Metaxa2 and Parallel-meta (both using MTX database) had a similar performance, 
but a notably difference was observed between order and genus levels. However, the sensitivity gap between these 
tools can be reduced at a cost of a higher error rate. Higher sensitivity tends to present a lower specificity and vice 
versa (Figs 1A–C and 2A,B) which is a well-known trade-off between those measures.

For BLAST-independent methods using amplicon data, QIIME performed better than SPINGO at almost 
every taxonomic level regardless the database combination. Notably, in terms of accuracy at species level, 
SPINGO-RDP performed better than any other method (Fig. 1D–F). This is consistent to the results reported by 
SPINGO authors, but based on MCC score values, the method had a poor performance (Fig. 6A). This is a good 

Figure 6. Matthews correlation coefficient (MCC) for (A) 16S rRNA amplicon data confusion matrices and (B) 
whole metagenome shotgun data confusion matrices.

https://github.com/Ales-ibt/Metagenomic-benchmark/tree/master/datasets_16SrRNA/clustering
https://github.com/Ales-ibt/Metagenomic-benchmark/Metaxa2_blast_megablast.txt
https://github.com/Ales-ibt/Metagenomic-benchmark/Metaxa2_blast_megablast.txt
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example of the convenience of using MCC values, which weight all four possible classes (TP, FP, TN, FN) in a 
confusion matrix.

The database effect was observed at different levels regardless the method. In terms of sensitivity, the MTX 
database had a positive effect in every method and taxonomic level, even at more stringent error rate cut-off 
(Fig. 1D–F). For specificity, QIIME-RDP was better at any combination and taxonomic level (Fig. 2D). However, 
MTX database increased the accuracy of Parallel-meta and QIIME at every taxonomic level (Fig. 2C). A foreseen 
problem of using the MTX database for taxonomic annotation is the lack of maintenance. Currently, it is a well 
curated database, but as far as we know remains static. Therefore, the sensitivity of any method will be affected 
unless new information is added to this database.

The QIIME algorithm has a clustering step where only a representative of each cluster is used for the tax-
onomic assignation, reducing the possible number of true positives and false negatives (higher specificity). 
Conversely, BLAST-alignment based methods annotate every sequence, increasing both true positive and false 
positive rates. However, the positive and negative rates could be controlled by using more strict cut-off values, 
improving the method performance (see Supplementary Table 2).

In the overall performance according to the MCC evaluation, we observed that QIIME-RDP is the best com-
bination for results between superkingdom and class taxonomic levels. At order and family levels, QIIME-MTX 
gave better results (Fig. 6A). The Parallel-meta-MTX combination performed particularly better at genus and 
species levels. Also, SPINGO-MTX was the best combination at those taxonomic levels, confirming the positive 
effect of the MTX at lower taxonomic ranks. Interestingly, the popular GG database (set as default in the QIIME 
pipeline), did not improved the results of any evaluated method. Databases such as SILVA and GG in combi-
nation with any method, presented MCC values below 0.5 at all taxonomic ranks and at species and subspecies 
levels, they presented MCC negative values (Fig. 6A) indicating a performance worse than random assignment. 
In particular, SPINGO which relies on a k-mer spectra algorithm, was the most affected in combination with 
SILVA, probably due to misleading k-mer information. Smaller but highly curated databases such as RDP and 
MTX improved the overall performance of all methods at almost every taxonomic level, suggesting a positive 
effect related to the database size and curation refinement. However, at species and subspecies level, all methods 
presented MCC values close to zero (Fig. 6A), suggesting that annotations at these taxonomic levels is not reliable 
using 16S rRNA (V3-V4 regions) amplicon sequencing.

The datasets included a portion of shuffled sequences (Material and Methods) that increased the false positive 
rate in some method combinations, particularly for SPINGO. The use of a highly curated database such as MTX 
(~88,000 sequences) which is smaller than GG and RDP databases (~1 and 3 Million, respectively), resulted in a 
better annotation. This was clearly reflected not only on the coverage but the lower error rate observed in methods 
such as QIIME and Parallel-meta v2.4.1 (Fig. 6A).

We observed higher specificity and accuracy rates for all methods relying on 16S rRNA gene information 
extracted from WMS than from amplicon data. This trend is evident despite algorithm and technical differences 
between amplicon and WMS tool-database combinations (Figs 2A,B and 4A,B). We can relate the increase of 
specificity (and accuracy) to the availability of full 16S rRNA gene, represented by simulated short reads with a 
certain sequencing depth and abundance of each genome in the community. Its recovery is possible due to the 
use of Hidden Markov Models in the algorithms, which is a very sensitive method. For WMS data, the 16S rRNA 
gene represents a small fraction of the total data and it depicts the universe of assignable reads. On the other hand, 
for amplicon sequencing the higher sensitivity (Supplementary Figs 1 and 3), can be related to the genome rep-
resentability in the amplicon dataset. Nevertheless, all methods showed better MCC values with WMS data than 
amplicon reads, with scores near to 0.25 (Fig. 6A,B).

Methods based on SCMG or k-mer spectra annotation presented the highest coverage at every taxonomic 
level. In particular, we observed that MetaPhlAn2 and Kraken had the highest coverage at any error rate or taxo-
nomic level, except at species rank and 1% of error cut-off where CLARK showed the highest coverage (Fig. 3D). 
Kraken and MOCAT were the most accurate and specific methods, with small differences (at order and genus 
levels) (Fig. 4C,D). We observed again the classic trade-off between sensitivity and specificity for CLARK and 
MetaPhlAn2, specially at species and subspecies levels. However, MetaPhlAn2 performed very well at subspecies 
level, even better than the best BLAST-alignment based combination, Parallel-meta-MTX (Fig. 6B).

Interestingly, CLARK accuracy drop was due to taxonomic assignment errors involving shuffled sequences. 
This was not the case for Kraken, which can filter information by using a last common ancestor k-mer weighting 
assignment algorithm, reducing the false positive rate.

Databases created from reference genomes gave a better classification as seen with Kraken and single copy 
gene marker methods, when comparing to 16S rRNA marker gene databases (see Fig. 6B), especially when it is 
enriched in sequences of organisms that have not been properly characterized (i.e. SILVA). Moreover, the more 
genetic information, the more accurate the taxonomic classification is.

Several metagenomic studies report results and compare environments using high taxonomic levels such 
as phylum. However, in this study we report that abundance biases can be observed even at such high rank. 
BLAST-alignment based methods presented a higher bias when combined with large databases such as GG and 
SILVA but only for a few phyla. Regarding the BLAST-independent methods, SPINGO in combination with 
almost all databases, under or overestimated the abundance of 28 different phyla but in low rates. These errors 
represent a greater bias than observed for BLAST-based methods, which presented a higher proportion of false 
positives but distributed in only four different phyla (Fig. 5A and Supplementary Table 2). The QIIME and 
Parallel-meta methods in combination with MTX database did not assign any of the amplicon shuffled sequences 
which is reflected in all the tested metrics, presenting a very good balanced performance. Conversely, Metaxa2 
and SPINGO assigned different numbers of shuffled sequences regardless the database used. Notably, most of 
these false positives were annotated with assignment scores lower than those for true positives, what making 
filtering easy.
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The observed results from 16S rRNA assignment methods using WMS data, presented a more distributed bias 
among several phyla. It should be noted that in the tested datasets, Spirochaetes phylum contains information 
from an in silico modified Leptospira interrogans genome, where sequences from this non-existent relative were 
present. In particular, most of the method combinations assigned incorrectly those sequences to lower taxonomic 
levels except for Metaxa2-SILVA one. Nonetheless, Metaxa2-SILVA had the most abundant false-positive rate 
to not expected phyla (Fig. 5C), all of them pointing to an unidentified_marine_bacterioplankton. The main 
difference between SILVA and the rest of the databases is that it contains sequences from uncultured, poorly 
characterized bacteria, that increase the likelihood of reporting an erroneous hit, raising the false positive rates 
no matter the method.

Despite the presence of shuffled sequences, these data did not generate a significant bias for BLAST-alignment 
based methods.

A non-systematic bias was observed in the results generated from WMS data. The false positive rate was dis-
tributed randomly among a couple of phyla. However, CLARK presented a higher false positive rate distributed in 
several not expected phyla, resulting in a higher abundance bias (Fig. 5D). Our results differ from those reported 
by CLARK authors, although their datasets focused on other variables such as sequencing platform error rates 
and their metrics were calculated differently.

We observed methods presented different biases: 1) erroneous abundance assignment, where a few phyla 
were largely over or underrepresented or 2) erroneous richness assignment where several phyla were artificially 
reported. These two errors could impact the microbial diversity interpretation in any metagenomic project.

Most of the methods are not contemporary and have not been evaluated altogether using the same dataset and 
database, which increases the challenge to compare their performance. Also, databases have grown and suffered 
changes in the taxonomic annotation that can have a direct impact in the results of any project. Therefore, we have 
developed an eclectic benchmarking framework to compare objectively the selected tools.

For taxonomic annotation methods based on data from 16S rRNA sequencing, the latest publication corre-
sponds to Parallel-meta 3 and Metaxa231,43 where the comparison to other tools was not extensive. While Metaxa2 
authors explored the effect of databases and sequencing approaches (amplicons and WMS), Parallel-meta devel-
opers focused on the speed of their software. However, even if both methods performed better in comparison to 
QIIME at genus, species and subspecies levels, the datasets and evaluation criteria were different. Our results are 
consistent with the comparison made by the cited authors, but for classification at higher taxonomic levels, we 
observed that QIIME-RDP could be a better option (Table 1).

SPINGO is a novel method based on k-mer annotation designed to annotate sequences at genus or species 
level. If a query sequence contains a set of k-mers associated to more than one reference, the method labels it as 
AMBIGUOUS and reports a list of possible matches. Here, we manually curated the ambiguous results to report 
the LCA. Consistently with the results reported by Allard et al.30, we found that SPINGO-RDP was the method 
with the highest accuracy at the species level (Fig. 2C). Also, we found that this method presented the lowest 
specificity regardless the database combination (Fig. 2D). However, the AMBIGUOUS classification could be very 
convenient and easy to filter from the reported results. For our datasets, the taxonomic annotation for 25 to 35% 
of shuffled sequences were assigned as AMBIGUOUS but with a lower similarity score than for true positives. 
This indicates that the score similarity is a better criterion for filtering false positives than the AMBIGUOUS label. 
Only SPINGO-SILVA reported annotation for shuffled sequences with scores closer to true positives.

A recent comprehensive benchmark20 evaluated eleven tools and combinations between them, to classify 
WMS data. This study is probably the most extensive to date, where in addition to the performance of each tool, 
the synergy of their combinations was analyzed. However, other sequencing approaches like amplicon target 
sequencing or the use of different databases, were not considered. Here, we evaluated methods based on k-mer 
spectra annotation and found that our results were very similar to those obtained by Ounit et al.26 in terms of 
coverage (equivalent to precision in the cited work) and sensitivity at genus level. Consistently with our results, 
CLARK overperformed Kraken at subspecies taxonomic level, as observed in Fig. 4D. However, CLARK pre-
sented a higher false positive rate mainly because of the assignment of a large number of shuffled sequences with 
similar assignment scores to those of the true positives, which makes filtering impossible.

On the other hand, in agreement with Truong et al.27 results, we observed that MetaPhlAn2 annotated fewer 
false positives and false negatives than Kraken, but the latter presented higher accuracy and specificity until 
species level (Fig. 4C,D). Interestingly, at subspecies level MetaPhlAn2 overperformed Kraken in specificity as is 
shown in Fig. 4D.

Taxonomic 
level

16S rRNA amplicon Whole Metagenome Shotgun

Method MCC ACC Speca Sensb Method MCC ACC Speca Sensb

Phylum QIIME-RDP 1.000 1.000 1.000 1.000 Parallel-meta-GG 0.997 1.000 1.000 0.999

Class Metaxa2-MTX 0.961 0.996 0.944 0.999 MOCAT 0.991 0.997 0.996 1.000

Order QIIME-MTX 0.824 0.98 0.753 0.996 MOCAT 0.990 0.997 0.996 1.000

Family QIIME-MTX 0.553 0.916 0.374 0.995 MOCAT 0.974 0.992 0.99 1.000

Genus Parallel-meta-MTX 0.607 0.928 0.399 1.000 MOCAT 0.885 0.966 0.959 1.000

Species Parallel-meta-MTX 0.083 0.661 0.147 0.908 MOCAT 0.824 0.948 0.940 1.000

Subspecies SPINGO-MTX 0.061 0.249 0.898 0.213 MetaPhlAn2 0.546 0.736 0.947 0.64

Table 1. Performance descriptors for the best methods ranked according to MCC at every taxonomic level. 
aSpecificity; bSensitivity.
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As far as we know, our study is the first to benchmark MOCAT against other bioinformatics tools. Kultima 
et al.24 reports a high agreement between expected diversity and MOCAT annotations at genus level for real and 
simulated datasets. According to our results and based on MCC values, MOCAT is the best annotation method 
for class to species ranks (Table 1). Its higher specificity can be related to its very low false positive rate. Methods 
based on SCMG annotation presented better performance than any other evaluated method (Table 1). Even 
though their databases are smaller in size in comparison to either 16S rRNA or whole genome databases, the 
redundant information provided by several markers solve the lack of resolution or sensitivity for certain taxo-
nomic groups.

Conclusions
To the extent of our knowledge, this is the first study where several tools, developed in the last decade, are com-
pared using a standard methodology with coverage, error rate and statistical measures of classification We can 
relate those metrics to scores and set a cut-off line for each method, seeking for higher sensitivity or specificity. 
Depending on the goals, sensitivity or specificity rates could have a different impact in metagenomic projects. Our 
results indicate that Parallel-meta-MTX combination is the best option for the analysis of the V3-V4 16S rRNA 
region at genus level, bearing in mind that at species and subspecies ranks, it will present higher error rate and 
lower sensitivity. Smaller but highly curated databases like RDP and MTX improved the results of tested methods 
in terms of sensitivity, specificity and accuracy. The standardization of taxonomic lineage is necessary to compare 
results, especially when the annotation was performed using different databases.

The overall performance of almost all methods using WMS data was better, but with an expected trade-off cost 
between sensitivity and specificity. High accuracy at low taxonomic levels could be convenient for a metagenomic 
project, especially if species or subspecies characterization is a relevant goal. However, is important to consider 
some problems for WMS sequencing approaches. Extraction of DNA at concentration and molecular weight from 
metagenomic samples, could be a challenge but necessary for amplification-free sequencing libraries. Also, if not 
all genomes present in the studied metagenomes were present in the reference database, which is the common 
case in environmental samples, the 16S-based methods would probably perform better than the WMS ones, 
as 16S rRNA databases are much extensive. However, several metagenomic studies are delivering hundreds or 
thousands of complete and draft bacterial genomes which will improve genome databases and WMS-based clas-
sification methods44–47. Finally, our work is delimited to bacterial and archaea taxonomy classification but in real 
life samples, the presence of eukaryotes could contribute to other misclassification problems that are not consid-
ered in our benchmark. These problems include the amplification and misclassification of ribosomal sequences 
belonging to mitochondrial or chloroplast genomes.

The results presented here could help other researchers to choose among the available tools, being 
aware of their advantages and disadvantages. Also, benchmarking of new tools could be done following our 
standard framework if the evaluated method reports a score for each assignment. Detailed information 
to benchmark, evaluate and choose the best of the tested tools, can be found at https://github.com/Ales-ibt/
Metagenomic-benchmark. While this benchmark suite may be useful and available for reproducibility and imple-
mentation, is not free from the same problems of database dependence, manually defined criteria and software 
changes. Finally, we would like to highlight the importance of gold standards, recurrent evaluation of tools, data-
bases curation and manual inspection of the taxonomic profiling results, for a better and more accurate microbial 
diversity description.
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