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Introduction
Protein-protein interactions (PPIs) in plants are an important 
aspect of systems biology.1 It is very important for the investi-
gation of biological processes, including signal transduction,2 
homeostasis control,3 stress responses,4 and plant defense.5 
Many traditional biological methods have been presented for 
exploring the functions and relationships between plant genes 
and proteins, such as yeast 2-hybrid system,6,7 PPIs mapping,8 
tandem affinity purification (TAP),9 and regulatory interac-
tion.10 However, these experimental approaches are time-con-
suming and cost a lot, and the plant PPI pairs collected from 
experiments only cover a small part of the Genome-wide pro-
tein interaction data. Due to this limitation, it is now believed 
that the problem of identifying unknown PPIs on a large scale 
is difficult to be solved entirely by traditional experimental 
methods.11-13

In recent years, various computational approaches have been 
developed to detect protein-protein interactions in plants.14-17 
These approaches can broadly fall into several categories: 
methods based on protein structure, protein domain, genomic 
information, evolutionary relationships, and protein primary 
sequence. Generally, the first 4 methods have a higher predic-
tion accuracy. However, these approaches always require the 
structural details of proteins, such as 3D structural details. 
When the prior knowledge is not available, their drawbacks 
will be exposed. Theoretically, the amino acid sequence of pro-
teins contains all the necessary information for identifying 
PPIs. In addition, with the development of sequencing 

technologies, more sequences information has been discovered. 
Therefore, sequence-based methods have attracted extensive 
attention.18

To date, numerous computational studies have been reported 
to predict PPIs from amino acid sequences. For example, Chen 
et al19 developed a predictive framework named StackPPI. It is 
a stacked ensemble classifier constructed by extremely rand-
omized trees, random forest, and logistic regression algorithms. 
Li et al20 proposed an approach to predict PPIs only using 
sequence information. They converted sequences into Position 
Weight Matrix (PWM) and used Scale-Invariant Feature 
Transform (SIFT) method to extract features. Then PCA 
algorithm is employed to reduce the dimensionality of features. 
Finally, using the Weighted Extreme Learning Machine 
(WELM) classifier to detect PPIs. Khorsand et al21 extracted 
several features from protein sequences and combined them 
with the human PPI network (HPPIN) to detect PPIs between 
Alphainfluenzavirus proteins and human proteins (HI-PPIs). 
Hashemifar et al22 introduced a new framework called DPPI. 
It utilized a deep, Siamese-like convolutional neural network 
combined with data augmentation and random projection to 
identify PPIs from sequence information. Zhang et al23 present 
a neural network-based method named EnsDNN, which used 
local descriptor, autocovariance descriptor, discontinuous local 
descriptor, and multi-scale continuous to represent amino acid 
sequence and detect PPIs. Kulmanov et al24 presented an 
approach named DeepGO, which employed a deep ontology-
aware classifier to predict protein functions and interactions 
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from protein sequence. Sun et al25 used stacked autoencoder 
(SAE) to predict PPIs. Ding et al26 employed a new multi-
variate mutual information (MMI) feature representation 
scheme and combined it with normalized Moreau-Broto 
Autocorrelation to extract features from protein sequence. 
Lastly, these features will be fed to Random Forest for training 
and predicting. Hu and Chan27 present a novel coevolutionary 
feature extraction method, called CoFex, to predict PPIs. The 
coevolutionary features detect by this method are the covaria-
tions found at coevolving positions. Despite these achieve-
ments, there remains significant room for further improvement 
in terms of accuracy.

In this article, we present a novel computational model, 
called DST-RoF, to predict PPIs in plants that only adopt-
ing protein sequences information. It combined discrete sine 
transformation (DST), position-specific scoring matrix 
(PSSM), and rotation forest (RoF) classifier. More specifi-
cally, we first converted the protein primary sequences into 
PSSM to obtain the biological information. Then, the dis-
crete sine transformation (DST) was performed on PSSM to 
extract primary features of different dimensions. Finally, 
these feature vectors were trained by the RoF classifier for 
prediction. When performed DST-RoF on the Arabidopsis, 
Rice, and Maize PPIs datasets, it yielded promising results of 
average accuracy of 82.95%, 88.82%, and 93.70%, respec-
tively. To further verify the prediction performance of our 
approach, we compared DST with some popular feature 
extraction methods. We also compared RoF with k-nearest 
neighbor (KNN), support vector machine (SVM), deep neu-
ral network (DNN), and LightGBM classifier by using the 
same DST descriptors. The comprehensive results indicated 
that DST-RoF is effective and reliable for predicting poten-
tial PPIs in plants.

Materials and Methods
Data source

To evaluate the predictive ability of our method, we applied 
our method on 3 plant PPIs datasets. The first dataset is 
Arabidopsis. We collected it from public PPIs databases 
TAIR,28 BioGRID,29 and IntAct.30 After removing redun-
dant datasets, we selected the remaining 28 110 protein pairs 
as the positive dataset, which contained 7437 Arabidopsis 
proteins.31 For the construction of the negative dataset, we 
used a bipartite graph to formulate a network of plant PPIs,32 
where the nodes denote the plants’ proteins, and the links 
represent the interactions between them. Here, we set the 
Arabidopsis dataset as an example. The whole interactions of 
their connections are 55 308 969 (7437 × 7437) in the cor-
responding bipartite. However, only 28 110 protein pairs had 
been indicated to have the associations. Thus, the possible 
number of negative pairs is 55 280 859 (55 308 969-28 110), 
which is significantly more than the positive samples. To deal 
with this bias problem, we randomly collectedly 28 110 

non-interacting PPIs pairs as the negative samples. Although 
in theory, these negative samples may contain a small count 
of positive pairs. However, given the size of whole PPIs data-
set, the probability of this situation is very small. In this way, 
the whole Arabidopsis dataset is made up of 56 220 protein 
pairs.

Rice and maize are the 2 most important foods in the 
world.33 To further validate the generality of the proposed 
approach, we also performed DST-RoF on the Rice and Maize 
dataset. We collected the 4800 Rice protein pairs from the rice 
protein reference database PRIN34 and agriGO.35 Similarly, we 
assumed that the proteins in different subcellular work com-
partments have no interactions, and finally yielded 4800 non-
interacting protein pairs. Lastly, the Rice dataset consists of 
9600 rice protein pairs. The Maize dataset was gathered from 
PPIM.36 The whole Maize dataset consists of 29 600 maize 
protein pairs (14 800 positive protein pairs and 14 800 negative 
protein pairs).

Representation of plant protein sequence

The position-specific scoring matrix (PSSM)37 was developed 
for detecting distantly related proteins. In this work, we 
employed PSSM to encode the plant protein sequences. Let 
K i L and ji j= = ={ }λ , : 1 1 20    , and each matrix can be 
defined as follows:
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where λi j,  represent the probability that the ith residue 
changed to the jth amino acid.

In our experiment, we used the PSI-BLAST38 to convert 
the Arabidopsis, Rice, and Maize sequence as a matrix. The 
PSI-BLAST is an accurate tool, which was against the data-
base of SwissProt to generate the PSSM. To obtain a highly 
and widely homologous sequence, we select 3 iterations and 
assigned the e-value of PSI-BLAST to be 0.001. Finally, each 
plant protein sequence can be represented as a L×20  matrix, 
L  represents the length of an amino acid sequence and 
20 represents twenty different kinds of amino acids. The 
SwissProt database and PSI-BLAST can be freely obtained 
from http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Feature extraction method

Discrete Sine Transformation (DST)39 is a kind of sinusoidal 
unitary and separable Transform. It plays a key role in the field 
of signal and image processing, not only because of its trans-
forming coding capabilities but also for some other applica-
tions, including adaptive beamforming, signal interpolation, 
and image resizing.40 As it is a separable transform, the 
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2D-DST can be constructed by two 1D-DST. The first 
1D-DST is applied column-wise and the obtaining results will 
be adopted as the input for the second 1D-DST, which is then 
calculated by row-wise. The most common DST definitions 
for 1D sequence of length T  can be described as:
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for v T= −0 1 1, , , . Similarly, the inverse transformation is 
defined as:
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for x T= −0 1 1, , , . For the both equations (2) and (3), the 
α( )v  can be described as:
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Thus, the 2D-DST can be described as:
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for v u T, , , , ,= −0 1 2 1 . α( )v  and α( )u  is defined in equa-
tion (4). Where x  represents the length of 1D sequence, u  
and v  denotes the length and width of input images in 
2D-DST. In this study, f a b( , )  represents the input signal 
matrix and here is the L×20  PSSM. In this way, plant protein 
sequences can be represented by the DST feature descriptors.

Rotation Forest classif ier

Rotation Forest (RoF)41 is a popular ensemble classification 
method, which uses the concept of feature transformation to 
improve the diversity and accuracy of the classifier in the 
ensemble system.42 It applies the Principal component analy-
sis (PCA)43 algorithm to construct a rotational matrix and 
transforms initial variables into new variables. In this way, RoF 
can build independent decision trees. At the same time, the 
PCA algorithm maintains the integrity of the information 
contained in the data while ensuring the diversity of the 
classifiers. The framework of the Rotation Forest can be 
described as follows.

Let a training set η =  { }
=

F Gi j i

R
,

1
 consisting of R  training 

samples, in which Fi  represents the input feature vector and 
Gi  denotes the corresponding class label. Assuming that the 
feature set is randomly split into K  subsets with the same size, 
and RoF has L  decision trees denoted by T T TL1 2, , , , respec-
tively. L  and K  are the 2 parameters that need to be opti-
mized in advance. The training process for a base classifier Ti  
is shown as follows:

(1)	 The feature set F  will be randomly split into K  dis-
joint subsets. As a result, each subset has M n K= /  
number of features.

(2)	 Let βij  represents the jth subsets of features for 
training classifier Ti , and ϕij  denotes the dataset X  
for the features in βij . Employing a new training set 
′ϕij , which is a non-empty subset of classes randomly 

extracted from ϕij , and it accounts for 75% of the 
dataset X . After using the PCA technique on the 
Ti , the coefficients in a matrix Qij  can be generated.

(3) Build a sparse rotation matrix Ri  with the achieved 
coefficients in matrix Qij  as follows:
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The columns Ri  will be rearranged from the new rotation 
matrix Ri

a . Accordingly, the transformed classifier sample 
Ti  is XRi

a . In this way, the classifiers can be trained in 
parallel.

During the prediction process, given a test sample x , let the 
probability of this test sample detected by classifier Ti  into 
class yi , which is expressed as d xRi j i

a
, ( ).  Assign x  is split 

into a class with the largest confidence ω j x( ) . Thus, the class 
of confidence can be calculated according to formula (7).

	 ω j i j i
a

i

L

x
L

d XR j( ) ( ), ,,= =
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  	 (7)

Experimental and Results
Evaluation metrics

In this work, we used the following 4 metrics to access the 
performance of the prediction method, including accuracy 
(ACC.), precision (PR.), sensitivity (Sen.), and Matthews 
Correlation Coefficient (MCC). They can be calculated as:

	 ACC TP TN
TP TN FN FP

. = +
+ + +

	 (8)

	 PR TP
TP FP

. =
+

	 (9)
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	 Sen TP
FN TP
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	 (10)

MCC TN TP FN FP
TP FN TP FP TN FP TN FN
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−

+ + + +
× ×

( )( )( )( )
  (11)

where TP is a true positive, standing for the count of true sam-
ples that identified correctly; FP represents false positive, indi-
cating the number of true non-interacting pairs that correctly 
predicted; TN denotes the true negative, standing for the num-
ber of negative samples that are determined has no interac-
tions; FN is the false negative, indicating the number of true 
samples predicted to be non-interacting pairs incorrectly. 
Moreover, the receiver operating characteristic (ROC)44 curve 
is employed as a measure, and the area under the ROC curve 
(AUC)45 is also calculated to visually demonstrate the predic-
tive capacity of the proposed model.

Selecting the best dimensions

In order to obtain the best prediction results, we tested the 
accuracy of the proposed method in different dimensions. 

From Table 1, it can clearly see that the best dimensions for 
Arabidopsis and Rice are 80 and 120, and the best dimension 
of Maize is 140. We also implemented a series of experiments 
to optimize the parameters of the RoF classifier. As a result, on 
the Arabidopsis dataset, the parameters L and K are set to be 
35 and 22; on the Rice dataset, the parameters L and K are set 
to be 2 and 3, the parameters L and K for the Maize dataset 
were set to be 17 and 15, respectively. Here, L represents the 
number of decision trees and the count of feature subsets is 
denoted by K.

Prediction performance of proposed method

To avoid overfitting of the proposed method, 5-fold cross-
validation (CV)46 was applied to verify the predictive ability of 
DST-RoF on the Arabidopsis, Rice, and Maize datasets. 
Specifically, the whole dataset was randomly split into 5 equal 
subsets, where 4 of them were used as training sets and the 
remaining 1 for testing, so we can conduct 5 experiments in 1 
dataset. The prediction results obtained from the proposed 
approach on the Arabidopsis, Rice, and Maize datasets are 
shown in Tables 2 to 4.

Table 1.  Prediction results of different dimensions on 3 plants dataset. 

Dimensions Datasets ACC. (%) PR. (%) Sen. (%) MCC. (%) AUC

40 Arabidopsis 81.36 ± 0.40 86.71 ± 0.74 74.07 ± 0.76 69.34 ± 0.53 0.8756 ± 0.0028

Rice 84.06 ± 1.09 89.90 ± 1.52 76.74 ± 1.25 72.92 ± 1.51 0.8706 ± 0.0096

Maize 91.82 ± 0.31 94.79 ± 0.38 88.51 ± 0.52 84.95 ± 0.54 0.9546 ± 0.0025

60 Arabidopsis 82.37 ± 0.50 87.80 ± 0.68 75.19 ± 0.71 70.66 ± 0.66 0.8847 ± 0.0026

Rice 85.04 ± 1.06 90.72 ± 0.69 78.07 ± 1.80 74.32 ± 1.53 0.8839 ± 0.0094

Maize 92.43 ± 0.59 95.43 ± 0.39 89.13 ± 1.10 85.98 ± 1.02 0.9583 ± 0.0041

80 Arabidopsis 82.95 ± 0.13 88.21 ± 0.36 76.06 ± 0.34 71.44 ± 0.19 0.8897 ± 0.0028

Rice 87.21 ± 0.56 91.69 ± 1.00 81.83 ± 0.55 77.56 ± 0.83 0.8999 ± 0.0064

Maize 92.93 ± 0.42 95.67 ± 0.33 89.94 ± 0.76 86.84 ± 0.73 0.9621 ± 0.0024

100 Arabidopsis 81.97 ± 0.54 88.87 ± 0.78 73.09 ± 0.62 69.98 ± 0.70 0.8830 ± 0.0035

Rice 87.41 ± 0.92 92.03 ± 1.27 81.88 ± 1.31 77.85 ± 1.41 0.9058 ± 0.0103

Maize 93.38 ± 0.43 95.92 ± 0.43 90.63 ± 1.03 87.62 ± 0.74 0.9630 ± 0.0035

120 Arabidopsis 80.31 ± 0.41 87.36 ± 0.17 70.87 ± 0.90 67.81 ± 0.56 0.8645 ± 0.0036

Rice 88.82 ± 0.58 92.91 ± 0.78 84.08 ± 1.41 80.05 ± 0.92 0.9194 ± 0.0035

Maize 93.60 ± 0.44 96.20 ± 0.58 90.79 ± 0.61 88.00 ± 0.76 0.9647 ± 0.0019

140 Arabidopsis 80.65 ± 0.27 87.62 ± 0.42 71.37 ± 0.46 68.25 ± 0.34 0.8679 ± 0.0026

Rice 87.71 ± 0.95 92.57 ± 1.08 82.01 ± 1.38 78.31 ± 1.45 0.9057 ± 0.0070

Maize 93.70 ± 0.43 96.09 ± 0.31 91.11 ± 0.79 88.18 ± 0.75 0.9666 ± 0.0039
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When applying DST-RoF to the Arabidopsis dataset, we 
achieved high average prediction accuracy (ACC.), precision 
(PR.), sensitivity (Sen.), and MCC of 82.95%, 88.21%,76.06%, 
and 71.44%, with the standard deviation of 0.13%, 0.36%, 
0.34%, and 0.19%, respectively. The ROC curves achieved by 
the proposed approach on the Arabidopsis dataset are shown in 
Figure 1, with the average AUC value and standard deviation 
of 0.8897 and 0.0028, respectively. On the Rice dataset, DST-
RoF obtained average ACC., PR., Sen. and MCC of 88.82%, 
92.91%, 84.08%, and 80.05%, with standard deviation of 
0.58%, 0.78%, 1.41%, and 0.92%, respectively. The ROC 
curves obtained by DST-RoF on the Rice dataset are shown 
in Figure 2, with the average value of AUC and its standard 
deviation are 0.9194 and 0.0035, respectively. When applying 
DST-RoF on the Maize dataset, the average ACC., PR., 
Sen., and MCC were 93.70%, 96.09%, 91.11%, and 88.18%, 

with the standard deviation of 0.43%,0.31%,0.79%, and 
0.75%, respectively. The ROC curves yielded by DST-RoF 
on the Maize dataset are shown in Figure 3, with the average 
value of AUC and standard deviation are 0.9666 and 0.0039, 
respectively.

Comparison with previous studies on the maize 
dataset

Various kinds of computational approaches have been devel-
oped for predicting PPIs in plants. To further verify the predic-
tive power of DST-RoF, we compared it with some existing 
methods on the Maize dataset. Table 5 lists the prediction 
results of the other 4 different methods. It can be observed that 
DST-ROF obtained the best results in accuracy, MCC, and 
AUC values. Although the precision and sensitivity were lower 

Table 2.  The 5-fold CV results yielded from the Arabidopsis dataset by the DST-RoF.

Test set ACC. (%) PR. (%) Sen. (%) MCC. (%) AUC

1 82.87 88.02 76.09 71.35 0.8868

2 82.86 87.67 76.01 71.31 0.8878

3 83.18 88.37 76.54 71.78 0.8891

4 82.91 88.58 75.57 71.35 0.8898

5 82.92 88.40 76.01 71.42 0.8923

Average 82.95 ± 0.13 88.21 ± 0.36 76.06 ± 0.34 71.44 ± 0.19 0.8897 ± 0.0028

Table 3.  The 5-fold CV results yielded from the Rice dataset by the DST-RoF.

Test set ACC. (%) PR. (%) Sen. (%) MCC. (%) AUC

1 88.54 93.69 82.13 79.50 0.9196

2 88.28 92.74 83.54 79.24 0.9158

3 88.80 93.19 83.82 80.02 0.9168

4 88.70 91.66 85.30 79.91 0.9200

5 89.79 93.25 85.61 81.59 0.9248

Average 88.82 ± 0.58 92.91 ± 0.78 84.08 ± 1.41 80.05 ± 0.92 0.9194 ± 0.0035

Table 4.  The 5-fold CV results yielded from the Maize dataset by the DST-RoF.

Test set ACC. (%) PR. (%) Sen. (%) MCC. (%) AUC

1 93.78 96.30 91.12 88.32 0.9645

2 93.66 95.87 91.05 88.09 0.9650

3 94.03 95.72 92.14 88.76 0.9705

4 94.04 96.47 91.30 88.77 0.9707

5 92.99 96.11 89.94 86.95 0.9623

Average 93.70 ± 0.43 96.09 ± 0.31 91.11 ± 0.79 88.18 ± 0.75 0.9666 ± 0.0039
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than some previous methods, it still attained promising results 
of 96.09% and 91.11%. The ACC values yielded by these 
methods are between 79.58% and 89.9%, lower than 93.7%, 

which was achieved by the proposed method. In terms of MCC 
and AUC values, the average increase of our method over the 
best results of the 4 existing methods is 7.59% and 0.26%, 
respectively. These comparison results indicated that DST-
RoF can improve predictive ability. This improvement may 
attribute to the novel feature extraction method and the use of 
the Rotation Forest algorithm which has been indicated to be 
powerful and effective for PPIs prediction.

Comparison with different feature descriptors on 
the rice dataset

In order to verify the superiority of the DST feature extrac-
tion method, we compared it with different feature extraction 
methods in the same RoF classifier. In this part, we employed 
DCT (Discrete Cosine Transform),49 FFT (Fast Fourier 
Transform),50 and HHT (Hilbert-Huang transform)51 to fur-
ther evaluate the prediction performance of DST-RoF. DCT is 
a linear and invertible transformation using in image transfor-
mation. FFT has been widely performed in digital signal pro-
cessing. HHT is a signal decomposition method that employed 
empirical mode decomposition (EMD) to decompose a real-
world signal into pseudo monochromatic waves. The compari-
son results of different feature extraction methods on the Rice 
dataset are summarized in Table 6. We can indicate that DST 
descriptor is better than the other 3 feature extraction meth-
ods. The detailed 5-fold CV results performed by DCT, FFT, 
and HHT algorithm on the Rice dataset are summarized in 
Supplemental Tables S1 to S3.

Comparison with the KNN, SVM, DNN, and 
LightGBM-based method

There are many machine learning algorithms that have been to 
used detect PPIs. In order to further evaluate the prediction 
performance of DST-RoF, we combined the same DST fea-
ture descriptors with k-nearest neighbor (KNN),52 support 
vector machine (SVM),53 deep neural network (DNN),54,55 
and LightGBM56,57 classifier. k-nearest neighbor (KNN) is a 
supervised machine learning method and it is simple and effec-
tive for classification tasks. The main idea of SVM classifier is 
to find a high-dimensional decision plane to solve the classifi-
cation prediction problems. DNN is a deep-learning-based 
method, which is composed of an input layer, multiple hidden 
layers, and an output layer. Recently, it has been widely applied 
to predict PPIs.58-60 LightGBM was introduced by Ke et al57 
that combined the exclusive feature bundling (EFB) and gradi-
ent-based 1-side sampling (GOSS) algorithm.

In this part, we employed the LIBSVM61 tool to train the 
SVM model. In addition, 2 parameters need to be optimized 
when applying the SVM classifier (the penalty c of the model 
and the gamma g of the kernel function). In the experiments of 
Arabidopsis and Rice datasets, we set c = 17, g = 5 and c = 11, 
g = 0.09, respectively. For the Maize dataset, we set c = 7, g = 0.4. 
The KNN classifier needs to choose the number of neighbors 

Figure 3.  The ROC curves achieved by DST-RoF on Maize dataset.

Figure 2.  The ROC curves achieved by DST-RoF on Rice dataset.

Figure 1.  The ROC curves achieved by DST-RoF on Arabidopsis 

dataset.
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k and distance measuring function. Here, we set k to 1 and the 
distance measuring function is set to be L1 for the 3 datasets. 
The DNN classifier that used in this paper consists of 2 hidden 
layers with 48 and 30 neurons. Table 7 list the experimental 
results of KNN, SVM, DNN, LightGBM, and RoF classifiers 
on 3 plant PPIs datasets.

It can be seen from Table 7 that when DST-RoF is used to 
predict the Arabidopsis dataset, high accuracy (82.95%) is 
obtained, which is 8.18%, 7.86%, 18.06%, and 3% higher than 
those of KNN, SVM, DNN, and LightGBM, respectively. On 
the Rice dataset, the accuracy of DST-RoF is 88.82%, which 
is much better than that of the other 4 methods. The 

Table 5.  Comparing DST-RoF with other approaches on the Maize dataset.

Model ACC (%) PR (%) Sen (%) MCC (%) AUC

SIPMA47 89.9 N/A 62.0 68.0 0.964

PPIM36 79.58 96.44 61.44 N/A 0.8636

WSRC + IFFT48 89.12 87.49 91.32 80.59 0.9376

Our method 93.70 96.09 91.11 88.18 0.9666

Abbreviation: N/A, not applicable. 

Table 6.  The results obtained by RoF classifier based on different feature extraction methods on the Rice dataset.

Feature extraction 
methods

ACC. (%) PR. (%) Sen. (%) MCC (%)

DCT 63.40 ± 1.84 91.88 ± 1.00 29.41 ± 3.66 41.53 ± 2.77

FFT 62.92 ± 1.55 90.82 ± 1.78 28.69 ± 2.42 41.02 ± 1.77

HHT 63.68 ± 1.89 91.43 ± 2.01 30.17 ± 4.08 42.07 ± 3.11

Our method 88.82 ± 0.58 92.91 ± 0.78 84.08 ± 1.41 80.05 ± 0.92

Table 7.  Comparing results of RoF with 4 different classifiers on 3 PPIs dataset. 

Dataset Model ACC (%) PR (%) Sen (%) MCC (%) AUC

Arabidopsis KNN 74.77 ± 0.96 73.65 ± 4.55 78.16 ± 5.62 61.94 ± 0.89 0.7459 ± 0.0055

SVM 75.09 ± 0.39 77.24 ± 0.69 71.15 ± 0.65 62.48 ± 0.40 0.8252 ± 0.0050

DNN 64.89 ± 2.15 60.39 ± 2.14 87.49 ± 3.54 33.55 ± 2.62 0.7901 ± 0.0044

LightGBM 79.95 ± 0.28 82.32 ± 0.26 76.29 ± 0.40 60.07 ± 0.56 0.8725 ± 0.0024

RoF 82.95 ± 0.13 88.21 ± 0.36 76.06 ± 0.34 71.44 ± 0.19 0.8891 ± 0.0021

Rice KNN 79.11 ± 1.30 72.63 ± 0.94 87.10 ± 1.56 64.03 ± 1.54 0.7713 ± 0.0143

SVM 77.46 ± 1.53 77.86 ± 1.14 76.79 ± 1.83 65.10 ± 1.65 0.8557 ± 0.0134

DNN 72.55 ± 1.77 66.24 ± 2.21 92.39 ± 2.33 49.23 ± 2.34 0.8695 ± 0.0065

LightGBM 84.34 ± 0.89 84.53 ± 0.93 83.21 ± 1.47 68.70 ± 1.78 0.8935 ± 0.0083

RoF 88.82 ± 0.58 92.91 ± 0.78 84.08 ± 1.41 80.05 ± 0.92 0.9194 ± 0.0025

Maize KNN 86.07 ± 0.59 83.45 ± 2.92 90.26 ± 3.71 75.89 ± 0.91 0.8605 ± 0.0060

SVM 84.24 ± 0.49 86.20 ± 0.56 81.55 ± 1.21 73.41 ± 0.68 0.9136 ± 0.0042

DNN 82.00 ± 1.07 75.16 ± 1.65 93.21 ± 1.02 65.71 ± 1.84 0.9353 ± 0.0051

LightGBM 85.56 ± 0.33 89.02 ± 0.63 81.12 ± 0.81 71.40 ± 0.66 0.9105 ± 0.0087

RoF 93.70 ± 0.43 96.09 ± 0.31 91.11 ± 0.79 88.18 ± 0.75 0.9641 ± 0.0039
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accuracy of KNN, SVM, DNN, and LightGBM on the Rice 
dataset is 9.71%, 11.36%, 16.27%, and 4.48% lower than that 
of the proposed method, respectively. When DST-RoF is 
applied to identify the Maize dataset, the accuracy of the pro-
posed approach is 93.70%, which is 7.63%, 9.46%, 11.7%, and 
8.14% higher than our approach, respectively. When employing 
DST-RoF on the Arabidopsis dataset, its AUC value is 0.8891, 
which is 14.32%, 6.39%, 9.9%, and 1.66% higher than KNN, 
SVM, DNN, and LightGBM, respectively. On the Rice dataset, 
the AUC value of RoF is 0.9194, which is better than the other 
4 algorithms. The AUC values of KNN, SVM, DNN, and 
LightGBM classifier on the Rice dataset are 14.81%, 6.37%, 
4.99%, and 2.59% lower than our method. When performed 
DST-RoF on the Maize dataset, its AUC value is 0.9641, which 
is 10.36%, 5.05%, 2.88%, and 5.36% higher than the other 4 
classifiers. In addition, the higher accuracies and low standard 
deviations further indicated that the combination of RoF clas-
sifier and DST descriptors can significantly improve the per-
formance in plant PPIs prediction. Figure 4a to d reports the 
results yielded by the 5 classifiers on the 3 plant PPIs datasets.

Conclusions
In this paper, we present a novel sequence-based approach 
called DST-RoF, to predict protein-protein interactions (PPIs) 
in plants by combining discrete sine transformation (DST) 

with Rotation Forest (RoF). For obtaining rich evolutionary 
information, we first convert the plant protein sequence into 
Position-Specific Scoring Matrix (PSSM) and then extract 
feature vectors using the DST algorithm. Finally, these features 
are fed into the RoF classifier to determine whether there is an 
interaction between these protein pairs. When performed on 3 
benchmark datasets (Arabidopsis, Rice, and Maize), DST-RoF 
obtained high average accuracies of 82.95%, 88.82%, and 
93.70%, respectively. In order to verify the predictive ability of 
rotation forest, we compared it to state-of-the-art KNN, 
SVM, DNN, and LightGBM classifiers. In addition, we also 
compared DST with some popular feature descriptors. These 
results demonstrated that the presented approach is feasible 
and accurate for predicting potential PPIs in plants. In future 
work, we aim to find more efficient feature descriptors and 
develop a better model to explore the functions of plant 
proteins.
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Dataset
The source codes and datasets explored in this work are 
available at https://github.com/jie-pan111/Prediction-of-PPIs 
-in-plants.

Figure 4.  Performance comparisons of 4 validation metrics of the 5 classifiers: (a) accuracy, (b) precision, (c) sensitivity, and (d) AUC.
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