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Giardia duodenalis is the underlying cause of a significant number of outbreaks of
gastrointestinal illness in humans and animals worldwide. The purpose of this study
was to elucidate the prevalence and genetic diversity of G. duodenalis in captive alpine
musk deer (Moschus chrysogaster) in China. A total of 202 fecal samples were collected
from three farms in Gansu Province, China. Identification of G. duodenalis was conducted
by nested PCR targeting the genes coding for SSU rRNA, b-giardin (bg), glutamate
dehydrogenase (gdh) and triosephosphate isomerase (tpi). The overall prevalence of G.
duodenalis in captive alpine musk deer in surveyed area was 19.3% (39/202). Two G.
duodenalis genetic assemblages were identified, namely assemblage A and E. Mixed
genotype infections (A+E) were found in 15.4% (6/39) of positive samples. Multilocus
genotyping (MLG) analysis of G. duodenalis isolates revealed six novel assemblage A
MLGs formed by two newly-described MLG-subtypes which belonged to sub-
assemblage AI. To the best of our knowledge, this is the first report on MLG of G.
duodenalis isolates in captive alpine musk deer in China. The presence of zoonotic
assemblages and sub-assemblages of G. duodenalis in deer species suggests that these
animals may potentially act as a reservoir of this protozoan for humans.

Keywords: Giardia duodenalis, alpine musk deer, multilocus genotyping, zoonotic potential, China
INTRODUCTION

Giardia duodenalis (also known as Giardia lamblia and Giardia intestinalis) is the most prevalent
protozoan pathogen, commonly found in the intestinal tract of humans and animals worldwide (Adam,
2021). Transmission of G. duodenalis infection occurs by several routes either directly (i.e., person-to-
person, animal-to-animal, or zoonotic infection) or indirectly (i.e., water or food) (Dixon, 2021).
Approximately 280 million people are considered to be infected with G. duodenalis worldwide, with
infection rates at the range of 8.0–30.0% in developing countries and 0.4–7.5% in developed countries
(Feng and Xiao, 2011; Ryan and Zahedi, 2019). Giardiasis is generally a self-limiting clinical illness in
humans, whereas it can be threatening to infants, young children, the elderly, institutionalized
individuals, travelers, and immunocompromised individuals (Cacciò et al., 2018; Cai et al., 2021).
Nitroimidazoles (e.g., metronidazole and tinidazole) are the most commonly drugs used to treat
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giardiasis, although requiring multiple doses and being often
associated with adverse effects (Argüello-Garcıá et al., 2020).

To date, according to the reservoir and genetic characteristics of
the protozoan, eight Giardia species have been recognized (Ryan
et al., 2019). However, most studies for both public and veterinary
health have focused on the taxonomy, population genetics, and
epidemiology of G. duodenalis (Li et al., 2017a; Xiao and Feng,
2017). Based on studies employing iso-enzymatic and nucleic acid
polymorphisms, G. duodenalis is known as a multispecies complex,
consisting of eight genetic assemblages (A–H) considering different
host distribution (Cacciò et al., 2018); assemblages A and B are
commonly found in humans and occasionally in other mammals;
assemblages C andD are often found in canids; assemblage Emainly
infects ungulates; assemblages F,G, andHare specific to cats, rodents
and pinnipeds, respectively (Ryan and Cacciò, 2013; Cai et al., 2021).
Furthermore, putative sub-assemblages have been identified within
assemblage A (AI–III) and assemblage B (BIII and BIV) using a
multilocus genotyping (MLG) approach (Capewell et al., 2021).

China has the largest wild and captive populations of alpine
musk deer (Moschus chrysogaster) in the world, which are mainly
distributed in the Qinghai Tibet Plateau, Sichuan and Gansu
Province (Jiang et al., 2021). Musk, produced by adult male alpine
musk deer, is an important raw material for preparations of the
traditional Chinese medicine and the fragrance industry. However,
illegal hunting, habitat fragmentation, and other human activities
have decimated wild alpine musk deer populations in China (Cai
et al., 2020). For these reasons, the alpine musk deer has been listed
as an endangered species by the International Union for
Conservation of Nature (IUCN) and as category I-protected wild
animal in China. Although the Chinese government has
encouraged enterprises to participate in programs of breeding of
captive alpine musk deer, gastrointestinal infections are the most
significant threats to population growth and breeding scale whose
fatality rate is approximately 30% (Li et al., 2017b). Currently, little
information is available on the prevalence and genetic
characteristics of G. duodenalis in cervids in China.

Thus, the aim of the present study was to investigate the
prevalence and genetic diversity of G. duodenalis in captive alpine
musk deer. The findings discussed herein provide insights into the
development of preventive measures against Giardia infection.
MATERIAL AND METHODS

Ethics Statement
This study was performed with strict adherence to the
recommendations of the Guide for the Care and Use of
Laboratory Animals of the Ministry of Health, China. The
research protocol was reviewed and approved by the Research
Ethics Committee of Tarim University (approval no. ECTU
2020-0013). Farm owners’ consent was obtained prior to
proceeding to fecal sample collection from selected animals.

Samples
In September 2020, 202 fecal samples were collected from three
farms in Gansu Province, China (Figure 1). Alpine musk deer
animals were shed-fed and housed in separate breeding houses
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
according to age. Fresh fecal samples were taken from the soil
immediately after defecation using a sterile disposal latex glove,
ensure absence of exogenous contamination. Subsequently,
samples were placed individually into a disposable plastic
container, recorded the date, site, age, and number. All animals
from which fecal samples were obtained were apparently in good
health with no signs of diarrhea at the time of sample collection.
Samples were transferred to the laboratory in an insulated
container on ice and stored at 4°C prior to DNA extraction.

DNA Extraction and Genotyping
Genomic DNA was extracted from approximately 200 mg of
each precipitated sample using the E.Z.N.A.® Stool DNA kit
(Omega Bio-tek Inc., Norcross, GA, USA), according to
manufacturer’s instructions. The extracted DNA was stored at
-20°C until PCR assay. Four genes were used for G. duodenalis
genotyping by nested PCR, namely SSU rRNA, b-giardin (bg),
glutamate dehydrogenase (gdh), and triosephosphate isomerase
(tpi) (Table 1). Positive (DNA from an isolate known to harbor
the four surveyed loci) and negative (reagent-grade water)
controls were included in each PCR amplification.

Sequence and Phylogenetic Analysis
All positive secondary PCR products from SSU rRNA, bg, gdh,
and tpi genes were bi-sequenced by GENEWIZ (Suzhou, China).
Nucleotide sequences were aligned and edited with DNAstar
Lasergene Editseq 7.1.0 (https://www.dnastar.com/software/
lasergene/) and Chromas Pro 2.1.10 (http://technelysium.com.
au/wp/chromaspro/). Genotypes and subtypes of G. duodenalis
were determined by aligning reference sequences available in
NCBI GenBank database using ClustalX 2.1 (http://www.clustal.
org/). To determine genetic diversity among the isolates,
concatenated sequences (bg-tpi-gdh) from each isolate at the
three analyzed loci were aligned with reference sequences.
Neighbor-joining (NJ) analysis was performed using MEGA
7.0 (http://www.megasoftware.net/) to infer the phylogenetic
relationships of concatenated sequences based on the Kimura-2
parameter model.

Nucleotide Sequence Accession Numbers
Representative nucleotide sequences of bg and tpi genes of G.
duodenalis are available in the NCBI GenBank database under
the accession numbers OM273018-OM273020, respectively.
RESULTS

Prevalence and Assemblages
of G. duodenalis
Overall, a total of 39 samples (19.3%, 39/202) were confirmed to be
G. duodenalis by PCR at the SSU rRNA locus (Table 2). Prevalence
rate by regionwas as follows: Yuzhong A (22.2%, 8/36), Yuzhong B
(24.6%, 16/65), and Zhuanglang (14.9%, 15/101). In addition, the
infection was numerically more frequent in adults (>1 year, 20.6%,
35/170) compared to young animals (<6 month, 12.5%, 4/32).
Subsequently, all G. duodenalis-positive samples were genotyped
by MLG of SSU rRNA, bg, tpi and gdh genes. Two G. duodenalis
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https://www.dnastar.com/software/lasergene/
https://www.dnastar.com/software/lasergene/
http://technelysium.com.au/wp/chromaspro/
http://technelysium.com.au/wp/chromaspro/
http://www.clustal.org/
http://www.clustal.org/
http://www.megasoftware.net/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Cui et al. G. duodenalis in Alpine Musk Deer
genetic assemblages were identified among samples: assemblage A
(72.2%, 26/39) and assemblage E (17.9%, 7/39). Mixed genotype
infections (A+E) were found in 6 of 39 samples.

Polymorphisms at Single Loci
Amplification of the bg gene was obtained from 18 of 39 G.
duodenalis-positive isolates; among these, 13/18 (72.2%) of
isolates were identified as belonging to genetic assemblage A and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
5/18 (27.8%) of assemblage E (Table 3). Within assemblage A
isolates, three subtypeswere formedanddesignated asA1 (n=4),A2
(n=1), and A3 (n=8). Compared to the sequence MK610391, A1
sequences exhibited one single-nucleotide polymorphism (SNP)
(C327T), whereas A2 sequence contained three SNPs (T302C,
G308A, and C327T). A3 sequences were identical to MK610392.
Moreover, the five assemblage E sequences were identical to the
sequence MK610387.
TABLE 1 | Primer sequences and reaction conditions used in nested PCR amplifications.

Target Gene Primer sequences (5’- 3’) Annealing Target size Reference

Gia2029 (AAGTGTGGTGCAGACGGACTC) 55°C
SSU rRNA Gia2150c (CTGCTGCCGTCCTTGGATGT)

RH11 (CATCCGGTCGATCCTGCC) 59°C 292 bp (Appelbee et al.,
2003)RH4 (AGTCGAACCCTGATTCTCCGCCCAGG)

AL3543 (AAATIATGCCTGCTCGTCG) 50°C
tpi AL3546 (CAAACCTTITCCGCAAACC)

AL3544 (CCCTTCATCGGIGGTAACTT) 50°C 530 bp (Sulaiman et al., 2003)
AL3545 (GTGGCCACCACICCCGTGCC)
GDH1 (TTCCGTRTYCAGTACAACTC) 50°C

gdh GDH2 (ACCTCGTTCTGRGTGGCGCA)
GDH3 (ATGACYGAGCTYCAGAGGCACGT) 50°C 530 bp (Cacciò et al., 2008)
GDH4 (GTGGCGCARGGCATGATGCA)
G7 (AAGCCCGACGACCTCACCCGCAGTGC) 58°C

bg G759 (GAGGCCGCCCTGGATCTTCGAGACGAC)
2005F (GAACGAACGAGATCGAGGTCCG) 55°C 511 bp (Lalle et al., 2005)
2005R (CTCGACGAGCTTCGTGTT)
April 2022 | Volum
FIGURE 1 | Sampling sites. No copyright permission was required. The figure was designed with the software ArcGIS 10.2. The map has been originally modified
and assembled according to permission and attribution guidelines of the National Geomatics Center of China (http://www.ngcc.cn).
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Sequence analysis of the tpi locus revealed that 23 out of 24
successfully amplified isolates were identified as assemblage A,
whereas only one was classified as assemblage E. The single
assemblage E sequence was 100% identical to the sequence
KT922262. Among assemblage A sequences, A1 (n=12) and A3
(n=9) sequences were identical to the sequences MK639171 and
MK639172, respectively. In addition, A2 (n=2) sequences showed a
SNP (C21T) compared to the sequence MK639173. At the gdh
locus, seven and three isolates were successfully amplified and
identified as assemblage A and E, respectively. The subtypes A1
(n=3) andA2 (n=4)were consistent with the sequencesMN047217
and theMK645799, respectively.Moreover, the three assemblage E
sequences were identical to the sequence MK645786.

MLG and Phylogenetic Analysis
In total, seven isolates were successfully sequenced at bg, tpi and
gdh loci, and formed six assemblage A MLGs after removal of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
sequences of mixed infection samples (Table 3). The six
identified assemblage A MLGs were composed of two novel
MLG-subtypes (AI-novel 1 and AI-novel 2); AI-novel 1 was
found in two isolates, whereas AI-novel 2 was identified in four
isolates. Phylogenetic relationships of assemblage A MLGs with
reference genotypes are shown in Figure 2. Based on
phylogenetic analysis, all assemblage A MLGs identified herein
were clustered in the MLG AI branch, with MLG AI-novel 1
clustered closer to MLG AI-1, whereas MLG AI-novel 2 clustered
closer to MLG AI-2.
DISCUSSION

Six species ofmusk deer (Moschus spp.) have historically been bred
inChina, which include siberianmusk deer (M.moschiferus), forest
musk deer (M. berezovskii), black musk deer (M. fuscus), alpine
TABLE 3 | Multi-locus characterization of G. duodenalis isolates in alpine musk deer in China based on bg, gdh and tpi genes.

Isolate Code bg tpi gdh MLG Type

22 PN A1 A1
32 A1 (OM273018) A1 PN
47,80 A1 A1 A1 AI-novel 1
65 A1 A1 PN
71 PN A1 PN
78 PN A1 PN
79 E A1 PN
81 PN A1 PN
86 E A2 (OM273020) E Excluded
100 PN A1 E
104 PN A1 PN
115 A2 (OM273019) A1 PN
120 A3 A3 PN
147 E A2 PN
152 E PN E
157,172,195,207 A3 A3 A2 AI-novel 2
163 PN E1 PN
173 E PN PN
182 A3 A3 PN
199 PN A3 PN
204 A3 A3 PN
217 A3 A3 PN
April 2022 | Volume 12 | Art
PN, PCR negative.
TABLE 2 | Prevalence of G. duodenalis by location in Gansu Province, China.

Farm N/T (%) assemblages (n) SSU rRNA (n) tpi (n) gdh (n) bg (n)

Yuzhong A 8/36 (22.2) A (7), E (1) A (7), E (1) A (3) A (2) A (2)
Yuzhong B 16/65 (24.6) A (9), E (2),

A+E (5)
A (11), E (5) A (11) A (1), E (2) A (4), E (2)

Zhuanglang 15/101 (14.9) A (10), E (4),
A+E (1)

A (10), E (5) A (9), E (1) A (4), E (1) A (7), E (3)

Total 39/202 (19.3) A (26), E (7),
A+E (6)

A (28), E (11) A (23), E (1) A (7), E (3) A (13), E (5)

Age
<6 month 4/32 (12.5) A (1), E (2),

A+E (1)
A (1), E (3) A (1) E (1) E (2)

>1 year 35/170 (20.6) A (25), E (5),
A+E (5)

A (27), E (8) A (22), E (1) A (7), E (2) A (13), E (3)
N, number of positives for G. duodenalis; T, total analysis samples.
icle 856429
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muskdeer (M.chrysogaster), himalayanmuskdeer (M. leucogaster),
and anhui musk deer (M. anhuiensis) (Fan et al., 2018). In previous
studies, deer have been considered as a major reservoir of viruses,
bacteria, and parasites for humans and livestock (Böhm et al., 2007;
Mehrpad et al., 2018). In particular, a recent study has suggested the
potential emergence of a new reservoir of SARS-CoV-2 viruses in
free-ranging white-tailed deer, which may open new pathways for
evolution, transmission to other wildlife species, and potential
spillback of novel variants to humans (Hale et al., 2022).

Giardia spp. infects a broad range of hosts including humans,
livestock, companion animals, wildlife and birds (Ryan et al., 2021).
However, information on the distribution, molecular characteristics
and zoonotic potential of Giardia in cervids is scant. To date, G.
duodenalis infections in cervids have been reported in several
countries, including Australia, Bangladesh, Canada, Croatia, Italy,
Japan, Netherlands, Norway, Poland, Spain, Sweden, USA and
China, with the infection rates ranging from 0.6% to 24.0%
(Table 4). Interestingly, the rodent-specific species Giardia microti
has been isolated in roe deer (Capreolus capreolus) in Croatia (Beck
et al., 2011). In the present study, the prevalence ofG. duodenaliswas
19.3% (39/202) in alpine musk deer, which is higher than that
reported in sika deer (0.6% and 0.8%) and forest musk deer (2.2%)
inChina.Thediscrepancies in infection rates ofG.duodenalismaybe
related to the differences in geographical location, sampling season,
animal species, and sample size. To the best of our knowledge, this is
the first study to isolate and characterize G. duodenalis from alpine
musk deer in China using MLG.

Methods based on sequence analysis of SSU rRNA, gdh, bg and
tpi genes have currently been widely used for genotyping G.
duodenalis isolates from human and animal samples in order to
obtain high-sequencing resolution (Feng and Xiao, 2011). To date,
molecular studies have identifiedG. duodenalis in fallowdeer, forest
musk deer,moose, reddeer, reindeer, roedeer, sambar deer, spotted
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
deer and white-tailed deer with a worldwide distribution (Table 4).
In addition to zoonotic assemblages A and B, other G. duodenalis
assemblages includingE (mainly found inhoofedmammals) andD
(mainly found in canines) have also been reported occasionally in
these animal hosts (Beck et al., 2011; Huang et al., 2018), which
suggests potential transmission routs ofG. duodenalis assemblages
between humans, livestock, companion animals and cervids. In the
present study, both assemblage A and E were identified, and
assemblage A was the predominant genotype. Mixed infections
were observed in alpine musk deer at both assemblage and sub-
assemblage levels, which may be a result of infection with Giardia
parasites with different genetic profiles. Assemblages A is
responsible for most giardiasis cases in humans, especially in
South America and the Middle East (Xiao and Feng, 2017; Ryan
et al., 2021). Interestingly, the host-adapted genotype assemblage E
which was approximately 87% similar to assemblages A in genome,
has been reported in at least 57 human giardiasis cases in Brazil,
Egypt, Vietnam, Australia and New Zealand (Abdel-Moein and
Saeed, 2016; Fantinatti et al., 2016; Zahedi et al., 2017; Garcia-R
et al., 2021; Iwashita et al., 2021). Collectively, the presence of
zoonotic assemblages ofG. duodenalis in alpinemusk deer inChina
suggests that these animals may potentially act as a reservoir of G.
duodenalis for humans.

Moreover, in order to elucidate the genetic diversity of G.
duodenalis in alpine musk deer, positive samples identified in the
present were subjected for sub-genotyping by MLG. Moderate
genetic variation was observed within assemblage A sequences,
whereas no genetic variation was noticed within assemblage E
sequences, which may be due to the low allelic sequence
heterozygosity (ASH) in the genomes of assemblages A and E
(Kooyman et al., 2019). In addition, the six assemblage A MLGs
were composed of two novel MLG-subtypes which belonged to sub-
assemblageAI. Among the three sub-assemblages within assemblage
FIGURE 2 | Phylogenetic relationships among G. duodenalis assemblage A isolates inferred by neighbor-joining analysis based on concatenated datasets for bg, tpi and
gdh nucleotide sequences. Bootstrap values greater than 50% from 1000 replicates were shown on nodes. The novel MLGs in this study were indicated in bold.
April 2022 | Volume 12 | Article 856429
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A, sub-assemblage AI is most commonly found in animals, whereas
sub-assemblageAII ismostly found in humans; sub-assemblage AIII
is rare and has been found in wild ruminants and two human
giardiasis cases in Romania and New Zealand (Feng and Xiao,
2011; Cai et al., 2021; Ryan et al., 2021). In published studies, both
sub-assemblage AI, AII and AIII were identified in various deer
(Table 4). Further studies based on MLG analysis are necessary to
gain a better understanding on the potential role of deer in the
zoonotic transmission of G. duodenalis.
CONCLUSIONS

In conclusion, this is the first report of G. duodenalis in alpine musk
deerwith a highprevalence inChina. TwoG. duodenalis assemblages
were identified, assemblage A and E. Moderate genetic diversity was
observedwithin assemblageA sequences based onMLGanalysis. Six
assemblage A MLGs were identified which were composed of two
novel MLG-subtypes belonging to sub-assemblage AI. Collectively,
zoonotic assemblages ofG. duodenalis identified in the present study
point out that alpine musk deer may potentially act as reservoirs of
this protozoan to humans.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
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TABLE 4 | Giardia duodenalis infection rates and genotypes in cervids worldwide.

Location Host Positive % (N/T) Assemblage (n) Sub-Assemblage (n) Reference

Australia Sambar deer, red deer,
fallow deer

0.6 (10/1563) A (10) A-I (1), A-III (9) (Koehler et al., 2016)

Bangladesh Spotted deer 3.3 (1/30) A (1) (Karim et al., 2021)
Canada Boreal caribou 2.0 (3/149) (Johnson et al., 2010)
China Sika deer 0.8 (5/662) E (5) (Huang et al., 2018)

Forest musk deer 2.2 (5/223) A (2), E (3) (Song et al., 2018)
Sika deer 0.6 (5/818) A (2), E (3) (Ma et al., 2021)
Alpine musk deer 19.3 (39/202) A (22), E (5), A+E (6) This study

Croatia Red deer 1.1 (4/374) A (3), D (1) (Beck et al., 2011)
Roe deer 24.0 (5/21) A (2), D (2), G. microti (1) (Beck et al., 2011)

Italy Fallow deer 11.5 (16/139) A (8) A-I (8) (Lalle et al., 2007)
Fallow deer A (8) A-III (8) (Cacciò et al., 2008)

Japan Sika deer 0.7% (2/271) A (2) (Yamazaki et al., 2018)
Netherlands Roe deer A (1) (van der Giessen et al., 2006)
Norway Reindeer 5.0% (6/114) A (6) AI (6) (Idland et al., 2021)

Reindeer A (6) (Robertson et al., 2007)
Moose A (13) (Robertson et al., 2007)
Red deer 1.7 (5/289) (Hamnes et al., 2006)
Roe deer 15.5 (45/291) (Hamnes et al., 2006)
Reindeer 7.1 (11/115) (Hamnes et al., 2006)
Moose 12.3 (56/455) (Hamnes et al., 2006)

Poland Red deer 1.6 (1/61) A (1) A-III (1) (Solarczyk et al., 2012)
Roe deer 4.0% (2/50) A (2) A-I (2) (Solarczyk et al., 2012)
Red deer 17.9 (5/28) B (4) (Stojecki et al., 2015)
Roe deer 22.9 (11/48) B (8) (Stojecki et al., 2015)
Moose 17.0 (4/23) (Stojecki et al., 2015)

Spain Roe deer 8.9 (19/212) A (7) A-II (7) (Garcıá-Presedo et al., 2013)
Roe deer 5.4 (12/224) (Castro-Hermida et al., 2011b)
Deer 7.7 (14/181) (Castro-Hermida et al., 2011a)
Fallow deer A (1), E (1) (Lebbad et al., 2010)
Moose A (1) (Lebbad et al., 2010)

USA White-tailed deer 1.3 (1/80) A (1) (Santin and Fayer, 2015)
White-tailed deer 1.3 (5/394) (Rickard et al., 1999)
White-tailed deer 3.8 (1/26) A (1) (Trout et al., 2003)
Reindeer A (1) (Miska et al., 2009)
April 2022
N=number of positives for G. duodenalis; T, total analysis samples.
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Garcıá-Presedo, I., Pedraza-Dıáz, S., González-Warleta, M., Mezo, M., Gómez-
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