Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(Dimethylamino)pyridinium tribromide: whole molecule disorder of cation and anion

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 5 May 2009; accepted 6 May 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ () = 0.000 Å; disorder in main residue; R factor = 0.021; wR factor = 0.051; data-to-parameter ratio = 12.6.

In the title salt, $C_7H_{11}N_2^+ \cdot Br_3^-$, the cation and the near-linear anion $[Br-Br-Br = 179.41 (8)^{\circ}]$ both show whole-molecule disorder about crystallographic twofold rotation axes. The cation is weakly hydrogen-bonded to the anion by an N-H...Br interaction. The crystal studied was found to be a racemic twin, with a twin component of nearly 50%.

Related literature

The compound is known commercially as 4-(dimethylamino)pyridine hydrobromide perbromide, $[C_7H_{10}N_2] \cdot [HBr] \cdot [Br_2]$. The 4-dimethylaminopyridinium cation furnishes a number of salts with organic and inorganic acids. For 4-dimethylaminopyridinium bromide, see: Mayr-Stein & Bolte (2000). For dimethylaminopyridinium chloride and its dihydrate, see: Bryant & King (1992); Chao et al. (1977).

Experimental

Crystal data

$C H N + P_{\pi}$	V = 542.25(2) Å ³
$C_7 \Pi_{11} N_2 \cdot D I_3$	V = 342.33(2) A
$M_r = 362.91$	Z = Z
Orthorhombic, $P222_1$	Mo $K\alpha$ radiation
a = 4.1688 (1) A	$\mu = 11.11 \text{ mm}^{-1}$
b = 8.8349(2) Å	T = 100 K
c = 14.7255 (4) Å	$0.20 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
$wR(F^2) = 0.051$	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
S = 0.98	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
1256 reflections	Absolute structure: Flack (1983),
100 parameters	480 Friedel pairs
60 restraints	Flack parameter: 0.47 (4)

 $R_{\rm int}=0.025$

5156 measured reflections 1256 independent reflections

1114 reflections with $I > 2\sigma(I)$

. . . A

Table 1 Hydrogen-bond geometry (Å, °)

)8	6) (,).		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H
N1-H1···Br2	0.88	2.42	3.286 (2)	167

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

I thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2966).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Bryant, G. L. & King, J. A. (1992). Acta Cryst. C48, 2036-2039.
- Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820-1823. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Mayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19-e20.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o1276 [doi:10.1107/81600536809017048]

4-(Dimethylamino)pyridinium tribromide: whole molecule disorder of cation and anion

S. W. Ng

Comment

(type here to add)

Experimental

Commercially-available 4-dimethylaminopyridine hydrobromide perbromide was recrystallized from ethanol to give colourless blocks of (I).

Refinement

The Br3 anion lies on a twofold rotation axis, but it was allowed to refine off this symmetry element as a three-atom species.

The cation is disordered about another twofold rotation axis; this was refined as a cation with its atoms of half occupancies. The pyridyl portion was refined as a rigid hexagon of 1.39 Å sides; the pair of N– C_{methyl} distances were restrained to within 0.01 Å of each other. The cation was restrained to be nearly planar, and the anisotropic displacement factors were restrained to be nearly isotropic.

The hydrogen atoms were placed at calculated positions (C–H 0.95, N–H 0.88 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $[C_7H_{11}N_2][Br_3]$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

4-(Dimethylamino)pyridinium tribromide

Crystal data

 $C_{7}H_{11}N_{2}^{+}Br_{3}^{-}$ $M_{r} = 362.91$ Orthorhombic, P222₁ Hall symbol: P 2c 2 a = 4.1688 (1) Å $F_{000} = 344$ $D_x = 2.222 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2094 reflections $\theta = 2.7-28.3^{\circ}$

b = 8.8349 (2) Å	$\mu = 11.11 \text{ mm}^{-1}$
c = 14.7255 (4) Å	T = 100 K
$V = 542.35 (2) \text{ Å}^3$	Block, colorless
Z = 2	$0.20\times0.15\times0.10~mm$

Data collection

Bruker SMART APEX CCD diffractometer	1256 independent reflections
Radiation source: fine-focus sealed tube	1114 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 100 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -5 \rightarrow 5$
$T_{\min} = 0.656, T_{\max} = 1.000$	$k = -11 \rightarrow 11$
5156 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.021$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0322P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.051$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
1256 reflections	$\Delta \rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$
100 parameters	Extinction correction: none
60 restraints	Absolute structure: Flack (1983), 480 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.47 (4)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br1	0.5290 (6)	0.25953 (5)	0.23869 (12)	0.0155 (3)	0.50
Br2	0.2738 (3)	0.27497 (11)	0.07779 (5)	0.0196 (2)	0.50
Br3	0.7682 (3)	0.24565 (11)	0.39355 (5)	0.01777 (18)	0.50
N2	1.1882 (7)	0.2417 (5)	-0.3550 (3)	0.0144 (9)	0.50

N1	0.7232 (7)	0.2399 (4)	-0.10428 (15)	0.0209 (11)	0.50
H1	0.6250	0.2392	-0.0514	0.025*	0.50
C1	0.7724 (9)	0.1050 (3)	-0.1509 (2)	0.0190 (11)	0.50
H1A	0.7000	0.0122	-0.1257	0.023*	0.50
C2	0.9276 (8)	0.1061 (3)	-0.23446 (19)	0.0196 (13)	0.50
H2	0.9612	0.0140	-0.2663	0.024*	0.50
C3	1.0335 (5)	0.2420 (3)	-0.27138 (13)	0.0147 (11)	0.50
C4	0.9844 (9)	0.3768 (3)	-0.2248 (2)	0.0195 (12)	0.50
H4	1.0568	0.4697	-0.2500	0.023*	0.50
C5	0.8292 (9)	0.3757 (3)	-0.1412 (2)	0.0208 (14)	0.50
H5	0.7956	0.4679	-0.1093	0.025*	0.50
C6	1.2376 (13)	0.1015 (6)	-0.4024 (3)	0.0226 (13)	0.50
H6A	1.0314	0.0498	-0.4102	0.034*	0.50
H6B	1.3829	0.0370	-0.3672	0.034*	0.50
H6C	1.3321	0.1220	-0.4620	0.034*	0.50
C7	1.2983 (11)	0.3839 (6)	-0.3936 (4)	0.0223 (14)	0.50
H7A	1.1130	0.4479	-0.4077	0.033*	0.50
H7B	1.4196	0.3638	-0.4493	0.033*	0.50
H7C	1.4366	0.4359	-0.3497	0.033*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0195 (8)	0.01421 (16)	0.0128 (8)	-0.0005 (3)	0.0021 (5)	-0.0007 (2)
Br2	0.0201 (4)	0.0274 (5)	0.0112 (4)	0.0019 (3)	0.0015 (3)	-0.0010 (3)
Br3	0.0210 (4)	0.0207 (4)	0.0116 (4)	-0.0011 (3)	0.0007 (3)	0.0001 (3)
N2	0.021 (2)	0.0110 (19)	0.011 (2)	-0.001 (2)	-0.0034 (17)	0.005 (2)
N1	0.023 (3)	0.032 (3)	0.008 (2)	0.007 (3)	0.0025 (19)	-0.001 (2)
C1	0.019 (3)	0.021 (3)	0.017 (3)	-0.001 (2)	-0.003 (3)	0.002 (2)
C2	0.012 (3)	0.0175 (19)	0.029 (4)	-0.0005 (16)	0.004 (3)	0.003 (2)
C3	0.019 (2)	0.0179 (18)	0.008 (3)	-0.001 (3)	-0.002 (2)	0.0001 (17)
C4	0.020 (2)	0.022 (2)	0.016 (3)	-0.004 (3)	-0.005 (4)	0.0004 (16)
C5	0.019 (3)	0.023 (3)	0.020 (3)	0.001 (2)	-0.001 (3)	0.001 (3)
C6	0.032 (3)	0.019 (2)	0.017 (3)	0.000 (3)	-0.001 (4)	0.004 (2)
C7	0.023 (4)	0.023 (3)	0.020 (3)	0.005 (2)	0.008 (3)	-0.005 (2)

Geometric parameters (Å, °)

Br1—Br3	2.492 (3)	C2—H2	0.9500
Br1—Br2	2.601 (3)	C3—C4	1.3900
N2—C3	1.390 (5)	C4—C5	1.3900
N2—C6	1.436 (7)	C4—H4	0.9500
N2—C7	1.454 (7)	С5—Н5	0.9500
N1—C1	1.3900	С6—Н6А	0.9800
N1—C5	1.3900	С6—Н6В	0.9800
N1—H1	0.8800	С6—Н6С	0.9800
C1—C2	1.3900	С7—Н7А	0.9800
C1—H1A	0.9500	С7—Н7В	0.9800
C2—C3	1.3900	С7—Н7С	0.9800

supplementary materials

Br3—Br1—Br2	179.41 (8)	C5—C4—H4	120.0
C3—N2—C6	119.9 (4)	C3—C4—H4	120.0
C3—N2—C7	119.4 (4)	C4—C5—N1	120.0
C6—N2—C7	120.7 (4)	С4—С5—Н5	120.0
C1—N1—C5	120.0	N1-C5-H5	120.0
C1—N1—H1	120.0	N2—C6—H6A	109.5
C5—N1—H1	120.0	N2—C6—H6B	109.5
N1—C1—C2	120.0	Н6А—С6—Н6В	109.5
N1—C1—H1A	120.0	N2—C6—H6C	109.5
C2—C1—H1A	120.0	Н6А—С6—Н6С	109.5
C1—C2—C3	120.0	H6B—C6—H6C	109.5
С1—С2—Н2	120.0	N2—C7—H7A	109.5
С3—С2—Н2	120.0	N2—C7—H7B	109.5
N2—C3—C4	120.5 (3)	H7A—C7—H7B	109.5
N2—C3—C2	119.5 (3)	N2—C7—H7C	109.5
C4—C3—C2	120.0	H7A—C7—H7C	109.5
C5—C4—C3	120.0	Н7В—С7—Н7С	109.5
C5—N1—C1—C2	0.0	C1—C2—C3—N2	-179.96 (9)
N1—C1—C2—C3	0.0	C1—C2—C3—C4	0.0
C6—N2—C3—C4	179.95 (9)	N2—C3—C4—C5	179.96 (9)
C7—N2—C3—C4	-0.07 (11)	C2—C3—C4—C5	0.0
C6—N2—C3—C2	-0.08 (13)	C3—C4—C5—N1	0.0
C7—N2—C3—C2	179.90 (9)	C1—N1—C5—C4	0.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···Br2	0.88	2.42	3.286 (2)	167

