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Abstract

Accurate identification of tumor-derived somatic variants in plasma circulating cell-free DNA 

(cfDNA) requires understanding the various biologic compartments contributing to the cfDNA 

pool. We sought to define the technical feasibility of a high-intensity sequencing assay of cfDNA 

and matched white-blood cell (WBC) DNA covering a large genomic region (508 genes, 2Mb, 

>60,000X raw-depth) in a prospective study of 124 metastatic cancer patients, with 

contemporaneous matched tumor tissue biopsies, and 47 non-cancer controls. The assay displayed 

a high sensitivity and specificity, allowing for de novo detection of tumor-derived mutations and 

inference of tumor mutational burden, microsatellite instability, mutational signatures and sources 

of somatic mutations identified in cfDNA. The vast majority of cfDNA mutations (81.6% in 

controls and 53.2% in cancer patients) had features consistent with clonal hematopoiesis (CH). 

This cfDNA sequencing approach revealed that CH constitutes a pervasive biological phenomenon 

emphasizing the importance of matched cfDNA-WBC sequencing for accurate variant 

interpretation.

Introduction

Circulating cell-free DNA (cfDNA) in the plasma of cancer patients constitutes a potential 

source of tumor-derived DNA1,2. Massively parallel sequencing analysis of cfDNA samples 

from cancer patients revealed that tumor-derived cfDNA (ctDNA) accounts for only a 

fraction of the total cfDNA, and this fraction varies according to disease burden, site, and 

tumor biologic features including histology, vascularization, proliferation and apoptosis 

rates3,4. ctDNA fraction is extremely low in many early-stage and some metastatic 

cancers5,6, requiring methods to detect mutations at extremely low allele fractions7. Most 

previous studies focused on analysis of patients with advanced disease using a panel of 

hotspot mutations or limited genomic regions of key cancer genes sequenced at high 

depths8–10, a large number of genes at moderate sequencing depths11–13, or a combination 

of methods to define ctDNA fraction using shallow whole-genome sequencing or targeted 

methods followed by whole-exome analysis of samples with a high ctDNA fraction6,14,15.

Even when accurate cfDNA assays are utilized, cfDNA sequencing results may still be 

confounded by biological signals arising from somatic mosaicism16. One form of somatic 

mosaicism is clonal hematopoiesis (CH), which results from the accumulation of somatic 

mutations in hematopoietic stem cells (HSCs) that are clonally propagated to their 

progeny17. These somatic mutations may provide a fitness advantage to some HSCs and/or 

their descendant cells, resulting in their disproportionate expansion8,18–20, or arise through 

neutral drift21. CH increases with age and occurs in up to 31% of older 

individuals10,20,22–26, and can also be detected in cfDNA sequencing analysis27. In this 

context, it may confound the interpretation of cfDNA sequencing, particularly because a 

large proportion of the cfDNA fragments originate from hematopoietic cells28.

Comparisons of somatic genetic alterations detected in cfDNA samples and their respective 

tumor biopsies have revealed relatively good concordance between cfDNA and tumor biopsy 

sequencing, particularly among patients with advanced disease6,9,15,29–32. Additional 

somatic variants not present in tumor biopsies but in cfDNA only have also been 
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documented4; their nature and source (tumor-derived vs. other sources), however, have yet to 

be defined.

Here, we report on the development of a high-intensity sequencing assay of matched cfDNA 

and white blood cells (WBCs) for de novo characterization of the repertoire of somatic 

mutations in cfDNA, without a priori knowledge of variants present in a matched tumor 

biopsy. This approach, combined with sequencing of DNA samples extracted from matched 

tumor tissue biopsies using an FDA-authorized targeted sequencing assay, allowed for 

categorization and quantification of cfDNA variant sources.

Results

Study design and demographic information

This prospective observational study examined the technical feasibility of a high-intensity 

circulating cfDNA-based platform in patients with advanced untreated or progressive 

metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), or castration-resistant 

prostate cancer (CRPC), as well as non-cancer control participants (Methods). Briefly, 

plasma cfDNA and matched WBC genomic DNA (gDNA) from patients with MBC, 

NSCLC, CRPC, or non-cancer controls were subjected to a targeted capture sequencing 

assay comprising the entire coding regions of 508 genes and intronic and/or regulatory 

regions of selected genes (Fig. 1a, Supplementary Table 1). In cancer patients, tumor 

biopsies and matched normal WBC samples were collected within 6 weeks of plasma 

cfDNA samples with no intervening therapy change, and were sequenced in a CLIA-

certified environment using the Memorial Sloan Kettering Integrated Mutation Profiling of 

Actionable Cancer Targets (MSK-IMPACT) assay, an FDA-authorized capture-based 

sequencing assay targeting the coding regions of 410 genes and intronic and/or regulatory 

regions of selected genes (Fig. 1a, Supplementary Table 1)33,34. For the purpose of 

comparison to tumor biopsies, only variants mapping to the intersection of the 410 genes 

present in the two gene panels were considered.

Of 161 potentially eligible cancer patients (53 MBC, 53 NSCLC and 55 CRPC) enrolled 

between September 24, 2015-August 01, 2016, 124, 39 MBCs, 41 NSCLCs and 44 CRPCs 

were included in the concordance subset (evaluable for both tumor tissue and cfDNA 

analysis, Extended Data Fig. 1). The clinicopathologic features of the cohort were consistent 

with those of a contemporary prospectively collected cohort of consecutive cases of these 

malignancies (Supplementary Table 2). Of the 50 non-cancer control samples, three failed 

cfDNA sequencing resulting in 47 evaluable samples.

De novo detection of tumor-derived cfDNA mutations

To identify the source of somatic variants found in cfDNA, sequencing was performed 

independently on cfDNA, WBC gDNA, and each cancer patient’s matched tumor biopsy and 

WBC gDNA samples (Methods, Fig. 1a). The high-intensity cfDNA sequencing approach 

simultaneously analyzed plasma cfDNA and WBC gDNA using a targeted assay spanning 

approximately 2 Mb and utilizing unique molecular identifiers (UMI) to suppress technical 

assay errors at a minimum raw average target depth of 60,000X (Extended Data Fig. 2). A 
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joint-variant-calling of plasma cfDNA and WBC gDNA variants was performed utilizing a 

machine learning-based noise model (Supplementary Methods, Extended Data Fig. 3a–b). 

Together, this resulted in an assay with performance characteristics necessary for the 

detection of mutations near the molecular limits (high technical sensitivity; Fig. 1b–c), low 

false positive (<1 error in one million bases sequenced; Extended Data Fig. 3c–h), high 

reproducibility in independent biological replicates (Fig. 1d–e, Extended Data Fig. 4) and a 

detection performance comparable to that of digital droplet PCR (ddPCR; Fig. 1f). Our high-

intensity sequencing assay was found to have a per base error rate ranging from 1×10−5 to 

3×10−5 (Supplementary Methods, Extended Data Figs. 2–3, Supplementary Tables 3–5), 

which is comparable to that of other high-fidelity cfDNA sequencing assays25,35,36.

Given these assay characteristics, we first sought to define the performance of the high-

intensity cfDNA sequencing assay for the detection of tumor-derived biopsy-matched 

somatic mutations without prior knowledge of the somatic alterations in the tumor cfDNA 

sequencing analysis (henceforth referred to as de novo detection). De novo detection of at 

least one tumor-derived mutation, as defined by MSK-IMPACT sequencing of the tumor 

biopsy, was observed in 104 of the 124 evaluable patients (84%, 95% confidence interval 

[CI]: 76%−90%; Fig. 2a). The detection rate in MBCs (95%, 95% CI: 83%−99%) was 

significantly higher than in NSCLCs (76%, 95% CI: 60%−80%; p=0.0258), and comparable 

to that of CRPCs (82%, 95% CI: 67%−92%). The large genomic footprint of the assay 

further allowed de novo cfDNA detection of 530 of 740 mutations detected by MSK-

IMPACT in tumor biopsies (72%, 95% CI: 66%−75%; Fig. 2a), with similar percentages of 

tumor-derived mutations detected in MBCs (73%, 95% CI: 67%−79%), NSCLCs (71%, 

95% CI: 65%−76%), and CRPCs (71%, 95% CI: 63%−78%).

We next sought to define the genes targeted by de novo-detected somatic mutations in 

cfDNA. Our analysis of genes recurrently mutated in cfDNA as defined by the de novo-

detected somatic mutations revealed that they consisted mostly of the same genes found to 

be mutated in the respective tumor samples (Fig. 2b and Extended Data Fig. 5). Most 

importantly, this led to de novo detection of somatic mutations in cfDNA that were present 

in tumor biopsies but below the MSK-IMPACT assay limit of detection (subthreshold for 

previously established clinical variant calling cut-offs)33,37, or were neither detected in the 

tumor biopsy nor WBCs (variants of unknown source; VUSo).

Given the low false positive rates and accuracy of the assay for measuring variant allele 

fractions (VAFs; Fig. 1d–f, Extended Data Fig. 4), we quantified the VAFs of somatic 

mutations not present in the WBCs in controls and cancer patients. All but two of the 67 

mutations (97%) detected in controls occurred at VAFs of <1% (Fig. 2c), whereas 51.1%, 

56.6%, and 54.5% of the variants detected in MBCs, NSCLCs, and CRPCs, respectively, 

were detected at VAFs of <1%. In the vast majority of patients (88%), somatic mutations 

with the highest VAF (mean highest VAF 15.10%; median highest VAF 9.18%) were tumor-

matched (biopsy-matched or biopsy-subthreshold; Fig. 2d).

We next investigated whether the sensitivity of the assay would vary according to the 

prevalence of a given mutation within the tumor biopsy. The detection rate of mutations in 

cfDNA was significantly correlated with their cancer cell fractions in the tumor biopsies (the 
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percentage of cancer cells within a biopsy bioinformatically inferred to harbor a given 

mutation in a particular patient; Methods), with mutations defined as clonal being 

significantly more frequently detected than subclonal ones (p= 5.33e-21; Fig. 2e). 

Additionally, the ctDNA fraction (the fraction of tumor-derived cfDNA) in metastatic cancer 

patients varied significantly according to tumor type (p=0.0046; Fig. 2f). To assess the 

association between disease burden and ctDNA fraction, volumetric assessment of the 

disease burden was performed (Methods). We found a significant association between the 

estimated disease volume based on CT scans and the ctDNA fraction (Fig. 2g) in both MBC 

(n=34, p=1.03e-4) and NSCLC (n=29, p=0.042) patients. For CRPC patients, who had 

dominant bone metastases and undergone bone scans, an assessment of the association 

between the automated bone scan index (Methods) and the ctDNA fraction also revealed a 

significant association (n=39, p=0.023; Fig. 2g).

Taken together, these analyses demonstrate that this cfDNA sequencing assay has a high 

sensitivity for detection of tumor-derived somatic mutations and identifies mutations 

subclonally present in tumor tissues. VUSo, on the other hand, which are detected in neither 

tumor biopsy nor WBC may derive from multiple origins but comprise a set of alterations 

from which a subset may reflect ongoing tumor evolution and heterogeneity not captured in 

a small and anatomically constrained biopsy.

Tumor mutation burden and mutational signatures

We performed an exploratory analysis to determine whether tumor mutation burden (TMB), 

mutational signatures38,39, and MSI score40 could be defined solely using cfDNA data. 

Analysis of TMB by MSK-IMPACT sequencing of tumor biopsies revealed six samples with 

a high TMB (based on the predefined >13.8 mutations/Mb cut-off33), including two MBCs, 

three NSCLCs and one CRPC. Four of these cases were also classified as having high TMB 

by cfDNA (>22.7 mutations/Mb; Methods). The remaining two samples displayed relatively 

low ctDNA fractions (0.2 and 8.6%) and borderline cfDNA TMB (18.2 and 20.0 

mutations/Mb, respectively). cfDNA analysis identified six additional cases with a high 

TMB not detected as hypermutators by MSK-IMPACT analysis of the tumor biopsy (Fig. 

3a, a total of ten cases henceforth referred to as hypermutated). Potential explanations for 

this observation include spatial tumor heterogeneity between metastatic sites with only some 

sites demonstrating a hypermutator phenotype. The ten hypermutated cfDNA samples 

accounted for 75% of the cfDNA biopsy-subthreshold mutations and VUSo across the entire 

cohort (Fig. 3b) and displayed mutational signatures consistent with the modalities of 

genetic instability known to occur in MBCs, NSCLCs, and CRPC. All hypermutated MBCs 

(n=5) and one of the three hypermutated CRPCs displayed the APOBEC mutational 

signatures38,39, known to be acquired in the evolution of MBCs and CRPCs41,42. Consistent 

with the results of previous analysis of NSCLCs43, the mutational signatures of the two 

hypermutated NSCLCs comprised the smoking-related signature and a combination of other 

signatures, including APOBEC, homologous recombination DNA repair-deficiency (HRD), 

and loss-of-function of mismatch repair (MMR; Fig. 3c and Extended Data Fig. 5f).

High microsatellite instability (MSI-H) is a biomarker of response to immune-checkpoint 

inhibitors44. We therefore assessed the MSI status of the cohort utilizing MSIsensor40, 
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adjusted for the ultra-high sequencing depth of cfDNA, tumor biopsy and matched normal 

WBCs (Supplementary Methods, Supplementary Fig. 1). Our analysis revealed one CRPC 

with genomics features of MSI-H (Fig. 3d), which was also found to display a dominant 

MMR mutational signature (Fig. 3c). This CRPC patient33 received an anti-PD-L1 inhibitor 

and displayed rapid and sustained tumor regression, as defined by the response evaluation 

criteria in solid tumors (RECIST v1.1) and prostate-specific antigen (PSA) serological levels 

(Fig. 3e). Taken together, these results suggest that this cfDNA sequencing assay can 

accurately detect tumor-derived mutations across a large portion of the genome, potentially 

allowing for the characterization of tumor mutation burden, MSI status and mutational 

signatures with resulting implications for treatment selection.

Characterization of the biological sources of cfDNA variants

Despite the specificity of the assay for somatic mutation detection, tumor-matched 

alterations (biopsy-matched and biopsy-subthreshold) accounted for only 24.4% (739/2983 

mutations) of all somatic mutations detected in the cfDNA of cancer patients (Fig. 4a). 

Notably, a median of 7.27 (range 0.91–20.91) mutations per Mb were detected in the cfDNA 

samples of non-cancer controls (Fig. 4a). Although previous studies have suggested that 

these alterations likely constitute technical artifacts of ultra-high-depth sequencing 

analysis45,46, based on the specificity of our assay, we posited that these variants instead 

stemmed from somatic mosaicism, in particular CH, and tumor-derived events resulting 

from spatial genetic heterogeneity (as seen in the hypermutated cancer cases).

We first investigated the presence of somatic mutations in the WBC sequencing results 

(WBC-matched mutations) for the mutations defined as somatic by cfDNA analysis but for 

which there was no evidence of the mutational event in the matched tumor biopsy. This 

analysis revealed that in non-cancer controls, the vast majority (81.6%, 297 of 364) of 

somatic mutations detected were also identified in WBCs, suggesting that these somatic 

genetic alterations were likely not technical artifacts but rather a result of CH (Fig. 4a). 

Likewise, the majority (53.2%, 918/1727) of the mutations identified in cfDNA samples of 

non-hypermutated cancer patients were also WBC-matched (Fig. 4a). Importantly, the 

number of WBC-matched cfDNA variants in cancer patients did not correlate with the 

number of tumor-matched mutations (biopsy-matched or biopsy-subthreshold), making them 

less likely to be of tumor origin (Fig. 4b, Extended Data Fig. 6a). As CH is related to age23, 

we examined the association of age with the number of somatic DNA variants in the cfDNA 

samples from individual participants. As expected, the number of WBC-matched variants, 

but not the number of the biopsy-matched or biopsy-subthreshold variants, significantly 

correlated with age (smoking-adjusted p=3.86e-27; Fig. 4c). Based on this interpretation, the 

cfDNA and WBC sequencing analysis as performed here suggests that 89.5% of cancer 

patients and 83% of non-cancer controls have evidence of CH in their cfDNA (Fig. 4b). 

Consistent with recent observations in a non-cancer population27 and with the notion that 

these mutations constitute CH events, the vast majority of the WBC-matched somatic 

mutations detected in cfDNA of cancer patients and non-cancer controls involved canonical 

CH genes, such as DNMT3A, TET2, PPM1D and TP53 (Fig. 4d, Extended Data Fig. 6b)10, 

while some of these pathogenic alterations affected cancer genes other than the canonical 

CH genes (Supplementary Table 6). Additionally, the VAFs of WBC-matched cfDNA 
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variants were correlated with their VAFs in the WBCs (Fig. 4e, Extended Data Fig. 6c–d), 

making it unlikely that they resulted from systematic sequencing errors or background noise.

Previous studies of hypermutated tumors have demonstrated significant spatial heterogeneity 

resulting in numerous subclonal mutations private to each tumor site47. Consistently, the 

overall proportion of tumor-matched mutations (biopsy-matched and biopsy-subthreshold) 

was significantly lower in the 10 hypermutated patients (17.2% [216/1210] non-WBC-

matched mutations) than in the 114 non-hypermutated patients (30.3% [523/1727]; 

p=1.2e-16), whereas a higher proportion of tumor-derived variants were subclonal biopsy-

subthreshold variants in hypermutated cases (41.2% [89/216] vs. 15.3% [80/523] 

respectively; p=1.7e-13). These findings support the notion that a single tumor biopsy may 

not always capture the full landscape of tumor mutational profile in patients whose tumors 

harbor a hypermutator phenotype.

Given the correlation between sequencing depth and occurance of technical artifacts, we 

next investigated whether mutations detected in cfDNA at ultra-high sequencing depths 

could be attributed to residual sequencing noise. Of 215 mutations detected at a collapsed 

depth of >10,000X, 121 (56.3%) and 20 (9.3%) mutations were identified in two known 

hypermutated patients (Extended Data Fig. 7a). The variant level collapsed depth of somatic 

mutations was a function of the mean collapsed target coverage in cfDNA and the amount of 

input DNA (Extended Data Fig. 7b–c). Furthermore, there was no association between the 

VAF and the sequencing depth of variants irrespective of source of origin (Extended Data 

Fig. 7d). These mutations were also highly replicable and could not be attributed to copy 

number gains or amplification of the corresponding loci (Extended Data Fig. 7e–h). Overall, 

these results indicate that the mutations found at high sequencing depths were unlikely to 

constitute sequencing artifacts.

We next sought to define the biological source of nonsynonymous VUSo in cfDNA 

(Methods). After removing variants with known source-of-origin (WBC-matched; biopsy-

matched and biopsy-subthreshold in cancer patients), approximately 31.9% of non-cancer 

controls had no additional variants identified in cfDNA, with the remaining 68.1% harboring 

at least one VUSo (Fig. 4b).

In cancer patients, 77.7% (994/1280) of the VUSo were detected in the 10 hypermutated 

cancer samples. In fact, VUSo accounted for 82.1% (994/1210) of the total non-WBC-

matched somatic cfDNA mutations in hypermutated samples as compared with 35.4% 

(286/809) in non-hypermutated tumors (p=9.3e-103). Additionally, VUSo rarely constituted 

the mutation at the highest VAF in cancer patients (17.6%, 23.1% and 19.5% of MBCs, 

NSCLCs and CRPCs, respectively). These findings indicate that a large proportion of the 

VUSo likely originated from the tumor and may not have been detected in the biopsy sample 

taken, due to spatial tumor heterogeneity and sampling bias. To investigate the potential 

origins of the VUSo further, we evaluated the genes harboring variants classified as such in 

cancer patients (Fig. 2b, Extended Data Fig. 5a). A subset of VUSo affected specific genes 

known to harbor somatic mutations occurring late in the evolution of the respective cancer 

type and commonly found altered at subclonal levels in metastatic cancers, including 

mutations in ESR1, RB1, and NF1 in MBC, the EGFR T790M mutation in NSCLC, and AR 
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mutations in CRPC (Fig. 2b, Extended Data Fig. 5a)37. Further, the VAF distribution for 

these mutations mostly mirrored that of biopsy-matched variants (Fig. 4e, Extended Data 

Fig. 6c–d). In hypermutated cases, however, a significant correlation between the size of the 

sequenced coding region of a gene harboring VUSo and the number of VUSo affecting the 

given gene was observed (p=4.4e-16; Extended Data Fig. 5b). To determine the accuracy of 

the cfDNA assay for detecting VUSo, we performed orthogonal validation of our results 

utilizing ddPCR assays targeting VUSo (Methods, Fig. 4f) and found complete agreement 

between the two assays. Based on these results, we posit that these VUSo are for the most 

part tumor-derived and stem from increased mutational rates found in cancer cells from 

patients with tumors displaying a hypermutator phenotype. It should be noted that, in 

controls, the genes most frequently harboring VUSo also included canonical CH genes 

(Extended Data Fig. 5c). Consistent with the notion that at least a subset of VUSo arise from 

CH or other sources of somatic mosaicism not present in matched WBC samples, VUSo 

were weakly associated with age at sample collection (p=0.141; Fig. 4c), affected canonical 

CH genes in both cancer patients and controls (Extended Data Fig. 5c–e), with some having 

similar allele frequencies as WBC-matched variants (Fig. 4e, Extended Data Fig. 6c–d).

Taken together, this high-intensity cfDNA sequencing assay identified CH mutations as the 

most probable origin of non-tumor derived mutations detected in cfDNA, that CH is likely 

more prevalent than previously reported with lower-depth WBC sequencing 

approaches10,20,22–24,26, and that subclonal tumor-derived mutations absent in the tumor 

biopsy can be detected in cfDNA.

Characterization of WBC variants

High-depth sequencing analysis of WBCs currently constitutes the main approach for the 

detection of somatic alterations originating from CH. Here, the cfDNA assay detected 57.3% 

of the somatic variants with supporting reads in WBCs which were also sequenced utilizing 

the same high-intensity assay (Fig. 5a; Methods). At least one CH mutation was detected in 

99.1% of the WBCs of the cancer patients analyzed, and in 93.6% of the non-cancer 

controls. If a patient harbored a mutation affecting a canonical CH gene, there was a high 

likelihood of other CH mutations being detected in the same patient, and in those with CH 

events, the number of mutations was significantly correlated with age (p=6.09e-64, Fig. 5b). 

In 41.6% of patients with metastatic cancer, the mutation found at the highest VAF affected 

one of the 15 canonical CH-related genes, with DNMT3A and TET2 being the genes whose 

mutations were most frequently detected at the highest VAFs in both non-cancer controls 

and metastatic cancer patients (Fig. 5c).

Consistent with previous studies suggesting that therapeutic interventions may result in the 

acquisition of specific types of CH events20,48, our results indicated that somatic mutations 

affecting PPM1D were significantly more frequently detected in cancer patients than in 

controls (age-adjusted p=0.0115, Fig. 5c). In addition, mutations affecting PPM1D, in 

particular truncating variants preferentially affecting the C-terminal domain (Fig. 5d, 

Extended Data Fig. 8), were significantly more common in patients who received 

chemotherapy and/or radiation therapy than in those who had no prior history of such 

treatments (age- and smoking-adjusted p=0.0008, Fig. 5c).
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Gene copy number variation detection

As an exploratory analysis, we sought to define whether the high-intensity cfDNA assay 

would be able to detect copy number variations (CNVs) de novo. We observed a relatively 

good concordance between CNVs detected in tumor biopsies and cfDNA only in cases 

where the ctDNA fractions were ≥10% (Extended Data Fig. 9). Despite this limitation, in 

five patients with actionable CNVs (n=4 ERBB2 amplified MBCs and n=1 MET amplified 

NSCL), three of the ERBB2 amplifications could be detected de novo. In the two cases 

where actionable CNVs were present in the MSK-IMPACT tumor biopsy but not in cfDNA, 

the ctDNA fractions were 1.3% and 1.9% (Extended Data Fig. 10). None of the remaining 

samples tested harbored amplifications of these two genes thereby demonstrating the 

specificity. The performance of the cfDNA assay to detect of gene amplifications in cfDNA, 

however, was found to be highly dependent on the ctDNA fraction.

Discussion

Most clinical cfDNA assays in current use target a small panel of genes or hotspot mutations 

in key cancer genes, and do not incorporate matched WBC sequencing. Previous attempts at 

broadening the genomic area probed by cfDNA sequencing assays resulted in the 

identification of not only mutations known to be present in tumors but also a large number of 

variants absent in the respective tumor tissues and inferred to be somatic. Despite the use of 

multiple strategies to mitigate sequencing artifacts, it has been postulated that high-depth 

sequencing assays covering a large genomic region would inevitably result in the 

identification of a high number of false positive sequencing variants45,46. Here, we devised a 

high-intensity cfDNA sequencing assay covering a large genomic region based on a joint 

analysis of cfDNA and WBC gDNA, utilizing UMIs to suppress technical assay errors and 

hierarchical Bayesian error correction models to mitigate mutation detection artifacts 

stemming from ultra-high sequencing depths. Our findings highlight the importance of 

having methods to mitigate sequencing errors coupled with matched WBC sequencing 

performed at similar depths to those employed for the cfDNA analysis. Without taking into 

account the results of WBC sequencing, cfDNA sequencing, as often currently performed in 

the clinical setting, might be misleading, given that some CH mutations affecting cancer 

genes may be interpreted as tumor-derived mutations (e.g. TP53 mutations).

The high-intensity cfDNA sequencing approach allowed for robust de novo detection of 

somatic mutations with a sensitivity similar to that of ddPCR (Fig. 1f) and was comparable 

to previous high-depth targeted sequencing efforts49–51, allowing for the detection in cfDNA 

of 77.4% of the repertoire of somatic mutations reported in the matched tumor biopsy 

samples from patients with advanced cancers. Given the large genomic footprint and the 

limited number of false positive variants (Figs. 1d–e), this cfDNA assay also allowed for the 

de novo assessment of tumor mutational burden and mutational signatures, including MSI 

(Fig. 3a–e), in patients with advanced cancers.

Our analyses revealed that the majority of non-tumor-matched nonsynonymous somatic 

mutations identified in cfDNA had supporting reads present in the respective WBC gDNA 

samples, which were present in the vast majority of non-cancer controls and cancer patients. 

These WBC-matched mutations preferentially affected genes previously implicated in 
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CH10,20,22–24,26 and their presence was strongly associated with age at collection of the 

blood sample. The number of these probable CH variants per patient was on average higher 

than the number of tumor-matched variants in metastatic patients. The higher prevalence of 

CH found in WBCs in this study (93.6% of non-cancer controls and 99.1% of cancer 

patients) relative to that reported in prior studies10,20,22–24,26 likely resulted from the high 

sensitivity of the assay employed to detect variants in the WBC samples52,53 and was 

consistent with the observation by Liu et al. in a non-cancer population27. In our study, 

however, both cfDNA and WBC samples were ultra-deep sequenced at comparable raw 

depths, allowing for the distinction between CH and tumor-derived mutations. Although the 

genes recurrently affected by these somatic genetic alterations were genes previously 

implicated in CH, the majority of the WBC-matched variants were private to individual 

patients, suggesting that accounting for them in cfDNA-based clinical assays requires the 

sequencing of cfDNA and matched WBC DNA in a patient-specific manner. Indeed, recent 

studies25,28,54 have demonstrated in a limited number of patients that a large proportion of 

somatic variants in WBCs can also be identified in cfDNA, resulting in the detection of 

‘false-positive’ tumor-derived mutations in cfDNA. These findings provide a plausible 

explanation for the inconsistent results between cfDNA and tumor tissue assays, which may 

be due to a subset of non-tumor origin (e.g. CH) cfDNA variants being interpreted as tumor-

derived25,28,54 and support the need for joint analysis of cfDNA and matched WBC, given 

that mutations related to CH may result in inaccurate tumor mutation burden and mutational 

signature quantification7,28.

We also demonstrated that VUSo could have multiple origins, including tumor 

heterogeneity, CH occurring at extremely low levels, other sources of somatic mosaicism, or 

a small amount of residual technical noise. The majority of the observed VUSo were found 

to be tumor-derived and arose from minor tumor subclones, and 77.7% of all VUSo in 

cancer patients were identified in 10 patients whose tumors harbored hypermutator 

mutational processes, such as APOBEC, known to amplify tumor heterogeneity and 

subclonal diversity. Hence, high-intensity cfDNA assays may offer a more comprehensive 

landscape of tumor mutational profile than tumor tissue sequencing alone.

This study has several limitations. Colorectal carcinomas, another common form of cancer, 

were not included in this study; a recent study, however, has demonstrated the importance of 

cfDNA sequencing in defining the heterogeneity and mechanisms of therapeutic resistance 

in advanced colorectal cancers15. The tumor assessment was limited to the analysis of a 

single tumor biopsy due to limitations in obtaining multiregional biopsies in the clinical 

setting. As such, the full scope of tumor heterogeneity may not have been entirely captured9. 

This caveat, however, would remain regardless of the number of sites biopsied. Non-cancer 

controls were from a different source and were processed in different batches from the tumor 

samples, potentially affecting results. Given that the number of samples in each tumor 

subgroup was relatively small, the analysis performed here may not have captured the full 

clinical or genomic diversity of MBCs, NSCLCs, and CRPCs, and their respective subtypes. 

Additionally, <50 baseline samples from healthy control were employed to train the 

hierarchical Bayesian model, which might be further improved through the analysis of 

additional samples from healthy donors followed longitudinally. Our findings also 

emphasize the importance of high-depth WBC sequencing, and even when this approach is 
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employed, a subset of VUSo might still originate from CH not detected in the matched 

WBC sample, other sources of somatic mosaicism, benign neoplasms and/or other forms of 

occult cancers not detected in the extensive clinical work up performed on the patients 

included in this study. Finally, the cost of this high-intensity cfDNA sequencing assay may 

preclude its broader adoption in the clinical context at present.

Despite these limitations, the high-intensity cfDNA sequencing assay described here 

represents an advancement in the development of approaches for de novo detection of the 

repertoire of somatic genetic alterations in cancer patients and provides further evidence that 

CH likely constitutes a biological phenomenon and a technical pitfall more prevalent than 

previously anticipated.

Methods

Study design

This was a prospective observational study of patients with metastatic breast (MBC), non-

small cell lung (NSCLC), and castration resistant prostate (CRPC) cancer designed to 

characterize the detection of variants in plasma cfDNA using a targeted DNA assay 

(GRAIL, Inc.; Menlo Park, CA), and to evaluate the concordance of variant detection 

between tissue and plasma as evidence of ctDNA detection. The primary objectives were to 

assess the tumor cfDNA detection rate based on observing at least one variant (single-

nucleotide variants [SNVs], indels); and to assess the concordance of the MSK-IMPACT 

variants33,34 detected in tumor biopsy samples versus cfDNA. Secondary objectives 

included assessing the ctDNA detection rate based on observing at least one MSK-IMPACT 

variant, characterizing the ctDNA detection rate as a function of the type of variant (SNV, 

indels) and the number of variants detected, and characterizing the proportion of patients 

with variants detected.

Patient enrollment

All patients provided written informed consent for tumor, cfDNA and WBC sequencing, and 

review of patient medical records for detailed demographic, pathologic and treatment 

information under an IRB-approved biospecimen umbrella protocol (Memorial Sloan 

Kettering Cancer Center [MSKCC] protocol 12–245, clinicaltrials.gov ID: NCT01775072). 

At least 50 patients of each type of cancer were enrolled to obtain evaluable patients with 

both the targeted DNA assay and MSK-IMPACT analysis. Clinical data (baseline 

demographics, cancer history, and prior lines of therapy) were collected from medical 

records.

Patients with MBC, NSCLC, or CRPC with disease progression as assessed by the 

investigator were eligible. Disease progression was based on objective radiographic and/or 

physical exam and/or biomarker results. Patients diagnosed with de novo or recurrent stage 

IV NSCLC or MBC were allowed to be included if enrolled prior to initiation of the first 

line of treatment for metastatic disease. No new therapies were permitted to be initiated 

between tissue biopsy and blood draw. Patients with progressive disease on stable doses of 

treatment (e.g. hormone therapy) were eligible. Blood was drawn within 6 weeks of tissue 
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biopsy for MSK-IMPACT analysis either prior to or after tissue biopsy. Whole blood 

samples received outside of the stability timeframe for Streck DNA BCT (5 days) were 

excluded.

Fifty de-identified whole blood samples from self-reported healthy individuals (no diagnosis 

of cancer) were obtained from the San Diego Blood Bank (San Diego, CA). Limited clinical 

data were provided with the samples. Healthy participants were required to be at least 20 

years of age, meet all eligibility for blood donation per standardized assessment and criteria, 

to lack a diagnosis of cancer, and to have no prior history of cancer. Participants were 

excluded if they had a prior history of cigarette smoking for at least one year, a current 

history of cigarette smoking, were pregnant, had a personal history of cancer, or had prior 

medical or surgical treatment of any type of cancer. Results were not returned to any 

patients, health care providers, or the San Diego Blood Bank.

Tumor sample accessioning, processing, and analysis

For the 161 cancer patients, tumor DNA was extracted from FFPE biopsy samples and 

matched normal DNA was extracted from mononuclear cells from peripheral blood. All 

specimens underwent next-generation sequencing in the MSKCC CLIA-certified laboratory 

using MSK-IMPACT, an FDA-authorized hybridization capture-based next-generation 

sequencing assay, which analyzes all protein-coding exons of 410 cancer-associated genes 

(Supplementary Table 1), as previously described33,34. Average sequencing coverage across 

all tumors was greater than 900X. Somatic mutations, DNA copy number alterations, and 

structural rearrangements were identified as previously described34 and all mutations were 

manually reviewed. After excluding samples with insufficient tumor tissue, with insufficient 

data quality due to low total DNA quantity and purity, or that failed library preparation, a 

total of 124 patients had complete MSK-IMPACT results (Extended Data Fig. 1).

In addition to the gene-level amplification and deletion calls generated by the MSKCC 

Diagnostic Molecular Pathology pipeline, genome-wide total and allele-specific DNA copy 

numbers were determined using the FACETS algorithm56 for prospectively sequenced 

patients. Purity, average ploidy, and allele-specific integer-copy number for each segment 

were then determined by maximum likelihood. To determine the clonality of each mutation, 

we used allele-specific copy number inference from FACETS to calculate the fraction of 

mutated cancer cells (cancer cell fraction, CCF) as previously described57. Clonal mutations 

were those with a CCF (assuming the number of mutant copies was equal to the number of 

copies of the more frequent allele) greater than 0.8 or the upper bound of the CCF 

confidence interval was >0.85. Mutations with CCFs not meeting these conditions were 

defined as subclonal.

Whole blood sample collection, accessioning, and preparation

Peripheral blood from patients with metastatic cancer was collected into two 10 mL Cell-

Free DNA BCT (Streck; La Vista, NE) at MSKCC (New York, NY) and shipped to GRAIL, 

Inc. (Menlo Park, CA) at room temperature. Whole blood from healthy individuals drawn 

into Streck BCTs were purchased from the San Diego Blood Bank (San Diego, CA) and 
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shipped to GRAIL, Inc. at room temperature. Received whole blood Streck BCTs were 

separated into plasma and buffy coat and stored at −80°C unless processed the same day.

cfDNA was extracted from two tubes of plasma (up to a combined volume of 8 ml) per 

subject using a modified QIAamp Circulating Nucleic Acid kit (Qiagen; Germantown, MD). 

Extracted cfDNA was quantified using the Fragment Analyzer High Sensitivity NGS kit 

(Advanced Analytical Technologies; Ankeny, IA). Genomic DNA (gDNA) from matching 

buffy coat (paired plasma and buffy coat from the same blood tube) was extracted using the 

Qiagen DNEasy Blood and Tissue kit. Extracted gDNA was quantified using NanoDrop 

(Thermo Scientific; Waltham, MA) and fragmented to a mean size of 180 base pairs using 

the Covaris E220 ultrasonicator (Woburn, MA). Sheared gDNA was subsequently size-

selected using Agencourt AMPure XP magnetic beads (Beckman Coulter; Beverly, MA), 

then quantified using the Fragment Analyzer Standard Sensitivity NGS kit (Advanced 

Analytical Technologies; Ankeny, IA).

Library preparation, target enrichment, and sequencing

Buffy coat gDNA (50ng) and plasma cfDNA (≤75ng) were used for NGS library 

construction with a modified Illumina TruSeq DNA Nano protocol. Details are available in 

the Supplementary Methods

Analysis pipeline

A modular analysis pipeline was implemented to enable detection of mutations at very low 

allele fraction by suppressing noise caused by assay and alignment processes. The details of 

this pipeline are provided in the Supplementary Methods. In brief, this methodology 

consisted of: (1) preprocessing and a first-pass alignment, (2) collapsing and read-pair 

stitching, (3) candidate variant generation by de novo assembly, (4) edge effect scoring, (5) 

candidate variant analysis with recalibrated quality scores based on a hierarchical Bayesian 

model, and (6) joint variant analysis using the machine learning error model (Supplementary 

Methods), which was critical in accounting for clonal hematopoiesis of indeterminate 

potential and other artifacts.

Source of origin of plasma variants

Variants reported by de novo assembly from control and cancer samples were stacked, and 

their source-of-origin were labeled through a hierarchical schema. First, variants with low 

read coverage (<200), high frequency of recurrence in WBCs, failed edge-variant filter, or 

below the noise model threshold were labeled as noise. Second, variants with allele fraction 

>20% matched in WBC were labeled as potentially germline. Third, synonymous variants 

were labeled as an independent category. Fourth, variants present in WBCs identified by 

joint-calling or leaking through joint-calling but failing additional thresholds were labeled as 

`WBC-matched’. The additional threshold filtered variants on smoothed cfDNA allele ratio 

and matching WBC alternative allele depth variation. Variants unable to be joint-called as 

separable from WBC were labeled ambiguous (no positive evidence for variant alleles in 

WBC, but insufficient depth of sequencing to prove allele frequency was statistically 

different in cfDNA and WBC results). The remaining variants were labeled as somatic. 

Somatic variants also present in the MSK-IMPACT sequencing of the tumor biopsy were 

Razavi et al. Page 13

Nat Med. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



labeled as biopsy-matched if they had been reported or biopsy-subthreshold if they were 

below the limit for variant calling as required for clinical reporting. Variants not matched 

were labeled as `variants of unknown source’ (VUSo).

Tumor concordance

Overall agreement between variants in plasma and tumor tissue was measured using positive 

percent agreement (PPA) with tumor tissue as the reference; this can be expressed as the 

percent of tissue variants also detected in plasma. The top mutated cancer genes were 

generated by merging the top 15 genes reported by MSK-IMPACT analysis from each 

cancer cohort. Somatic variants (VUSo, biopsy-matched, and biopsy-subthreshold) from the 

top mutated cancer genes were selected from plasma variants for plotting and comparison.

Disease burden and ctDNA fraction

The ctDNA fraction for each plasma sample was estimated from clonal biopsy-matched 

mutations. Briefly, we first obtained the CCF estimate of somatic mutations detected in the 

matched tumor biopsy sample using the FACETS algorithm as previously described56, and 

then derived the ctDNA fraction based on the VAF in cfDNA of the biopsy-matched clonal 

mutations.

Seventy-seven of the 80 patients in the NSCLC and MBC cohorts had computerized 

tomography (CT) scans available from which volumetric tumor measurements could be 

obtained. Of these, 34 of the exams were CTs of the chest, abdomen, and pelvis without IV 

contrast, obtained as part of a positron emission tomography (PET)/CT exam; 32 exams 

were CTs of the chest, abdomen, and pelvis with IV contrast; 5 exams were CTs of the chest 

only with IV contrast; 4 exams were CTs of the chest only without IV contrast; and 2 exams 

were CTs of the chest and abdomen with IV contrast. Exams were acquired on several 

different scanners at slice thicknesses ranging from 3.75 – 5 mm.

All exams were reviewed by a board-certified radiologist specializing in imaging of the 

chest, abdomen, and pelvis (KJ). All metastatic lesions >1 cm in diameter were identified. 

Volumes were measured on all lesions except bone lesions. Bone lesions often have poorly 

defined borders and active metastases are difficult to distinguish from treated disease. 

Volumes were measured using the Aquarius iNtuition advanced visualization software, 

version 4.4.13.P3 (TeraRecon, Inc, Foster City, CA). Of the 77 patients with available 

volumetric assessment, 34 MBC and 29 NSCLC patients had evaluable ctDNA fraction and 

were included in this analysis.

Given that the majority of CRPC patients included in this study had extensive bone disease 

and had undergone bone scans prior to enrollment in the study, the approach employed for 

the volumetric assessment of disease burden was different from that used for MBCs and 

NSCLCs. For prostate cancer patients, we generated the automated bone scan index (aBSI, 

platform version 3.3, EXINI Diagnostics AB, Lund, Sweden), a fully quantitative 

assessment of a patient’s bony disease on a bone scan that reports the number of lesions, 

area and the fraction of the total skeleton weight that is involved by tumor, as a proxy for 

bone disease burden. The methodology of the automated platform has been described in 

previous studies58. In brief, a neural network automatically segments the different 

Razavi et al. Page 14

Nat Med. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anatomical regions of the skeleton followed by detection and classification of the abnormal 

hotspots. The weight fraction of the skeleton for each metastatic hotspot was calculated and 

the aBSI was calculated as the sum of all such fractions. The aBSI method utilized in this 

study has been shown to be an objective measure of the quantitative change in disease 

burden bone scans and a prognostic biomarker in patients with CRPC59.

Mutation burden and association with age at diagnosis

Mutation burden was calculated as the number of nonsynonymous mutations per megabase 

pair of genome sequenced. The relationship of mutation burden with age and cancer status 

was examined by fitting a zero-inflated Poisson regression with the cancer status and 

smoking history as covariates. To assess the age relationship with variant source, the 

analysis above was stratified by variant source of origin.

Mutational signatures from hypermutated patients

The threshold of mutation burden used to define hypermutated patients was defined as 13.8 

mutations/Mb33 for the tumor biopsy whilst the corresponding value for cfDNA was 

evaluated de novo from the samples of cancer patients as median (cfDNA mutation burden) 

+ 2 × IQR (cfDNA mutation burden), where IQR is the interquartile range. The 

contributions of different mutation signatures were identified for each sample according to 

the distribution of the six substitution classes (C>A, C>G, C>T, T>A, T>C, T>G) and the 

bases immediately 5′ and 3′ of the mutated base, producing 96 possible mutation subtypes 

using deconstructSigs60. For the analyses described here, we focused on six signatures: (1) 

aging (signature 1 and 5), (2) APOBEC (signatures 2 and 13), (3) homologous 

recombination repair deficiency (HRD, signature 3), (4) MMR (signatures 6, 15, 20 and 26), 

(5) smoking (signature 4), and (6) POLE (signature 10).

Prevalence of clonal hematopoiesis in cfDNA

WBC-matched variant occurrence was measured at the gene level using the ratio between 

the number of variants in a gene versus the total number of variants. The cumulative 

frequency was generated by first ranking the ratio by descending order and then recursively 

adding ratio together. Top mutated genes carrying WBC-matched variants were visualized 

by a heatmap. The top 20 genes were selected from each cohort and merged to form the final 

list of top genes. The number of patients carrying WBC-matched variants in each gene was 

used to measure the gene occurrence.

Prevalence of clonal hematopoiesis in WBC

Candidate variants in WBC were generated by de novo assembly of error corrected and 

stitched read pairs and post-filtered as follows: (1) following quality score recalibration, 

variants with low quality (<60) or low depth (<500X) as well as bona fide somatic variants 

found in the corresponding tumor biopsy were excluded from downstream analyses; (2) 

technical artifacts occurring at identical genomic coordinates and representing identical 

reference and alternate alleles recurring at >5% were filtered out to avoid possible technical 

artifacts unless (a) they had previously been reported as somatic in any of COSMIC (v86), 

Kandoth et al.61 or Chang et al.62 or (b) they were frameshifting indels or truncating SNVs 
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and occurred in one of 15 canonical genes known to be associated with CH; (3) variants with 

VAF >30% were labelled germline and filtered out unless they were frameshifting indels or 

truncating SNVs and occurred in one of the 15 canonical CH genes; (4) variants occurring at 

any allele frequency in ExAC or gnomAD63 were labelled germline and filtered out; (5) 

variants mapping to the HLA-A locus were excluded; and (6) only nonsynonymous exonic 

variants passing the above filters were considered further. The highest variant level 

recurrences occurred in DNMT3A, TET2, PPM1D and TP53 at <5% recurrence (Extended 

Data Fig. 7) consistent with the joint-variant-calling of plasma cfDNA where the top 

mutated genes harboring WBC-matched variants were identical (Fig. 4d and Extended Data 

Fig. 6). The 15 canonical genes known to be associated with CH were DNMT3A, TET2, 
ASXL1, PPM1D, TP53, JAK2, RUNX1, SF3B1, SRSF2, IDH1, IDH2, U2AF1, CBL, ATM 
and CHEK2.

Summary of variants and variant allele fractions in cfDNA

The mean and median number of each type of identified variant in the samples, as well as 

the mean and median VAF in the samples, are described in Supplementary Table 7. In 

cfDNA samples, more WBC-matched variants than biopsy-matched variants or VUSo were 

identified. Median VAF in cfDNA was higher for biopsy-matched variants than for WBC-

matched variants or VUSo.

Sensitivity and specificity of the targeted DNA assay

Prior to analysis of patient samples with the targeted DNA assay, analytical characterization 

was performed using titrations of DNA from cell lines. Genomic DNA extracted from EBV-

immortalized lymphoblastoid cell line (NA12878) was purchased from Coriell Institute 

(Camden, NJ). The HD753 Structural Multiplex Reference Standard gDNA, which contains 

known SNVs, indels, fusions, and deletions, was purchased from Horizon Discovery 

(Cambridge, MA) (Supplementary Table 8). Fifteen DNA titrations using the HD753 

standard and the NA12878 gDNA were prepared in triplicate to have nominal expected 

VAFs of 0, 0.1, 0.25, 0.5, and 1% for a majority of variants. The gDNA titrations were 

verified using ddPCR (Bio-Rad; Hercules, CA) to ensure dilution accuracy (Supplementary 

Table 9). Following ddPCR verification, DNA mixtures were sheared and size-selected 

according to the targeted DNA assay protocol. 30 ng of sheared, size-selected gDNA was 

used for library construction, resulting in a mean collapsed target coverage of 2,430X.

Fig. 1b shows the estimated sensitivity of the targeted DNA assay at various VAFs, using a 

probit regression model of variant calling status of 14 known small variants in all HD753 

gDNA titrations. Each half FASTQ of one replicate was also combined into the other two 

FASTQs of replicates in the same titration to create three additional FASTQs (i.e. if the 

triplicates are labelled A, B and C, the three simulated samples are AB=0.5A+0.5B, 

AC=0.5A+0.5C and BC=0.5B+0.5C), simulating higher input sample cases. The mean 

collapsed target coverage of simulated samples (n=10) at the FASTQ level was 4,577X, 

which is similar to the median of mean collapsed target coverages for all cancer patient 

samples reported here (4,408X). The estimated 95% limit of detection was 0.36% for 30 ng 

of input DNA (mean collapsed target coverage of 2,430X), and 0.16% for simulated cases 

(mean collapsed target coverage of 4,577X).
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Fig. 1c summarizes the specificity of the targeted DNA assay using non-cancer control 

samples (n=47). After de novo variant calling and WBC variant filtering, the mean number 

of called variants was 120.8, corresponding to a specificity of 99.9891%. After the machine 

learning-based joint variant calling and filtering, the mean number of called variants was 

reduced to 2.3, corresponding to a specificity of 99.9998%. While this drastically improved 

the specificity, the decrease of variant calling sensitivity was marginal. Using the same 

variant calling settings, the estimated sensitivity using the HD753 titrations were comparable 

between de novo variant calling and joint variant calling.

Reproducibility of the targeted DNA assay

The high-intensity sequencing assay was validated using two distinct approaches, namely (1) 

repeated sequencing of the same sample using two versions of the assay (V1 and V2), and 

(2) ddPCR analysis of biopsy-matched mutations and VUSo (Supplementary Methods, Figs. 

1d–f, Extended Data Fig. 4, Supplementary Tables 8–10).

Microsatellite instability detection in high depth-of-read cfDNA assays

A modified version of MSIsensor40 described in the Supplementary Methods, was 

employed. Using the distributions obtained from MSIsensor and applying updated 

parameters and filters, more robust results were obtained in both tumor-normal utilizing 

MSK-IMPACT and the higher depth-of-read cfDNA-WBC samples (Supplementary Fig. 1). 

These results suggest that the high depth-of-read cfDNA data generated in this study are 

suitable for detecting MSI in cancer, and that MSI detection can be further improved for 

shallow sequencing biopsies.

Statistical analyses

The association of variant allele fractions between technical replicates was measured using 

the R2 obtained from a linear regression. The difference in detection rate between the three 

cohorts was assessed using two-by-two Fisher’s exact tests, and the resulting p values were 

adjusted using the Bonferroni correction for multiple testing. The association between the 

tumor mutation cancer cell fraction and the cfDNA detection rate (overall and stratified by 

cancer type) was assessed using a χ2 trend test (Cochran-Armitage test for trend). Exact 

95% confidence intervals were calculated for the detection rate by cancer type. The 

difference in ctDNA fraction estimate between cancer types was assessed using a two-sided 

Kruskal-Wallis H-test. The increase in ctDNA fraction estimate with increasing disease 

burden was assessed using a one-sided Jonckheere-Terpstra test and stratified by cancer 

type. We used zero-inflated Poisson regressions to assess the association between the 

number of cfDNA variants per subject from each biological source (i.e. biopsy-matched, 

biopsy-subthreshold, WBC-matched and VUSo) and age with cancer status and smoking 

history as covariates where appropriate. The corresponding p values were obtained using 

two-sided Wald tests on the coefficients of the count model. Similarly, the association 

between the number of CH-derived variants per subject through direct analysis of WBC and 

age was assessed using a zero-inflated Poisson regression with cancer status as covariate and 

the corresponding p value was obtained using a two-sided Wald test on the coefficient of the 

count model. The association of CH measured in WBC in each of the 15 canonical CH 

genes and cancer status and prior history of radio- or chemotherapy was assessed using a 
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permutation-based likelihood ratio test from the coefficients of a logistic regression with age 

and smoking history as covariates where appropriate. Comparisons of the uncollapsed mean 

coverage between cfDNA and WBC were performed using two-sided paired Mann-Whitney 

U-tests stratified by cohort. Pairwise comparisons of the collapsed mean coverage of cfDNA 

or WBC between the different cancer cohorts and non-cancer controls were performed using 

two-sided Mann-Whitney U-tests and adjusted for multiple testing using the Bonferroni 

correction. The association of input DNA for library preparation and mean collapsed 

coverage of cfDNA samples was assessed using the R2 obtained from a linear regression. 

The corresponding p value was obtained using a two-sided t-test. The pairwise differences of 

input DNA for library preparation between the different cancer cohorts and non-cancer 

controls were assessed using a two-sided Mann-Whitney U-tests and adjusted for multiple 

testing using the Bonferroni correction. Pairwise comparisons of the percentage of collapsed 

bases with SNVs or combined SNVs and indels of cfDNA or WBC between the different 

cancer cohorts and non-cancer controls were performed using two-sided Mann-Whitney U-
tests and adjusted for multiple testing using the Bonferroni correction. The association of 

ctDNA fraction estimate or tumor purity and the Pearson’s correlation coefficient measuring 

the association in Log2 ratio space between patient-matched cfDNA and tumor biopsy 

samples was assessed using one-sided Jonckheere-Terpstra tests for increasing ctDNA 

fraction or tumor purity with increasing Pearson’s correlation. Pairwise comparisons of 

AUCs for amplifications or homozygous deletions between the different cancer cohorts were 

carried out using two-sided DeLong tests. For each cfDNA variant category, a two-sided 

Mann-Whitney U-test was used to test whether the cancer cohort stratified by cancer type 

had a different mutation burden than the non-cancer controls. All statistical hypothesis tests 

were considered positive at α=0.05 and carried out in R/Bioconductor unless otherwise 

stated.

Data Availability

The assembled prospective somatic mutational data from cfDNA, WBC, and tumors for the 

entire cohort are provided as supplementary tables (Supplementary Tables 11–13) and the 

raw cfDNA and WBC sequencing data have been deposited in the European Genome-

phenome Archive (EGA) under accession number EGAS00001003755. All code and scripts 

are available for academic use at https://github.com/ndbrown6/MSK-GRAIL-TECHVAL.

Extended Data
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Extended Data Fig. 1. Study overview
Patient enrollment, inclusion and evaluable group are defined in the blue boxes. Detailed 

clinical, tissue and cfDNA exclusions are shown in the gray boxes.
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Extended Data Fig. 2. Comparison of sequence depth and raw error rate distributions across 
cancer cohorts (n=124) and non-cancer controls (n=47)
(a) Comparison of deduplicated and uncollapsed mean target sequence depth between 

cfDNA and WBC. The p values were obtained using paired two-sided Mann-Whitney U-

tests comparing cfDNA against WBC. (b) Deduplicated and collapsed mean target sequence 

depth in cfDNA and WBC between the different cancer cohorts and non-cancer controls. (c) 

Association between the amount of cfDNA used for library preparation and the mean target 

deduplicated and collapsed sequencing depth. The diagonal line represents a linear 

regression with 99% confidence intervals. The p value was obtained using an F-test. (d) 

Distribution of mean target deduplicated and collapsed sequencing depth across the different 

cohorts. (e,f) Comparison of (e) raw substitution error rate and (f) raw substitution and indel 

error rate across the different cohorts. In (b) and (d-f), the p values were obtained from 

pairwise comparisons using two-sided Mann-Whitney U-tests and adjusted for multiple 

testing using the Bonferroni method. In (e), the substitution error rate represents the 

percentage of collapsed bases with non-reference base. Similarly, in (f) the combined error 

rate represents the percentage of collapsed bases with non-reference base or indels. In all 

panels, the cohorts consist of n=39 MBC, n=41 NSCLC and n=44 CRPC patients and n=47 

non-cancer controls. In (a-b) and (d-f), the horizontal bars indicate the median and the boxes 

represent the interquartile range (IQR). The whiskers extend to 1.5 × IQR on either side.
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Extended Data Fig. 3. Hierarchical Bayesian model for calibrated analysis of somatic cfDNA 
variants and performance assessment
(a,b) Plate models showing the hierarchy of statistical relationships for (a) single nucleotide 

variants and (b) small insertions and deletions influencing the observed quantity of alternate 

alleles ynp in each sample n at each position p conditional on both latent parameters μ (the 

rate of events), θ (the type of event), α, β as well as fixed covariates xp (of X types) such as 

trinucleotide context and, separately, depth of sequencing at a position (dp). Note that 

insertions and deletions have additional complexity as one must account for length of the 
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insertion/deletion event in the model as insertions and deletions of differing lengths have 

differing probabilities. The model was fitted to the training data consisting of n=43 unrelated 

non-cancer controls, estimates for the parameters were fixed and applied to new samples for 

scoring. (c,d) The posterior distributions of site-specific λp (μp dp) were summarized by 

their mean μp and displayed for a subset of representative sites in (c) by type of mutation and 

(d) by trinucleotide context. In both panels, the midpoint indicates the mean and the vertical 

bars represent the 95% Gaussian confidence limits based on the t-distribution. (e) Estimated 

μp against the observed λp for samples in the training set. Note the data points at the bottom 

are all positions p with non-zero mean posterior μp and zero observed alternate allele counts. 

(f) Comparison of the estimated probability of observing an event (x-axis) with the actual 

empirical probability of observing such an event (y-axis). The plot was calibrated based on 

estimates of μp on chromosome 21. Note the initial sharp rise reflects the number of sites 

with zero observed alternate allele counts whilst the excess low probability events at the 

other end reflects the difficulty of stringently filtering out rare biological events such as 

clonal hematopoiesis. (g) Mean number of variants detected in healthy control individuals 

(x-axis) against the recall rate of biopsy-matched variants (y-axis) for the different cancer 

types. At Q60, one can expect one false positive per million bases. Here, to exclude 

potentially CH derived variants, a fixed threshold of 0.8 on the posterior probability of 

detected variants originating from cfDNA (i.e. PGTKXGDNA) was adopted. (h) Mean 

number of variants detected in healthy control individuals (x-axis) against the recall rate of 

biopsy-matched variants (y-axis) at different probabilities for allowing variants to be 

assigned to cfDNA. The thresholds displayed were obtained by cross-validation holding out 

each cancer type and selecting a threshold which retains most of the biopsy-matched 

variants whilst still filtering out variants of potential hematopoietic origin. Here, to exclude 

variants potentially due to noise, a fixed threshold of Q60 was adopted.
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Extended Data Fig. 4. Reproducibility of the high-intensity DNA assay
Six patient samples were selected for processing using two versions of the assay protocol 

(V1 and V2). These are labelled Replicate 1 and Replicate 2. A subset of three samples were 

further retested using version V2 and labelled Replicate 3. The panels illustrate the pairwise 

comparisons of measured VAF between all available replicates for each patient. In all panels, 

the variants are shape coded based on their origin, whether they were also detected in the 

matched tumor biopsy and color coded according to their category, whether they were 
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detected in both replicates and whether they were assigned to similar source categories (i.e. 

VUSo, WBC-matched or noise). In all panels, the samples are labelled on top.

Razavi et al. Page 24

Nat Med. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 5. Top mutated genes carrying VUSo and 96 base substitution profiles of ten 
hypermutated cfDNA samples
(a) Frequency of genomic alterations in cfDNA of 47 non-cancer controls and 124 cancer 

patients. The genes were sorted by their frequency of alterations in the tumor. The colors 

indicate whether the alterations were biopsy-matched, detected in the tumor but below the 

threshold of the MSK-IMPACT assay (biopsy-subthreshold), or were specific to cfDNA (i.e. 

variants of unknown source, VUSo). (b) Correlation of the number of VUSo per gene and 

per patient (y-axis) in the ten hypermutated and 114 non-hypermutated cancer patients 
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against the length of the coding region sequenced (x-axis) of each target gene. (c-e) Heat 

maps showing the top mutated genes harboring somatic variants detected in plasma cfDNA 

that are neither tumor-matched (biopsy-matched or subthreshold) nor WBC-matched across 

each cohort in (c) 47 non-cancer controls, (d) 114 non-hypermutated and (e) 10 

hypermutated cancer patients. The numbers in the cells indicate the number of patients. (f) 
96 base substitution profiles of the 10 hypermutated patients. For each patient, the number of 

C>A, C>G, C>T, T>A, T>C, and T>G substitutions together with the sequence context 

immediately 3’ and 5’ are expressed as a percentage of the total number of substitutions.
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Extended Data Fig. 6. Characterization of biological sources and composition of cfDNA variants
(a) The bar plots show the number of somatic variants detected in plasma cfDNA per 

megabase (Mb, y-axis) for each sample (x-axis) stratified by cancer status and biological 

sources and ordered by increasing number of somatic WBC-matched variants. The panels 

show control samples (top left) and patients with MBC (top right), NSCLC (bottom left) and 

CRPC (bottom right). The colors indicate WBC-matched variants, tumor biopsy-matched 

variants, biopsy-subthreshold and VUSo. (b) Top mutated genes carrying WBC-matched 

variants for each cohort. The number in the cells indicate the overall number of variants for 

each gene in the corresponding cohort. In (a,b), the cohorts consist of n=39 MBC, n=41 

NSCLC and n=44 CRPC patients. Additionally, in (a) n=47, non-cancer controls are shown. 

(c,d) Distribution of Variant Allele Fractions (VAFs) of somatic mutations detected in 

cfDNA and WBC using the high-intensity sequencing assay where variants are color coded 

according to source of origin. Somatic variants are displayed for n=114 non-hypermutated 
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cancer patients and n=47 non-cancer controls. The allelic (AD) and total (DP) depths are 

obtained from raw pileups without base alignment quality filtering (BAQ). In (c), the VAF is 

smoothed with added pseudocounts to AD and DP such that AD′ = AD + 2 and DP′ = DP + 

4. In (d), variants detected with zero AD in WBC were displayed as 0.01% VAF in WBC 

due to the logarithmic scaled axes.
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Extended Data Fig. 7. Somatic mutations occurring at high sequencing depth in cfDNA
Somatic mutations detected at sequencing depth >10,000 in cfDNA occur mostly in 

hypermutated samples and are related to sample level mean target collapsed depth which is 

itself a function of the amount of input DNA used for library preparation. (a) Number of 

somatic mutations occurring at >10,000 sequence depth (n=215) per patient and categorized 

into WBC-matched, VUSo or Tumor-matched where the latter category is composed of 

Biopsy-matched and Biopsy-subthreshold mutations. (b) Variant level collapsed depth for all 

somatic mutations detected in cfDNA categorized into Tumor-matched, VUSo or WBC-
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matched and grouped according to the amount of input DNA used for library preparation. (c) 

Variant level collapsed depth for all somatic mutations detected in cfDNA against sample 

level mean collapsed target depth. (d) variant level collapsed depth for all somatic mutations 

against modeled VAF in cfDNA. 121 of 215 (56.3%) somatic mutations detected at 

sequencing depth >10,000 in cfDNA occurred in the hypermutated patient MSK-VB-0023. 

(e,f) Log2 ratios of (e) tumor biopsy and (f) cfDNA of patient MSK-VB-0023. The tumor 

biopsy and cfDNA showed similar copy number alterations (i.e. 1q+ and 16q-). No high-

level copy number amplifications were observed in either the tumor biopsy or the cfDNA 

which could explain the high sequencing depth. Three replicate sequencing of cfDNA and 

WBC were available for that patient. (g) and (h) Pairwise comparisons of VAF for the 121 

mutations detected at depth >10,000 using version V1 of the assay. In (a), ‘1’ denotes 

hypermutated samples. In (b), the midpoint indicates the median whilst the violins extent to 

the full range of the data. In (b-d), the sequencing depths of somatic variants for the cohort 

of n=124 cancer patients are shown. In (e) and (f), the grey points represent the raw Log2 

ratios and are ordered according to their genomic coordinates. The solid red lines indicate 

the segmented values. In (g) and (h), the variants are shape coded based on their origin (i.e. 

whether they were also detected in the matched tumor biopsy and color coded according to 

their category; whether they were called in both replicates and assigned to similar source 

categories, namely VUSo, WBC-matched or noise).
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Extended Data Fig. 8. Characterization of CH derived variants through direct analysis of WBC
(a) CH-related somatic mutations in the top 14 mutated genes across the 114 non-

hypermutated cancer patients and 47 non-cancer controls together with the marginal 

frequencies by patient (top) and by gene (right). DNMT3A, TET2 and PPM1D are the top 

mutated genes in WBC and harbor multiple hits (i.e. two or more mutations per patient). (b) 

Clustering within genes of CH-derived mutations detected in WBC. The clusters and 

associated p values were computed using a modification of OncodriveCLUST55 which 

assumes the number of mutations in clusters follows a Poisson distribution. The resulting p 

values are two-sided. (c,d) Distribution of mutations in PPM1D (c) according to genomic 

coordinates and for DNMT3A (d). Mutations detected in PPM1D are clustered in the C-

terminus of the protein.
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Extended Data Fig. 9. Copy number profile derived from cfDNA of non-cancer controls and 
cancer patients
(a-b) Log2 ratios estimated from the cfDNA of (a) n=24 female and (b) n=23 male control 

individuals. For each individual, the raw Log2 ratios were smoothed using a cubic spline. 

The two panels show the superimposed splines for all control samples according to gender. 

(c-e) Log2 ratios of tumor biopsies (top panels) and their corresponding matched cfDNA 

(bottom panel) for three cases (c) MSK-VB-0008, (d) MSK-VL-0056 and (e) MSK-

VP-0004 where amplification of CCND1, FGFR1, EGFR and a homozygous deletion of 

BRCA2 were reported, respectively. The arrows point to the reported amplifications or 

deletions. The segmented Log2 ratios were used to compute the Pearson correlation 

coefficient comparing segments overlapping >75% in the tumor biopsies and cfDNA 

samples. In (a-e), the Log2 ratios are displayed according to their genomic coordinates. In 

(c-e), the grey dots show the raw estimates while the red lines represent the segmented 

values. (f) The association of the Pearson’s r against the ctDNA fraction and purity of the 

tumor biopsies. The cohort consists of n=124 cancer patients with paired tumor biopsy and 

cfDNA samples. The p values were obtained using a permutation based one-sided 

Jonckheere-Terpstra test for increasing Pearson’s r with ctDNA fraction or tumor purity. The 

horizontal bars indicate the median and the boxes represent the interquartile range (IQR). 

The whiskers extend to 1.5 × IQR on either side. NE; not evaluable.
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Extended Data Fig. 10. Comparison of copy number alterations in tumor biopsies and matched 
cfDNA samples
(a) Heatmap of all genes where an amplification or a homozygous deletion was found in 

either the tumor biopsy or cfDNA. The samples are interleaved (i.e. tumor biopsy and 

cfDNA) and represented along the rows, whilst genes are ordered in columns relative to their 

genomic coordinates. (b,c) Receiver operating characteristic curves comparing (b) copy 

number amplifications and (c) homozygous deletions detected in the tumor biopsies with the 

absolute copy numbers inferred in cfDNA. Each tumor-cfDNA sample pair was used to 

construct individual curves. These were averaged after fitting a local polynomial regression 

and estimating the sensitivities over fixed intervals of specificities. In (a-c), only tumor-

cfDNA sample pairs from n=49 patients with ctDNA fraction >10% were used. (d) Four 

MBC patients: MSK-VB-0006, MSK-VB-0044, MSK-VB-0059 and MSK-VB-0069 with a 

reported amplification of ERBB2 on chromosome 17q are shown together with one NSCLC 

patient, MSK-VL-0044 with a reported MET amplification on chromosome 7q. The tumor 

biopsies are displayed on the left and the matched cfDNA are shown on the right together 

with the corresponding chromosome ideogram. The genomic coordinates of ERBB2 and 

MET are displayed by orange arrows and labelled accordingly.
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Fig. 1. Assay workflow and reproducibility.
(a) Tumor and cfDNA samples were collected from patients with metastatic breast (MBC), 

lung (NSCLC), and prostate (CRPC) cancers. Tumor and matched normal samples were 

sequenced using the MSK-IMPACT assay, while plasma and buffy coat samples from cancer 

patients and non-cancer controls from the San Diego Blood Bank underwent sequencing 

followed by de novo assembly and mutation detection using the high-intensity targeted 

cfDNA assay by GRAIL, Inc (Menlo Park, CA) based on a bespoke joint-variant-calling 

pipeline. Tumor and cfDNA somatic variant detection results were unblinded for 

concordance analyses. (b) Analytical performance of the targeted DNA assay. The detection 

probability is shown as a function of increasing variant allele fraction in HD753 cell line 

DNA titrations. The curves correspond to the mean target coverage of 2,430X from 30 ng 

cell line DNA input and the mean target coverage of 4,577X obtained from simulated 

FASTQs. (c) Estimated variant calling specificity using non-cancer control samples and 

corresponding variant calling sensitivity using methods as described in the supplementary 

methods (joint variant analysis using the machine learning error model). Non-cancer 

controls were not used to train the model here. (d) Comparison of allele fraction of variants 
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detected using either of the two targeted DNA assay protocols in five patients. One MBC 

hypermutated patient, shown in (e), was excluded from this analysis to avoid biased 

regression. Concordant mutation detection between the two replicates (triangles indicate 

biopsy-matched, circles indicate biopsy-unmatched variants) is enriched in allele fraction 

above limit of detection. (f) Comparison of variant allele fraction (VAF) measured using the 

targeted DNA assay (y-axis) and ddPCR (x-axis). cfDNA extracted from five cancer patients 

with canonical hotspot mutations were subjected to ddPCR. An aliquot of the same cfDNA 

sample was employed for the targeted DNA assays using two versions of the protocol (V1 

and V2). One sample lacking canonical hotspot mutation in the ddPCR measurements was 

excluded.
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Fig. 2. Concordance of cfDNA variants with tumor biopsy.
(a) Summary statistics of concordance between the cfDNA and tumor biopsy assays for 124 

patients with MBC (n=39), NSCLC (n=41), and CRPC (n=44) cancer. (b) Frequency of 

genomic alterations by in cfDNA of the same patients with MBC, NSCLC, and CRPC. The 

genes were sorted by their frequency of alterations in the tumor tissue. (c) Plasma variant 

allele fractions (VAF) of somatic variants sorted by the maximum VAF in control 

individuals. (d) Upper panels depict plasma VAFs of somatic variants in MBC, NSCLC, and 

CRPC. The lower panels show the number of variants identified in each individual by MSK-
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IMPACT. Colors indicate whether alterations were biopsy-matched, biopsy-subthreshold, 

biopsy-only (detected in tumor only and not in cfDNA), or VUSo. (e) Increasing detection 

rate of tumor variants in cfDNA with clonality of mutations in the tumor biopsy. The 

midpoint of the interval plot shows the median proportion of tumor mutations from the 

MSK-IMPACT assay which were also detected in cfDNA of MBC, NSCLC, and CRPC 

patients, stratified by the cancer cell fraction (CCF) in the tumor, whilst the error bars 

indicate the 95% binomial confidence intervals. The CCF was strongly associated with 

detection rate in cfDNA (overall p= 5.33e-21). All p values are based on two-sided X2 trend 

test. (f) Distribution of tumor derived cfDNA fraction estimates (i.e. ctDNA fraction) in 

MBC, NSCLC, and CRPC patients (n=105 patients with evaluable ctDNA fraction, two-

sided Kruskal-Wallis H-test p=0.0046). The midpoints indicate the median ctDNA fraction 

by cancer type and the violins extend to the full range of the data. (g) Distribution of ctDNA 

fraction estimates as a function of disease burden. In MBCs (n=34) and NSCLC (n=29), 

disease volume was obtained through volumetric measurements of pre-cfDNA collection CT 

scans. In CRPC (n=39), the automated bone scan index (aBSI) was used to estimate disease 

burden. The association between tertiles of disease burden for each cohort and the ctDNA 

fraction was estimated using a one-sided Jonckheere-Terpstra test for increasing ctDNA 

fraction. Triangles indicate patients from whom some distant metastases could not be 

measured and the estimates for these lesions were not included in the volumetric assessment. 

Note that as aBSI was employed for CRPC, not all sites of metastatic disease (e.g. visceral 

disease) were included in the disease burden in the CRPC patients. The horizontal bar 

indicates the median, while the boxes shows the interquartile range (IQR). The whiskers 

extend to 1.5 × IQR on either side.
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Fig. 3. Tumor mutational burden and mutational signatures derived from cfDNA targeted assay.
(a) Distribution of the somatic tumor mutation burden (TMB), defined as the number of 

nonsynonymous mutations per megabase (Mb), in tumor (x-axis) and cfDNA (y-axis). The 

vertical dashed line indicates the threshold for samples with a high TMB based on tumor 

biopsy (13.8 mutations/Mb) and the horizontal dashed line indicates the threshold for 

samples with a high TMB in cfDNA (22.7 mutations/Mb). (b) Venn diagrams showing the 

total number of mutations detected in cfDNA and tumor and their overlap. The upper panel 

shows the distribution of mutations in the 10 hypermutated cases (MBC n=5, NSCLC n=2, 

and CRPC n=3), while the lower panel shows the same in the remaining 114 patients (MBC 

n=34, NSCLC n=39, CRPC n=41). The 10 hypermutated cases account for 60% of total 

cfDNA variants and 75% of cfDNA-only variants (VUSo). (c) Bar charts displaying the 

fraction of mutational signatures in the hypermutated cases. The upper panel shows the 

Pearson correlation between the observed and expected 96 base substitutions profile. All the 

MBC cases and one of the CRPC cases demonstrated a dominant APOBEC signature. (d) 

Microsatellite instability (MSI) scores obtained using a modified MSIsensor algorithm40 

from the tumor (x-axis) and cfDNA (y-axis). (e) A 55-year-old patient with castration- and 

enzalutamide-resistant prostate cancer displaying an MMR signature and high MSI score 

based on both cfDNA and tumor targeted sequencing data. Upon initiation of treatment on 

an anti-PD-L1 immunotherapy regimen, rapid tumor regression was observed. Line charts 

show relative tumor size based on Response Evaluation Criteria in Solid Tumors (RECIST 
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v1.1) criteria and serum prostate-specific antigen (PSA) levels. CT images show the 

decreasing tumor size at indicated time points.
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Fig. 4. Characterization of biological sources and composition of cfDNA variants.
(a) Pie charts representing the distribution of cfDNA somatic mutation for controls (n=47), 

non-hypermutated cancer cases (n=110) and hypermutated cancer cases (n=10). (b) Bar 

plots showing the number of somatic variants detected in plasma cfDNA per megabase (Mb, 

y-axis) for each sample (x-axis) stratified by cancer status and biological sources and 

ordered by increasing number of somatic WBC-matched variants. The panels show control 

samples (top left) and patients with MBC (top right), NSCLC (bottom left) and CRPC 

(bottom right) cancers. The colors are indicated in (a). (c) Association between age (x-axis) 
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and number of cfDNA variants per Mb categorized as WBC-matched, VUSo, tumor biopsy-

matched and biopsy-subthreshold. In all panels, the p values were obtained using two-sided 

Wald tests on the coefficients of zero-inflated Poisson regression models with cancer status 

and smoking history where applicable as covariates. The cohort consists of n=114 non-

hypermutated cancer patients and n=47 non-cancer controls. Only cases with a non-zero 

number of variants are displayed. (d) Top mutated genes carrying WBC-matched variants 

for each cohort. The number in the cells indicate the overall number of variants for each 

gene in the corresponding cohort. (e) Posterior distribution of variant allele fractions (VAF). 

The scatter plot shows the distribution in VAFs of somatic mutations detected in cfDNA and 

WBC using the targeted DNA assay and color coded according to source of origin for n=114 

non-hypermutated cancer patients and n=47 non-cancer controls. (f) Orthogonal validation 

of VUSo detected in cfDNA using ddPCR. The VAF measured using ddPCR (x-axis) was 

plotted according to the cfDNA targeted assay (y-axis). Plasma cfDNA samples and pre-

enrichment libraries from seven cancer patients with hotspot mutations not detected in the 

matched tumor sequencing were subjected to four ddPCR assays. For one patient, only 

cfDNA isolated from plasma was available. For two patients, both cfDNA and pre-

enrichment sequencing libraries were available whilst for the remaining four patients, only 

libraries were assayed. The sequencing libraries from 12 patients where the ddPCR target 

variants were not detected by sequencing were used as negative controls. All experiments 

were performed in triplicate. In (e) and (f), the diagonals represent the line y=x. ND; not 

detected.
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Fig. 5. Characterization of WBC variants.
(a) Direct analysis of somatic variants in WBC. The upper bar plot shows the number of 

somatic variants detected across 1.1 Mb of genome grouped by age category and ordered by 

increasing mutational burden. The bottom panel shows the variant allele fractions (VAFs) of 

all somatic variants in 15 canonical genes associated with clonal hematopoiesis (CH) 

together with the variant occurring at maximal VAF in WBC. (b) Association of age (x-axis) 

and number of somatic variants in WBC per Mb (y-axis). The p value was obtained using a 

two-sided Wald test on the coefficients of a zero-inflated Poisson regression with cancer 

status as covariate. The analysis included 47 controls and 124 cancer cases. (c) Bar plot 

showing the percentage of cancer patients (n=114) and control individuals (n=47) harboring 

a mutation with maximal VAF in a given CH gene. * indicates p=0.0115 and ** indicates 

p=0.0008. The p values were obtained using a permutation-based likelihood ratio test to 

assess the significance of the coefficients of a logistic regression with age and smoking 

history as covariates where applicable. (d) Frequency of mutations in CH genes as a function 
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of the number of non-cancer or cancer patients in the given arm and colored according to the 

percentage of truncating mutations including frameshifting indel, nonsense and nonstop 

mutations. Note that some of these patients have ≥1 variant affecting the same canonical CH 

genes (e.g. DNMT3A, TET2, PPM1D, and ASXL1). The sum of the size of the circles can, 

therefore, exceed 100%. In all panels, the cohort consists of n=114 cancer patients and n=47 

non-cancer controls. In (b), only cases with a non-zero number of CH variants are displayed.
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