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Abstract: Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse 
are an enormous public health concern. The etiology of these pathologies is complex, with 
psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic 
neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting 
from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic 
system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug 
discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 
receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the 
contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences 
of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically 
used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will 
discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential 
therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, 
a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important 
to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We 
summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor 
blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders. 
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THE GLUTAMATE SYSTEM IS IMPLICATED IN 
STRESS-RELATED PHYSIOLOGY AND DISORDERS 

 Major depression, anxiety, and drug abuse disorders 
represent the most prevalent stress-related psychiatric 
conditions and are an enormous health concern worldwide 
[1-3]. The etiology of these pathologies is complex, with 
chronic psychosocial stressors being the most acknowledged 
risk factors [1, 2, 4-8]. These factors include continuing 
adverse conditions, such as social decline along with 
poverty, or life events that possess a high degree of chronic 
threat (e.g. medical disabilities), long lasting negative 
emotions and experience of personal loss [5, 7-9]. The 
majority of these types of factors has been demonstrated to 
increase both anxiety- and depression-related behavior, but 
also alcohol and drug abuse [10-13]. Indeed, and not 
surprisingly, there’s a high comorbidity between anxiety and 
depression/mood disorders, with approximately half of the 
patients suffering from major depression also meeting 
criteria for comorbid anxiety [14]. 
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 As disorders of mood and emotion may show a common 
excessive or inappropriate brain excitability within crucial 
brain circuits, the L-glutamate system, which represents the 
primary excitatory neurotransmitter system in emotion and 
cognition circuits, is increasingly considered to play an 
important role in mental disease etiology and persistence. 
Several lines of evidence from human clinical studies link 
dysfunction in the L-glutamate system to the pathogenesis of 
psychiatric disorders [15]. For instance, changes in 
glutamate levels have been found in plasma, cerebrospinal 
fluid (CSF), and in the brain of patients suffering from mood 
and anxiety disorders [16-18]. Interestingly, recent postmortem 
studies showed significant increases in glutamate levels in the 
frontal cortex and dorsolateral prefrontal cortex of depressed 
and bipolar patients, respectively [19, 20]. Furthermore, 
various clinical neuroimaging studies have consistently 
demonstrated volumetric changes in brain regions, in which 
glutamatergic neurons predominate, such as the hippocampus, 
amygdala and several cortical regions [21]. 
 The L-glutamate neurotransmitter system of the emotion 
and cognition circuitry of mammalian brains is composed of 
a large diversity of genetically regulated factors: a group of 
vesicular, glial and synaptic glutamate transporters [22] as 
well as two families of glutamate receptors: ligand-gated 
ionotropic glutamate receptors (iGlu) comprising (2R)-2-
(methylamino)butanedioic acid (NMDA)-, 2-amino-3-(5-
methyl-3-oxo-2,3-dihydro-1,2-oxazol-4-yl)propanoic acid 
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(AMPA)- and (2S,3S,4S)-3-(carboxylatomethyl)-4-(prop-1-
en-2-yl)pyrrolidine-2-carboxylate (kainate, KA)-receptors 
[23-26], and the G protein-coupled metabotropic glutamate 
receptor (mGlu) subtypes -1 to -8 (mGlu1-8, [26-29]). 
Throughout the last three decades, several drug discovery 
efforts were made targeting iGlu receptors, with preclinical 
and clinical data demonstrating NMDA and AMPA 
receptors to be promising targets in controlling cognitive and 
emotional changes observed in stress-related disorders [30-
33]. In this regard, a major breakthrough came from clinical 
studies using the NMDA receptor antagonist ketamine by 
showing clinical efficacy in treatment-resistant depression 
(TRD) and major depressive disorder (MDD) patients. 
Interestingly, ketamine administered intravenously showed 
strong decreases in the Hamilton Depression Rating Scale 
(HDRS) analysis, with an improvement observed 2 h after 
infusion that remained significant for more than 1 week [34, 
35]. However, this iGlu receptor-based strategy is not devoid 
of limitations and risks, as ketamine administration has also 
been shown to be associated with cognitive and dissociative 
adverse effects, which thus limits ketamine’s widespread 
application for the treatment of mood disorders [36, 37]. In 
contrast, therapeutic strategies targeting mGlu receptors 
represent a more subtle alternative in regulating excitatory 
(and possibly inhibitory) neurotransmission and are therefore 
considered to have a more favorable side-effect profile than 
ligand-gated ion channel modulation [38, 39]. Indeed, 
signaling via mGlu receptors is slower and longer lasting 
than via iGlu receptors, allowing fine-tuning of glutamate 
regulation and its cellular responses, which could eventually 
avoid the adverse effects associated with direct modulation 
of iGlu receptors. In addition to that, growing evidence gives 
rise to mGlu-based compounds to be effective in regulating 
iGlu receptor signaling, further emphasizing the modulatory 
potential of mGlu receptors. 

 By summarizing the findings from preclinical and recent 
clinical studies, the present review will illustrate the 
involvement of different mGlu receptor subtypes in the 
pathophysiology of stress-related emotional disorders. Here, 
we especially focus on the role of the different mGlu 
receptors in the development of depressive and anxiety 
disorders and largely neglect their role in somatic disorders 
and substance abuse, allowing us to go more into depth with 
respect to the former two. Moreover, we show that the 
discovery of selective ligands for these receptors created 
potentially new strategies for the therapy of psychiatric 
disorders and their comorbid somatic syndromes. We will 
summarize in detail the growing evidence for mGlu 
receptors to serve as promising molecular targets for the 
treatment of chronic stress-related disorders in man. We will 
first introduce animal models typically used to analyze acute 
and particularly chronic stress conditions on a preclinical 
basis. To this end, we compare different acute and chronic 
stress models and eventually focus on one distinct animal 
model that most appropriately mimics chronic psychosocial 
stress, the CSC model [40, 41]. Applying this preclinically 
validated model, we will also report on recent findings 
obtained by our group and others to provide first evidence for 
a role of mGlu subtypes in chronic psychosocial stress, which 
further emphasizes the importance of this receptor family as 
promising drug targets towards ensuring mental health. 

GLUTAMATE SIGNALING VIA MGLU RECEPTORS 
IN THE CNS 

 The existence of neuromodulatory glutamate receptors, 
namely the mGlu receptors, provides a mechanism by which 
binding of glutamate, in contrast to the fast synaptic 
responses mediated by iGlu receptors, slowly modulates cell 
excitability, synaptic neurotransmission and plasticity; mGlu 
receptors perform this modulation via second messenger 
signaling pathways and their interactions with ion channels 
[26, 42-44]. According to sequence homology, second 
messenger coupling and pharmacological properties, the 
mGlu receptor family is subdivided into three groups. The 
group I members, mGlu1 and mGlu5, are coupled to Gq/11 
proteins and primarily elevate {[(1R,2S,3R,4R,5S,6R)-2,3,5-
trihydroxy-4,6-bis(phosphonooxy)cyclohexyl]oxy}phosphonic 
acid (IP3), diacylglycerol (DAG), and Ca2+

 signal transduction. 
In general, these receptor subtypes function to enhance 
glutamate-mediated postsynaptic excitation [38, 45-49]. In 
contrast, group II (mGlu2 and mGlu3) and group III (mGlu4, 
-6, -7, and -8) receptors inhibit adenylyl cyclase activity and 
other effector proteins via coupling to Gi/o proteins and 
thereby negatively modulate excitatory neurotransmitter 
efflux and neuronal excitability upon activation [38, 50-55]. 
Interestingly, various mGlu receptors are expressed in both 
neurons and glial cells of the central nervous system (CNS), 
as well as in peripheral tissue like the enteric nervous system 
or adrenal gland cells [56]. In neurons, group I receptors 
show predominantly postsynaptic location and modulate cell 
excitability, while group II and III members are mainly 
expressed at the presynapse and are involved in regulating 
neurotransmitter release, mostly inhibiting release [57, 58]. 
As they are members of class C GPCR, all mGlus are 
characterized by a large extracellular N-terminal “Venus 
flytrap domain” (VFTD), which is known to serve as the 
orthosteric ligand binding site and shows abundant 
homology between the different mGlu receptor subtypes. 
The binding site for allosteric modulators of the mGlus is 
located topographically distinct within the transmembrane 
domain [59-64]. As the allosteric binding site has a higher 
level of sequence diversity between the receptor subtypes, 
allosteric ligands typically show greater subtype selectivity 
[65, 66]. Importantly, the widespread distribution of mGlu 
subtypes suggests that these modulatory receptors have the 
ability to participate in a broad array of physiological 
functions throughout the CNS and may represent suitable 
targets for therapeutic intervention in a variety of CNS 
disorders. Thus, the therapeutic potential of the mGlu 
receptors is increasingly receiving attention as possible 
treatment strategies for CNS diseases such as Parkinson’s 
disease (PD), Fragile X syndrome (FXS), schizophrenia, 
addiction, and in particular depression and anxiety-related 
disorders [67-71]. 

Group I mGlu Receptors: Neurobiochemistry and 
Distribution 

 In general, the group I members mGlu1 and mGlu5 
couple to Gq/11 proteins and activate phospholipase C, a 
process that results in the formation of IP3 and DAG (see 
Fig. 1). This classical pathway leads to intracellular Ca2+ 
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mobilization and activation of protein kinase C (PKC). Apart 
from this, group I receptors can also activate a range of 
further downstream effectors, most notably proteins involved 
in synaptic plasticity, such as mitogen-activated protein 
kinase/extracellular receptor kinase (MAPK/ERK) and 
mammalian target of rapamycin (mTOR) [72-74]. With 
respect to their distribution, expression of both mGlu1 and 
mGlu5 primarily overlaps within brain regions implicated in 
mood disorders [36]. However, there are also distinct 
differences, with mGlu1’s expression being abundant in 
cerebellum, olfactory bulb, the CA3 region of the 
hippocampus, in thalamus, dentate gyrus and substantia 
nigra, whereas mGlu5 is highly expressed in telencephalic 
regions, CA1 and CA3 regions of the hippocampus, septum, 
basal ganglia, striatum, amygdala and nucleus accumbens 
[37, 75]. In addition, mGlu5 is also expressed in glial cells 
(see Fig. 1), particularly in astrocytes, where its expression 

has been highlighted with respect to a number of potential 
physiological roles, e.g. neuroprotection [76-80]. 

Group II mGlu Receptors: Neurobiochemistry and 
Distribution 
 In contrast to group I, the group II members mGlu2 and 
mGlu3 are coupled predominantly to Gi/o proteins negatively 
modulating adenylyl cyclase activity and directly regulating 
ion channels and other downstream signaling components 
via the release of the Gβγ subunit. In addition, group II 
mGlus also couple to MAPK and phosphatidyl inositol  
3- (PI3-) kinase pathways which are implicated in synaptic 
plasticity [39, 81, 82]. Both mGlu2 and mGlu3 are 
presynaptically localized in rather preterminal than terminal 
axonal portions, distant from the active zone of 
neurotransmitter release, where they are potentially activated 
by synaptic glutamate spillover [83]. mGlu2 mRNA is 

 

Fig. (1). Schematic representation of mGlu receptors at the synapse. In general, group I mGlu subtypes are localized postsynaptically, 
whereas group II and III receptors are localized mainly in presynaptic locations. While the mGlu7 receptor subtype is localized in the active 
zone, mGlu subtypes 2, 3, 4, and 8 are generally found in perisynaptic locations on the presynapse. Group II and III receptors modulate  
the release of glutamate (right, red circles) or 4-aminobutanoic acid, GABA (left, blue circles). At the postsynaptic terminal, the ionotropic 
(2R)-2-(methylamino)butanedioic acid (NMDA)-, 2-amino-3-(5-methyl-3-oxo-2,3-dihydro-1,2-oxazol-4-yl)propanoic acid (AMPA)- and 
(2S,3S,4S)-3-(carboxylatomethyl)-4-(prop-1-en-2-yl)pyrrolidine-2-carboxylate (kainate, KA)-receptors respond to glutamate with increases 
in intracellular sodium or calcium, promoting cell excitability. Group I mGlus signal via Gq/11 proteins to increase diacylglycerol (DAG) and 
phosphatidylinositol (PI). Importantly, mGlu5 and NMDA receptors are closely linked to each other via Shank, Homer and PSD-95 
(postsynaptic density-95) proteins. Postsynaptic mGlu2/3 and GABAB receptors couple to cAMP inhibition. Instead, GABAA chloride 
channels modulate intracellular chloride levels. Expression of mGlu3 and mGlu5 on glial cells has emerged as another key site for regulation 
of synaptic activity, however, the consequences of receptor activation on these cells and the exact signaling pathways are presently not well 
understood. 
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observed to be highly expressed in pyramidal neurons in the 
enthorhinal and parasubicular cortical regions and in granule 
cells of the dentate gyrus [84, 85]. In contrast, mGlu3 
mRNA is highly expressed in neurons of the cerebral cortex 
and the caudate-putamen and in the granule cells of the 
dentate gyrus [86, 87]. In addition, the mGlu3 receptor 
subtype (see Fig. 1) is also prominently expressed in glial 
cells throughout the whole brain, and its activation provides 
robust neuroprotection in vitro and in vivo [88-91]. 

Group III mGlu Receptors: Neurobiochemistry and 
Distribution 

 Group III represents the largest family of mGlu receptors 
and comprises the subtypes mGlu4, mGlu6, mGlu7, and 
mGlu8. Like group II, group III members are predominantly 
expressed presynaptically (see Fig. 1) [92], where they 
regulate neurotransmitter release [28, 93-97]. By coupling to 
Gi/o proteins, their activation inhibits cAMP formation and 
indirectly affects synaptic transmission and neurotransmitter 
release by modulating membrane Ca2+- and K+-channels [51, 
55, 98]. As with group II mGlu receptors, the group III 
subtypes also couple to other signaling pathways, including 
MAPK and PI3-kinase, providing further complexity to the 
mechanisms by which they regulate synaptic transmission 
[99-101]. Except for the mGlu6 receptor subtype, whose 
expression is restricted to the retina, all other group III 
mGlus are widely expressed throughout the mammalian 
brain and also in peripheral tissue [37, 56]. In detail, in the 
CNS the mGlu4 receptor subtype is highly expressed in the 
cerebellum, the olfactory bulb and thalamus  as well as in the 
hippocampus, the cerebral cortex and basal ganglia in pre- 
and post-synaptical position [92, 102, 103]. In addition, 
widespread peripheral mGlu4 expression has been shown 
also in the pancreas, adrenal glands and gastrointestinal tract 
[104-107]. The mGlu7 receptor is highly localized in the 
presynaptic active zone and abundantly expressed in brain 
regions such as neocortex, hippocampus, amygdala, locus 
coeruleus, thalamus and hypothalamus [108-110]. In the 
periphery, mGlu7 expression has been reported in the 
adrenal glands, the colon and stomach – among other areas 
[111-113]. The mGlu8 receptor is found predominantly in 
the CNS in presynaptic terminals in the olfactory bulb, 
hippocampus, cerebellum and cortical areas [75], but also in 
peripheral tissue such as pancreas and testis [56]. 
Interestingly, general expression levels of mGlu8 receptors 
seem considerably lower than those of mGlu4 and mGlu7 
[39]. 

ESTABLISHED RODENT MODELS FOR THE 
EVALUATION OF STRESS 

 In general, “stress” can defined either as an activation of 
a stress response, a stressful stimulus itself, and/or the 
consequences of a stressful experience [114-119]. Undoubtedly, 
exposure to stress or even trauma (experience or witness of a 
terrifying event and difficulty in coping with it for a long 
time) has been shown to be amongst the predisposing factors 
for developing emotional disorders in man, such as depression 
and anxiety, which are often viewed as manifestations of an 
inability to cope with stress [2, 120, 121]. Albeit the biological 
basis of the stress response is not clearly defined, its 

understanding is essential for a better comprehension of the 
etiology of those disorders. Animal models have turned out 
to be instrumental in this respect and, like in humans, 
animals use coping strategies when exposed to stress. They 
can express both active coping mechanisms manifested by 
aggressive behaviors as well as exploratory activity or 
passive coping manifested by freezing, immobility and 
submission [122]. All these behaviors can be reliably 
measured in different animal models. In the following, 
various animal models are discussed in which the animal’s 
stress response is reflected either upon exposure to acute  
or to chronic stress. Paradigms that employ acute stressor 
exposure include stress-induced hyperthermia (SIH), the 
forced swim test (FST), the tail suspension test (TST), 
elevated plus maze (EPM) and learned helplessness (LH), to 
name a few. On the other hand, chronic mild stress/chronic 
unpredictable stress (CMS/CUS), chronic social defeat stress 
(CSDS) and chronic subordinate colony housing (CSC) 
represent chronic stress models, all of which employ 
relatively long-term exposure to inescapable or uncontrollable 
stress events. 

Assessment of Acute Stress in Rodent Animals 

The SIH Test 

 In general, SIH is known to be a physiological 
phenomenon when a mammalian organism is confronted 
with an either physical or psychological stress situation [123-
127]. In the SIH test, modified from the version originally 
described by Borsini et al. [128], the basal temperature is 
measured rectally (T1), followed by a second rectal 
measurement 15 minutes later (T2). During these 15 minutes 
the temperature usually rises due to physical stress the 
animal is undergoing (handling, rectal measurement). 
Conveniently, potential anxiolytic-like effects of drugs are 
measured by a decrease in the SIH response [125]. Those 
measurements of the body temperature are not dependent on 
the animal’s motoric activity, which makes SIH different 
from other mild stress models/anxiety tests that depend on 
locomotor performance of the animal, for instance the EPM 
or open field tests. 

The FST and TST 

 The FST and TST are the two most widely used 
preclinical screening tests that allow rapid detection of 
substances with potential antidepressant-like activity (good 
predictive validity). In general, both tests are based on the 
same principle, which is the measurement of the duration of 
immobility while rodents are exposed to an acute, short-term 
(minutes) inescapable situation. In the FST, first described 
by Porsolt et al. [129, 130], a mouse or a rat is placed in a 
water-filled cylinder, in which the animal is unable to escape 
from. Following an initial period of escape-oriented 
movements, the animal will eventually display an immobile 
posture, a passive behavior characterized by the absence of 
movements except those necessary to keep the head above 
the water level. By contrast, in the TST, immobility is scored 
while mice are suspended by their tails and, as water is not 
required, this test is not confounded by challenges of 
thermoregulation [131]. In both tests, the immobility is 
typically interpreted as an expression of behavioral despair 
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[132-134], which can be reversed by the acute administration 
of compounds with antidepressant potential. So, testing of 
new substances in these stress models allows a simple and 
rapid screening of potential antidepressant activity by the 
measurement of their acute effect on immobility. However, 
this poses a problem for the model, as antidepressants used 
in depressed humans in the clinics generally require many 
weeks of administration to elevate mood. Nevertheless, both, 
the FST and TST are currently popular models, mostly due 
to their low cost of experiments, their ease of use and their 
reliability across laboratories [127, 135]. 

The EPM Test 

 The EPM represents one of the most widely used anxiety 
models, in which anxiety is typically measured by indices of 
open-arm avoidance and locomotion by the frequency of 
closed-arm entries [136, 137]. In principle, this test exploits 
the balance between the preference of rodents for avoiding 
open exposure to potential predators versus exploration for 
possible rewards. When placed in the center portion of the 
plus-maze and allowed to explore each of the arms freely, 
mice with higher anxiety will show reduced open-arm 
activity and vice versa. This tendency can be, for instance, 
suppressed by anxiolytics and potentiated by anxiogenic 
agents [138]. As short-term exposing of animals to heights 
and bright open spaces demonstrates an acutely stressful 
situation, the EPM can also be used and interpreted as a test 
for mild stressor exposure [139, 140]. 

The LH Model 

 The LH model can be basically viewed as analogous to 
the abovementioned tests, with the difference that it involves 
a series of stressors over a few hours or even days [141]. 
Following an uncontrollable stressor such as exposure to 
inescapable electric foot shocks, animals eventually will 
either display increased escape latency or completely fail to 
escape from a subsequent situation in which escape is 
possible [142-144]. Importantly, the escape deficits can be 
reversed by a variety of antidepressants [145]. Following one 
or more sessions of inescapable shock, animals have been 
shown to develop persistent changes that are reminiscent of 
depression, including weight loss, alterations in sleep pattern, 
hypothalamic-pituitary-adrenal (HPA) axis activity and loss 
of spines in hippocampal regions [131, 146, 147]. The 
attractiveness of LH is that the model is based on the 
consideration that cognitive functions (e.g. learning) are 
linked to other behavioral outcomes (e.g., neurovegetative 
modalities), and thus, this model helps to provide a 
reasonably integrated and broad picture of depressive 
symptomatology that are analogous to the human situation. 
However, the major drawback of the model is that most  
of the depression-like symptomatology does not persist 
beyond 2-3 days following cessation of the uncontrollable 
shock. Moreover, another limitation is – in contrast to  
the FST and TST - the difficulty to replicate between 
laboratories, particularly in mice. Until today, these acute 
stress models clearly represent the first line of behavioral 
tests used to rapidly screen putative antidepressant and 
anxiolytic compounds and to phenotype transgenic animals. 
Even though direct links to emotional disorders in man are 
obviously weak due to utilizing only acute stressors and 

testing only acute antidepressant/anxiolytic responses, these 
acute stress models have helped enormously to reveal 
important molecular players within the CNS emotion 
circuitry [148-151]. 

Chronic Mild Stress (CMS), Chronic Social Defeat Stress 
(CSDS) and Chronic Subordinate Colony Housing (CSC) 

 While acute stress paradigms are used broadly for their 
ease, automation potential, and rapid phenotyping abilities, 
they offer singular readouts that often cannot be unambiguously 
interpreted. For instance, increased immobility in the FST is 
often interpreted as an expression of despair. However, it can 
also be understood as a successful and adaptive behavioral 
response that functions to conserve energy [152]. Today’s 
chronic stress models are distinguished by their remarkable 
ability to simultaneously produce a set of behavioral alterations 
with strong face validity for depression and anxiety disorders 
(behavioral manifestations that should be similar to the 
symptoms observed in affected humans). Based on the clinical 
evidence that chronic stress significantly increases pathogenesis 
of affective diseases, these stress models are potentially of 
high value to better understand the underlying physiological 
mechanisms [41, 148]. Basically, they are composed of 
repeated and/or permanent applications of an uncontrollable 
and unpredictable stressor that is associated with quantifiable 
molecular, behavioral and physiological changes. 

The CMS Model 

 In the CMS model, also referred to as chronic 
unpredictable stress (CUS) paradigm [153, 154], rodents are 
exposed to a variety of relatively mild, mostly physical, 
stressors such as restraint, isolation housing, disruption of 
light-dark cycles, intermittently for relatively prolonged time 
periods (e.g. several weeks). Typically, a variety of stressors 
is used within the CMS schedule in order to prevent or delay 
habituation, which can occur rapidly when a single stressor 
is presented repeatedly [153, 154]. In addition to a reduction 
in sucrose preference [155], CMS has also been shown to 
result in a number of other changes that are difficult to 
objectively quantify, such as grooming deficits and changes 
in aggressive and sexual behavior. Interestingly, however, 
many of these changes can be reversed by chronic 
antidepressants applied either during the stress procedure or 
as a post-stress treatment [156, 157]. However, as the CMS 
model only employs physical stressors and often lacks cross-
laboratory reliability, other approaches to develop chronic 
psychosocial stress-based models, more reminiscent of 
human depression, have emerged in recent years. 

The CSDS Model 

 The stress models described above are based exclusively 
on physical stressors, and thus, are lacking the relevance of 
mimicking most important situations that human beings 
encounter in everyday life – i.e. social interactions [158-
161]. As opposed to CMS, the CSDS model clearly includes 
an important social stress component, and thus displays 
remarkable strength as it relies on innate social behavior. 
The model is based on the principle that two animals interact 
socially and physically such that one achieves dominant 
status and the other becomes subordinate. Much of the 
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preclinical aggression research has been conducted so far in 
territorial male resident rats or mice confronting an intruder 
conspecific. As a consequence of territoriality, the resident 
will attack unfamiliar males intruding in its home cage. 
However, there are many versions of CSDS for mice and 
rats. For example, a typical procedure in mice lasts for 21 
days where the experimental animal is (repeatedly) exposed 
to 10 intermittent bouts (5-10 min, once daily; see Fig. 2 A) 
of social defeat. Here, the experimental mice are forced  
to intrude into cage space occupied by a larger mouse of a 
more aggressive strain, leading to subordination of the 
experimental mice. In addition to the short-time physical 
stress during direct contact with the dominant male, the 
experimental mice are exposed to additional psychological 
stress in form of prolonged “not physical” contact by 

housing them for 24 h in the same cage as the residents, but 
with a transparent partition allowing only sensory interaction 
[162, 163]. Other laboratories expose the experimental mice 
also daily to 10 min of physical interaction with a resident 
followed by 24 h of sensory contact, but only for 10 
consecutive days [164-166]. For rats there are protocols 
where the experimental animals are placed in a resident’s 
home cage for 5 min physical interaction, followed by 10 
min of sensory threat for 4 consecutive days [167, 168], or 
where the intruders are placed in the cage of the resident for 
intermittent physical interaction until submission, followed 
by 30 min of sensory threat for 1 to 3 consecutive days [169-
171]. Although there are many more versions and 
mentioning all of them would go beyond the scope of this 
article, following repeated exposure to a dominant encounter, 

 

Fig. (2). Schematic illustration of the experimental design of the chronic social defeat stress (CSDS) (A) and the chronic subordinate 
colony housing (CSC) (B) paradigms in mice. (A) In this CSDS procedure, which lasts for 21 days, experimental animals are introduced to 
a larger male resident mouse until defeat is achieved. Subsequently, the animals spend 24 h in the same cage, only divided by a holed metal 
or transparent partition, which only allows sensory but no physical contact. Stressed animals are exposed to a new resident every day to 
minimize a potential habituation effect. Control mice remain single-housed and unstressed in their home cages for the course of the 
experiment. Typically, during the last week of the paradigm, all behavioral tests are performed (OF, EPM test, acute stress response test; see 
[162, 163]). (B) In the CSC paradigm, male mice weighing 19-21 g are housed singly for one week before they are assigned to the single-
housed control (SHC) or the CSC group in a weight-matched manner. In order to induce chronic psychosocial stress, CSC mice are housed 
together with a larger dominant male for 19 consecutive days. In detail, four experimental CSC mice are put into the homecage of resident 
(1) on day 1 of CSC, resulting in immediate subordination of the four intruder CSC mice. The latter are then housed together with this 
dominant resident (1) for 7 consecutive days. On day 8, and again on day 15 of CSC, the four experimental CSC mice are transferred into the 
homecages of resident (2) (day 8) and resident (3) (day 15), respectively, in order to avoid habituation. On day 19, CSC and SHC mice are 
usually tested for their innate or physiological anxiety and on day 20 immunological and physiological parameter are assessed. 
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independent of the protocol used, animals reliably show 
decreased sucrose preference, indicative of an anhedonia-like 
state, and show reduced social interaction/sociability, as well 
as alterations in HPA axis and autonomic function [172-
174]. Importantly, many of these changes can be reversed by 
chronic, but not acute, antidepressant drug administration, 
illustrating pharmacological validity of this stress model 
[175-177]. 

The CSC Model 

 The CSC paradigm was established by Reber et al. [40] 
and represents a chronic psychosocial stress model with 
similarities to the CSDS model, but with the difference of 
applying psychosocial stress not only intermittently but 
permanently over a period of 19 days (24 h per day; see  
Fig. 2 B). This chronic stress model is a very reliable animal 
model in combining chronic, psychological and social 
aspects of stress. In doing so, and as compared to the other 
stress models of above, it more comprehensively mimics the 
type of health compromising stressors that humans are exposed 
to. Typically, four male mice are housed together with a 
larger male resident in its homecage for 19 consecutive days. 
This results in immediate subordination of the four intruder 
CSC mice, and a hierarchy within each colony is formed, in 
which the resident clearly obtains the dominant position. To 
avoid habituation to the dominant mouse, the four CSC mice 
are transferred into the homecage of a novel larger male 
resident mouse on days 8 and 15. Single-housed (SHC) mice 
that remain undisturbed serve as unstressed controls [178]. 
Importantly, studies by the group of Reber clearly demonstrate 
that CSC stressor exposure leads to the development of 
affective, immunological and somatic changes and also 
results in reduced glucocorticoid (GC) signaling (see Fig. 3, 
[41]), and thus provides a powerful experimental tool to 
study the mechanisms underlying several relevant stress-
induced conditions. In detail, is has been shown that exposure 
to CSC alters several parameters indicative of chronic stress, 
including reduced body weight gain, decreased thymus 
weight and increased pituitary and adrenal weight [40, 140]. 
The latter finding is accompanied by a reduced responsiveness 
of adrenal explants to adrenocorticotropic hormone (ACTH) 
challenge in vitro. Importantly, adrenal ACTH sensitivity 
seems to be not only diminished under in vitro conditions,  
as CSC mice show unaffected basal morning plasma 
corticosterone (CORT) despite elevated plasma ACTH levels 
in comparison with SHC mice. Moreover, CSC mice show 
basal evening hypocorticism, suggested by decreased basal 
evening plasma CORT levels compared with SHC mice [40, 
140, 179]. The decline in GC signaling is further amplified 
by a reduced GC sensitivity seen in lipopolysaccharide-
stimulated splenocytes [40] and plate-bound anti-CD3-
stimulated T helper (Th) 2 cells from peripheral lymph nodes 
[180] of 19-day CSC compared with SHC mice. These are 
interesting findings, as an insufficient GC signaling can be 
observed in numerous affective and somatic disorders in man 
following chronic psychosocial stressor exposure [181-184]. 
In addition, CSC-stressed mice develop a spontaneous 
colonic inflammation, indicated by an increased secretion of 
proinflammatory cytokines from mesenteric lymph node 
cells in vitro and an increased histological damage score of 
colonic tissue [40, 185, 186]. Moreover, CSC exposure was 

also shown to increase the risk for the development of 
inflammation-induced colorectal cancer (CRC), indicated by 
the development of macroscopic suspect lesions, as well as a 
trend towards an increased incidence of low- and/or high-
grade colonic dysplasia [186]. Interestingly, in humans, 
inflammatory bowel disease (IBD) has been shown to be a 
consequence of chronic life stress and colorectal cancer 
poses one of the most serious complications in these patients 
[187-191]. Furthermore, IBD was also shown to be comorbid 
in patients suffering from depression [192-194]. These 
findings further indicate that the CSC paradigm is an 
appropriate model of chronic psychosocial stress with high 
construct validity (i.e. high disease relevance of methods by 
which the animal model is constructed; [141]). 

 With respect to their behavior, CSC mice show reduced 
open-arm activity on the EPM and reduced center-activity in 
an open field after 19 days of CSC, further illustrating that 
chronic stressor exposure increases anxiety-related behavior, 
a phenomenon that co-occurs with depression in humans 
[14]. Moreover, CSC mice spend a similar time investigating 
an empty cage and a cage with an unknown conspecific 
during the social preference/avoidance test (SPAT) on day 
20 of CSC, suggesting a lack of social preference [195]. In 
addition, CSC mice also show an increased ethanol (EtOH) 
preference and total intake, which was already shown 
following 14 days of CSC exposure [196]. Interestingly, in 
humans chronic psychosocial stress represents a strong risk 
factor for the development of substance abuse such as 
alcoholism, which is often co-morbid with anxiety disorders 
[197-199]. 

 Taken together, the CSC paradigm represents an animal 
model that utilizes a chronic psychosocial stress component 
and results in decreased GC signaling and concomitant 
affective and somatic pathologies, in particular the  
stress-induced anxiogenic phenotype and the systemic 
proinflammatory phenotypes. Thus, the CSC model is likely 
to have more translational value than other stress models in 
animals, e.g. when compared to the CMS or CSDS model, 
which lack either social or truly chronic components. Most 
interestingly, CSC exposure is associated with hypocorticism, 
a phenomenon that is not apparent after CMS or CSDS, but 
occurs in human mood disorders. In contrast, CMS and 
CSDS are associated with greatly elevated plasma CORT 
levels (hypercorticism). Interestingly, in addition to mice, the 
CSC paradigm was also established in rats [200]. However, 
to date the effects of CSC exposure in rats are not that well 
characterized as compared to mice. Overall, the CSC 
paradigm is a promising animal model that makes it also 
possible to gain further insight into how stress-induced 
pathophysiological changes (e.g. HPA axis alterations) 
eventually lead to affective and somatic disorders. 

 Taken together, the rodent models explained above can 
be performed in mice as well as in rats and which species to 
use probably depends on the particular research question  
to be answered. However, in case of the CSC model,  
mice will be the choice for future projects to gain more 
knowledge about the role of the brain glutamatergic 
neurotransmitter system in the development of affective and 
somatic changes, as the effects of chronic psychosocial 
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stressor exposure using this model are much better 
characterized and robust in mice. Other advantages of mouse 
models are lower costs and less space necessary. Moreover, 
mouse models also offer the possibility to use transgenic 
animals, e.g. knockout mice, in order to analyze the underlying 
mechanisms. 

Dysregulation of Brain mGlu Receptor Gene Expression 
after CSC Stressor Exposure and in Related Models 

 Recent findings clearly have sparked interest in 
neurobiological systems that were previously little explored 
in mood disorders, such as the glutamatergic system. In 
particular the clinical findings with ketamine have inspired 
new lines of preclinical research to explore the glutamate 
system in more detail, including modulatory receptors that 
could be targeted to achieve better side-effect profiles [201], 
and to investigate the underlying neural mechanisms. To our 
knowledge, only few studies have dealt with chronic stress 
and the involvement of mGlu receptors in the manifestation 
of stress-induced changes. But some promising results have 
already emerged. Wieronska et al. [202] addressed changes 
of mGlu5 expression in response to CMS exposure and 
reported an increase of mGlu5 protein expression in CA1 
and a decrease in CA3 of the rat hippocampus. Furthermore, 
O’Connor and co-workers [203] found no changes of 

hippocampal group III mGlu receptor mRNA expression 
upon either chronic immobilization stress or chronic social 
defeat and concluded that hippocampal group III mGlu 
receptors may not be involved in the manifestation of 
behavioral and physiological changes observed in these 
models. However, early-life stress, which was induced by 
maternal separation, specifically reduced the expression of 
mGlu4 mRNA in the hippocampus, whereas mGlu7 and 
mGlu8 mRNA remained unaffected [204]. Taken together, 
they could demonstrate that there were only very few, but 
selective changes to group III mGlu receptors under early-
life stress conditions. These findings ask for further research 
efforts to study mGlu receptors as potentially important 
players in chronic stress-induced pathology. 

 To extend and specify the range of these findings, we 
evaluated the molecular changes that occur within the mGlu 
receptor system upon chronic psychosocial stressor exposure 
in mice using the CSC animal model. We investigated the 
consequences of chronic psychosocial stress on gene 
expression of distinct mGlu receptor subtypes in several 
brain regions. Indeed, we found that mGlu7 mRNA was 
downregulated in the prefrontal cortex (PFC) of CSC mice 
(see Fig. 4), suggesting that the mGlu7 receptor subtype is 
potentially involved in PFC-mediated emotional and/or 
cognitive processes that could be altered by CSC exposure. It 

 

Fig. (3). Summary of the main effects of chronic psychosocial stress in male mice induced by 19 days of chronic subordinate colony 
housing (CSC) on behavioral, immunological and physiological parameters. Compared with single-housed controls (SHC), CSC mice 
show affective and somatic changes and develop decreased glucocorticoid (GC) signaling. Thus, the CSC paradigm represents a promising 
animal model to mimic diseases in which decreased GC signaling is a core feature and to unravel the underlying mechanisms of stress-
related pathology in humans. Abbreviations: EPM, elevated plus-maze; LDB, light-dark box; EPF, elevated platform; OF, open field; SPAT, 
social preference/avoidance test; mes LN cells, mesenterial lymph node cells; ACTH, adrenocorticotropic hormone; CORT, corticosterone; 
LPS, lipopolysaccharide; Th2, T helper 2; adapted from [41]. 
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is interesting to note that mGlu7 receptors are also located on 
GABAergic neurons, on which they negatively regulate 
release of this inhibitory neurotransmitter. It is possible that 
the stress-induced reduction of mGlu7 mRNA levels 
potentially lead to enhanced excitatory transmission in the 
PFC, which may be part of the pathology observed in 
depression disorders [205]. Furthermore, we showed that 
mGlu5 mRNA was upregulated in the hypothalamus (see 
Fig. 4), possibly suggesting that the mGlu5 receptor subtype 
is rather associated with mediating functionalities of the 
HPA axis’ responses to CSC, which is consistent with 
mGlu5’s postulated roles in physiological stress-regulation 
systems in mammals [206-209]. Interestingly, no CSC 
stress-induced changes were found in either mGlu2 or 
mGlu3 mRNA in neither brain region investigated (PFC, 
hypothalamus, or hippocampus; see Fig. 4), possibly indicating 
that group II mGlu receptors may play a less prominent role 
in CSC-induced pathophysiology. Overall, the results discussed 
here represent very early evidence towards a role of mGlu 
receptor subtypes in chronic stress-induced pathophysiology. 
At least, our data suggest that there is possibly a controlling 
role of the mGlu7 receptor in the PFC and of the mGlu5 
receptor subtype in the hypothalamus, indicating that these 
receptor subtypes should be pursued as further research 
topics in chronic stress-induced conditions. Of course, much 
future work is required to fully elucidate the roles these 

receptor subtypes play in chronic stress-induced behavioral 
and physiological symptomatology (see below). 

CURRENT KNOWLEDGE OF MGLU RECEPTOR 
GENETIC AND PHARMACOLOGICAL MODULATION 
IN ACUTE AND CHRONIC STRESS 

 A possible aim of pharmacological intervention targeting 
glutamate neurotransmission in stress-related disorders  
could be that excessive glutamate exposure in specific brain 
areas should be blocked, whereas normal glutamatergic 
neurotransmission should be kept unaffected. New ways of 
fine-tuning the glutamatergic system are now emerging via 
the pharmacological modulation of mGlu receptor subtypes 
[36, 37, 58, 211]. The wide functional diversity and distinct 
distribution patterns of mGlu receptor subtypes provide an 
opportunity for selectively targeting individual mGlu 
subtypes in order to attempt the development of novel 
treatment strategies for emotional disorders. A large body of 
preclinical studies suggests that ligands for specific mGlu 
subtypes have potential in multiple mood disorders, 
including anxiety disorders and depression (Table 1). More 
recently, data from clinical studies with mGlu subtype-
selective ligands are beginning to emerge and are providing 
remarkable clinical efficacy of some of these compounds, 
which we discuss below. 

 

Fig. (4). Changes in relative gene expression of distinct mGlu receptors in three different brain regions (PFC, hypothalamus and 
hippocampus) that occur in response to 19 days of chronic subordinate colony housing (CSC). As a representative for group I, mGlu5 
mRNA, for group II, mGlu2 and mGlu3 mRNA, and for group III, mGlu7 mRNA regulation was assessed relative to expression of the 
housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in comparison to respective SHC mice (set at 100%). Total RNA 
was isolated using Trizol reagent according to the manufacturer's instructions (Peqlab, Erlangen, Germany). RNA was re-suspended in 20 µL 
of RNase free water and its concentration and quality were analyzed spectrophotometrically (NanoDrop Spectrophotometer, Peqlab, 
Erlangen, Germany). cDNA was prepared from 500 ng of total RNA in a 20 µL final reverse transcription reaction mixture (using 
Superscript III; Invitrogen, Karlsruhe, Germany).  Quantitative PCR was performed using the SYBR® Green Master Mix on an ABI 7500 
Fast Sequence Detection System (Applied Biosystems, Darmstadt, Germany), with a thermocycler profile of 95°C (20 sec), followed by 40 
cycles of 95°C (3 sec), 60°C (30 sec). Amplification of mGlu2, mGlu3, mGlu5 and mGlu7 receptor cDNA was carried out employing the following 
primers. mGlu2-forward: 5’-CGTGTCCGTCAGCCTCAGT-3’, mGlu2-reverse: 5’-TGGCTCACCACGACGTTCTTCTG-3’; mGlu3-forward: 
5’-TGTGATGGTGTCTGTGTGGCT-3’, mGlu3-reverse: 5’-GTTTCCCGCTTCTCTGGCA-3’; mGlu5-forward: 5’-TGTGTACCTTCTGCC 
TCATTGC-3’, mGlu5-reverse: 5’-GGAGAGAGACCGATGCCAATT-3’; mGlu7-forward: 5’-GCAGAAGGAGCCATCACCAT-3’, mGlu7-
reverse: 5’-GTCCGGGATGTGAAGTAAGCA-3’; GAPDH-forward: 5’-TGTGTCCGTCGTGGATCTGA-3’, GAPDH-reverse: 5’-CCTGC 
TTCACCACCTTCTTGA-3’. Samples were prepared in triplicates and changes in gene expression were determined with the 2-ΔΔCT method 
[210]. Arrows indicate either no change ( ), downregulation ( ) or upregulation ( ) of relative gene expression of respective mGlu 
mRNA levels in CSC compared to SHC mice. Student’s t-test, following p-value determination: (1); p = 0.07, increase from 100% (SHC) to 
approximately 180% (CSC). (2); p < 0.03, decrease from 100% (SHC) to approximately 50% (CSC). 



Role of mGlu Receptors in Stress Current Neuropharmacology, 2016, Vol. 14, No. 5    523 

Role of Group I mGlu Receptors in the Physiology of 
Stress 

 Group I mGlu receptors are broadly distributed within 
the peripheral and central nervous system and are expressed 
at post- and perisynaptic sites in several areas implicated in 
anxiety and emotional processing, and there is evidence for 
the involvement of these receptors in the pathophysiology of 
different emotional and somatic disorders. For example, 
human post-mortem studies reported specific reductions of 
total mGlu5 protein and mRNA levels in the lateral 
cerebellum [212, 213] and prefrontal cortex [214] in MDD 
patients [215]. Furthermore, a study by Wieronska et al. 
[202] showed an increase of mGlu5 expression in CA1 and a 
decrease in CA3 of rat hippocampus in response to CMS, an 
animal model showing symptoms related to human 
depression, supporting the involvement of mGlu5 in the 
pathophysiology of mood disorders in response to chronic 
stress. 

 Very interestingly, the mGlu5 receptor subtype is known 
to functionally interact with NMDA receptors by indirect 
physical and positive feedback linkage via a variety of 
intracellular mechanisms, including Homer, Shank and PSD-
95 proteins [163, 216-221] (see Fig. 1). This close functional 
association and positive reciprocal regulation between 
mGlu5 and NMDA makes the mGlu5 receptor subtype an 
attractive target for the indirect modulation of NMDA 
receptor function, which is known to be dysregulated in a 
variety of neuropsychiatric pathologies including mood 
disorders [222-225]. Importantly, as pharmacological 
activation of mGlu5 is shown to cause neurotoxicity  
and neurodegeneration [80, 226, 227], the activating mode of 
action will not be considered in the context of  
mGlu5’s potential therapeutic application. In contrast, 
pharmacological blockade of mGlu5 function has emerged to 
be one of the most promising and quite advanced therapeutic 
strategies for the treatment of psychiatric conditions [163, 
228-233]. This approach has demonstrated anti-stress 
efficacy in a number of animal and human studies. For 
instance, 3-(3-chlorophenyl)-1-(1-methyl-4-oxo-5H-imidazol-
2-yl)urea (fenobam), a compound shown to be a clinically 
active anxiolytic already in the early 1980s [234, 235], was 
more recently described to exert its pharmacological effects 
via inverse receptor agonist activity at the mGlu5 receptor 
[236]. Moreover, allosteric blockade of mGlu5 with the 
prototypical allosteric receptor antagonist 2-methyl-6-(2-
phenylethynyl)pyridine (MPEP) showed broad anxiolytic 
and antidepressant-like profiles in acute rodent animal 
models [237-241]. Li et al. [239] reported that administration 
of MPEP and the tricyclic antidepressant (TCA) imipramine 
resulted in a synergistic antidepressant-like effect in the FST 
and that this effect was even persistent after sub-chronic 
treatment (once daily, for five consecutive days). A further 
study revealed that MPEP remained equally active in 
reducing the SIH response in mice after sub-chronic dosing 
for five consecutive days, with comparable efficacy as after 
acute administration [242]. Those studies provided the first 
evidence that longer-term administration of mGlu5 blockers 
may have the potential to ameliorate stress-induced 
pathophysiology. Moreover, MPEP’s anxiolytic activity 
could be confirmed in a battery of further acute animal 

models, such as the EPM, Vogel conflict- and marble 
burying-tests and the fear-potentiated startle paradigm [237, 
238, 243-245]. Another selective mGlu5 receptor antagonist, 
3-[2-(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), 
turned out to be a good pharmacological tool to confirm anti-
stress activity in several behavioral models [72, 246-250]. 
MTEP showed activity in the FST, TST and olfactory 
bulbectomy (OB) model [251, 252]. In the latter, repeated 
administration of MTEP attenuated the OB-related 
hyperactivity of rats in the open field test, a finding that 
resembles the action of typical antidepressants in the OB 
model of depression [252]. Obviously, both MPEP and 
MTEP have been studied in a wide range of preclinical 
animal models for different therapeutic indications, however, 
both compounds are not suitable drug candidates for clinical 
development due to pharmacokinetic constraints [253]. 
Beside the above mentioned, acute administration of the 
recently discovered mGlu5-selective negative allosteric 
modulator (NAM) 2-{2-[2-(difluoromethoxy)-5-({5H,6H,7H-
pyrrolo[3,4-b]pyridin-6-yl}carbonyl)phenyl]ethynyl}pyridine 
(GRN-529) showed dose-dependent efficacy across a broad 
battery of animal models including the FST and TST, in 
anxiety tests (attenuation of SIH response and increased 
punished crossings in the four plate test) and in pain models 
(reversal of hyperalgesia due to sciatic nerve ligation or 
inflammation) [254]. Another novel and highly selective 
mGlu5 receptor antagonist, methyl (3aR,4S,7aR)-4-hydroxy-
4-[2-(3-methylphenyl)ethynyl]-3,3a,5,6,7,7a-hexahydro-2H-
indole-1-carboxylate (AFQ056, mavoglurant), showed an 
improved pharmacokinetic profile in rodents and better 
efficacy in SIH tests in mice as compared to the prototypic 
mGlu5 antagonist MPEP [255]. Interestingly, efficacy of 
AFQ056 has been reported also in L-dopa induced 
dyskinesia in Parkinson's disease and Fragile X syndrome in 
proof-of-principle clinical studies [255-258]. The mGlu5-
selective NAM 2-chloro-4-{[1-(4-fluorophenyl)-2,5-dimethyl-
1H-imidazol-4-yl]ethynyl}pyridine (basimglurant) turned 
out to be very promising in a phase II clinical study by 
demonstrating efficacy and safety as an adjunctive therapy in 
MDD patients using multiple read-outs. For instance, this 
study showed that a 6-week double-blind treatment of 
basimglurant versus placebo reached significant improvements 
in patient-rated Montgomery-Asberg depression rating scale 
(MADRS) results, in remission assessment and further 
ratings [231, 233, 259]. The consistency of the efficacy 
findings combined with good tolerability warrants further 
investigation with basimglurant in depressive disorders. 
Furthermore, the recently discovered mGlu5 NAM 2-chloro-
4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-
4-yl]ethynyl]pyridine (CTEP), a compound chemically 
derived from basimglurant and optimized for utility in rodent 
studies, was shown to be active in acute rodent models, such 
as the SIH in mice and the Vogel conflict test in rats [228]. 
CTEP is the first reported mGlu5 inhibitor with both, very 
long half-life of approximately 18 h and high oral 
bioavailability in rodents, classifying as useful 
pharmacological tool for long-term treatment. CTEP thus 
allows the exploration of the full therapeutic potential of 
mGlu5 inhibition for indications requiring chronic receptor 
blockade. Indeed, Michalon et al. [229, 260] found out that 
chronic treatment with CTEP in a mouse model of Fragile X 
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rescued learning and memory deficits, elevated locomotor 
activity and increased spine density, suggesting that this 
mGlu5 NAM treatment may be effective in correcting 
multiple neurological symptoms [233]. Furthermore, a more 
recent study reported that chronic administration of CTEP 
was able to improve various behavioral alterations induced 
by chronic social defeat stress, such as reduced locomotion 
and an anhedonic phenotype [163]. Importantly, studies 
using mGlu5-deficient mice elegantly support the functional 
roles of mGlu5 in anxiety- and depression-related behaviors 
[239, 245]. 

 One can speculate that these beneficial effects of mGlu5 
blockade may result from a combination of different 
neurophysiological mechanism. First, disruption of thalamic-
lateral amygdala long-term potentiation is observed with 
intra-amygdala injection of MPEP [261], which is a likely 
mechanism for the reduced acquisition of learned fear 
observed with MPEP in conditioned anxiety paradigms [261, 
262]. Second, interference with hippocampal mGlu5 function 
and possibly dysregulation of expression by allosteric mGlu5 
antagonists are also likely to contribute to anxiolytic activity 
[58, 263]. Third, mGlu5 blockade is known to interfere with 
functional parameters of the HPA axis, which represents the 
principal stress-response and -regulation system in mammals 
[206-208, 264]. Taken together, the reported findings 
substantiate the hypothesis that mGlu5 receptor antagonism 
is associated with anxiolytic and antidepressant-like effects 
and that this approach represents one of the most promising 
and advanced mGlu receptor strategies towards future 
treatment of chronic stress-related disabilities such as mood 
disorders. 

 Modulation of the second group I receptor, mGlu1, has 
originally been considered also as an attractive target for the 
treatment of anxiety. For instance, anxiolytic-like activities 
of mGlu1 receptor antagonists have been documented in 
various animal models, including, for example, the Vogel 
conflict- and SIH test [265-269]. Several other studies have 
also illustrated effects of mGlu1 receptor antagonists on fear 
memory [270-273]. However, as compared to mGlu5, the 
mGlu1 receptor subtype has been evaluated much less in the 
context of emotion, stress physiology and behavior, which 
may be due to reports on cognitive dysfunctions in mice 
lacking mGlu1 [274-276] or potentially induced by mGlu1-
selective antagonist [266, 273, 277]. 

Role of Group II mGlu Receptors in the Physiology of 
Stress 

 Group II mGlu subtypes show localization in key 
forebrain and limbic areas, such as the PFC, thalamus, 
hippocampus, and amygdala [278] and their ability to fine-
tune glutamatergic neurotransmission makes these receptors 
attractive targets for the development of improved 
medication for emotional disorders. Recent studies showed 
that hippocampal mGlu2/3 receptor expression is reduced in 
the mouse OB model of depression and spontaneously 
depressed Flinders-sensitive line (FSL) rats [279, 280]. 
Moreover, recent human postmortem brain analysis 
demonstrated an increase in mGlu2/3 protein levels in 
depressed patients [281]. Particularly the mGlu2/3 activating 
ligands seem to be drugs with promising therapeutic 

potential and good safety profiles. For example, the mGlu2/3 
receptor agonists such as (-)-(1R,4S,5S,6S)-4-amino-2-
sulfonylbicyclo[3.1.0.]hexane-4,6 dicarboxylic acid (LY404039) 
and (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic 
acid (LY354740) demonstrated neurochemical and behavioral 
effects in a very broad spectrum of models predictive of 
anxiolytic and anti-stress activity [58, 268, 282-286]. These 
mGlu2/3 receptor agonists have even progressed into phase 
II clinical trial, in which there was good efficacy in 
preventing CO2-induced anxiety in panic attack patients 
[287]. Furthermore, strong preclinical evidence for potential 
antidepressant effects upon chronic dosing came from a 
study showing that 3-days of treatment with the mGlu2/3 
agonist 2-amino-4-oxabicyclo[3.1.0]hexane-2,6-dicarboxylic 
acid (LY379268) induced a decrease of total immobility time 
in the FST in FSL rats [288, 289]. Interestingly, combination 
of the antidepressant chlorimipramine and LY379268 for 3 
days substantially reduced the immobility time, supporting 
the hypothesis that antidepressants have a shorter latency of 
action if mGlu2/3 receptors are activated at the same time 
[280]. Especially the latter finding raises the intriguing 
possibility for mGlu2/3 agonists to be used as adjunctive 
drugs to shorten the latency of antidepressant medication,  
an issue that should receive strong attention, as suicide 
attempts are often increased particularly during the initial 
period of antidepressant treatment. In addition, LY379268 
significantly decreased SIH responses, indicating its anti-
anxiety potential [269, 290]. Interestingly, it has been shown 
that mGlu2, and not mGlu3, mediated the actions of 
LY404039 and LY379268 in mouse models predictive of 
antipsychotic activity [291, 292], suggesting a dominant role 
of the mGlu2 receptor subtype in triggering antipsychotic 
effects. In recent years, the number of reports about mGlu2 
receptor-selective positive allosteric modulators (PAMs) has 
increased substantially and some of these compounds have 
been extensively characterized in a number of animal models 
[293, 294]. For instance, a recent study using the mGlu2 
receptor PAM N-({4-[3-hydroxy-4-(2-methylpropanoyl)-2-
(trifluoromethyl)phenoxymethyl]phenyl}methyl)-1-methyl-
1H-imidazole-4-carboxamide (THIIC) showed robust activity 
in three assays detecting antidepressant-like activity, including 
the FST in mice, the differential reinforcement of low rate 
72-s (DRL-72) assay and the dominant-submissive test in 
rats, with a maximal response similar to that of imipramine 
[295]. Moreover, this mGlu2 PAM showed anxiolytic- 
like efficacy in the SIH test in rats and the marble-burying 
test in mice, suggesting an important role for mGlu2 in  
the pathophysiology of anxiety. In addition, 1-(4-chloro- 
2-fluorobenzyl)-5-(4-methoxyphenyl)-2(1H)-pyridinone 
(ADX71149), another highly mGlu2-selective PAM, 
demonstrated safety and efficacy not only in phase IIa 
clinical testing for schizophrenia but also in anxious 
depression [296, 297]. The mGlu2 PAMs 2,2,2-trifluoro- 
N-[4-(2-methoxyphenoxy)phenyl]-N-(pyridin-3-ylmethyl) 
ethanesulfonamide (LY487379) and 4-[3-[(2-cyclopentyl-
6,7-dimethyl-1-oxo-2,3-dihydroinden-5-yl)oxymethyl]phenyl] 
benzoic acid (biphenylindanone A, BINA) also exhibited 
anxiolytic effects when assessed in rodent models of anxiety 
such as SIH and EPM tests [290, 298]. 

 Interestingly, and in some way paradoxically, there are 
also studies demonstrating antidepressant-like and anxiolytic 
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efficacies of mGlu2/3 receptor antagonists. Early findings 
were obtained in the FST in rats and TST in mice after  
acute administration of (1R,2R,3R,5R,6R)-2-amino-3-[(3, 
4-dichlorophenyl)methoxy]-6-fluorobicyclo[3.1.0]hexane-
2,6-dicarboxylic acid (MGS0039) and (1S,2S)-2-[(2S)-2-
amino-3-(2,6-dioxo-3H-purin-9-yl)-1-hydroxy-1-oxopropan-
2-yl]cyclopropane-1-carboxylic acid (LY341495) [299]. 
Importantly, several studies revealed that repeated 
administration of the mGlu2/3 receptor antagonist MGS0039 
exhibited remarkable antidepressant-like efficacy. In this 
context, Palucha-Poniewiera et al. [300] could show that 
repeated administration of MGS0039 attenuated deficits in 
the OB model of depression in rats. Furthermore, treatment 
with MGS0039 for 7 days elicited a significant reduction in 
escape failures in the LH paradigm [301]. Additionally, 
MGS0039’s antidepressant-like potential was demonstrated 
by reversing the increase of immobility in the FST induced 
by chronic social isolation-reared mice [302] and by 
reducing the increase of immobility in the FST after chronic 
corticosterone treatment [303]. Moreover, this mGlu2/3 
receptor antagonist significantly attenuated freezing behavior 
in a conditioned fear stress (CFS) model [301], dose-
dependently reduced SIH [304] and inhibited marble-burying 
behavior [305], indicating also strong anxiolytic-like 
potential. It was further demonstrated that systemic blockade 
of mGlu2/3 with LY341495 prevented stress-induced 
autonomic hyperactivity [304] and reduced immobility in the 
mouse FST and in the TST of a line of Helpless (H) mice 
[300, 303, 306, 307], a putative model for depression 
symptoms. A more recent study demonstrated that a single 
administration of LY341495 produced a rapid and long-
lasting reversal of decreased sucrose preference caused by 
CUS in rats [308]. In addition, the recently developed 
mGlu2/3-selective NAM 4-[3-(2,6-dimethylpyridin-4-
yl)phenyl]-7-methyl-8-(trifluoromethyl)-1,3-dihydro-1,5-
benzodiazepin-2-one (RO4491533) also showed strong 
antidepressant-like efficacy in mouse FST and TST models 
[307], underpinning the anti-stress potential of mGlu2/3 
receptor antagonists – at least in some relevant experimental 
animal models. 

 As clearly demonstrated by the recent advances above, 
mGlu2/3 receptors are critically involved in stress 
physiology and their modulation holds promise for the 
treatment of mood disorders such as depression and anxiety 
[309], and several pharmaceutical companies are interested 
in advancing mGlu2- and/or mGlu3 modulators (positive  
and negative) from discovery research into clinical 
development. 

Role of Group III mGlu Receptors in the Physiology of 
Stress 

 Group III mGlu receptors have received somewhat less 
attention than those of group I or group II, mostly due to the 
obvious paucity of pharmacological tools available to study 
them [51, 55, 61, 310]. Nevertheless, they are thought to be 
involved in a number of disease states and physiological 
conditions, consistent with their role in the regulation of both 
glutamatergic and GABAergic neurotransmission throughout 
the brain [311-317]. Much of our current knowledge still 
relies on studies performed by direct central application of 

compounds and on the characterization of genetically 
manipulated animals under basal and under stress conditions. 
For instance, Tatarczynska et al. [318] found out that 
intraventricular injection of the group III mGlu receptor 
agonist (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic 
acid (ACPT-I) produced both anxiolytic- and antidepressant-
like effects. Its anxiolytic action was shown in both the  
SIH and EPM tests in mice, and in the Vogel conflict test in 
rats. Its antidepressant-like action was evaluated in the  
FST [318, 319]. Interestingly, another study showed that the 
antidepressant-like effects of centrally applied ACPT-I could 
be reversed by the group III mGlu receptor antagonist  
2-amino-2-cyclopropyl-2-(4-phosphonophenyl)acetic acid 
(CPPG) [320]. However, these compounds are not subtype-
selective, as they act at all members of group III receptors, 
making it impossible to allocate these effects to a specific 
receptor subtype. Addressing the influence of mGlu4, Klak 
et al. [321] could show that the combined administration of 
the mGlu4-selective PAM 7-hydroxyimino-N-phenyl-1,7a-
dihydrocyclopropa[b]chromene-1a-carboxamide (PHCCC) and 
a non-effective dose of ACPT-1 produced antidepressant-
like efficacy in the rat FST. A further study demonstrated 
that administration of PHCCC into the basolateral amygdala 
resulted in dose-dependent anti-conflict effects in the rat 
Vogel conflict test, indicating that positive allosteric 
modulation of mGlu4 receptors may be a useful therapeutic 
approach for anxiety [322]. More recently, the peripheral use 
of (1R,2S)-2-[(3,5-dichlorophenyl)carbamoyl]cyclohexane-
1-carboxylic acid (VU0155041), an mGlu4 PAM [323], 
demonstrated anxiolytic action in the elevated zero maze 
[324]. In addition, the novel mGlu4 PAMs (1S,2R)- 
2-[(aminooxy)methyl]-N-(3,4-dichlorophenyl)cyclohexane-
1-carboxamide (Lu AF21934) and 4-methyl-N-[5-methyl- 
4-(1H-pyrazol-4-yl)-1,3-thiazol-2-yl]pyrimidin-2-amine 
(ADX88178) have been reported to also induce an 
anxiolytic-like affect in acute rodent models including SIH, 
four-plate and marble-burying test, in addition to being 
active in multiple models of Parkinson’s disease [325, 326]. 
Interestingly, mGlu4-deficient mice exerted increased 
measures of anxiety in acute models, including the open field 
and elevated zero maze, and impaired sensorimotor function 
on the rotarod test [327]. Consistent with this, they also 
showed enhanced amygdala-dependent cued-fear conditioning 
[328]. Similar to these findings, mice lacking mGlu8 showed 
higher measures of anxiety as compared to control animals 
[329, 330] and when exposed to novel, aversive environments, 
they exhibit greater neuronal activation in stress-related brain 
regions [331]. These studies suggest enhanced reactivity to 
stressors in mice deficient for mGlu4 or mGlu8. To go on 
with mGlu8, acute pharmacological stimulation with its 
agonist 4-[(1S)-1-amino-2-hydroxy-2-oxoethyl]phthalic acid 
(DCPG) reduced innate anxiety in the open field and EPM 
tests [332] and reduced the expression of contextual fear 
without affecting the acquisition and expression of cued fear 
[333]. Furthermore, 2-amino-2-(4-phosphonophenyl)acetic 
acid (RS-PPG), an mGlu8 receptor-preferring agonist, 
induced dose-dependent antidepressant-like effects in the 
FST after central administration [320]. Moreover, the 
mGlu8-selective PAM 2-[(4-bromophenyl)methyl-sulfanyl]-
N-(4-butan-2-ylphenyl)acetamide (AZ12216052) reduced 
measures of anxiety in the open field and EPM tests [332]. 
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Table 1. A summary of mGlu receptor pharmacology focusing on the selection of animal models of acute and chronic stress as 
detailed in this manuscript (see above). 

Drug Action Animal Model(s) Effect(s) Reference(s) 

Fenobam mGlu5 NAM SIH anxiolytic Porter et al., 2005 [236] 

MPEP mGlu5 NAM 
SIH, EPM, FST, 

TST, LH 
anxiolytic, antidepressant-like 

Spooren et al., 2000 [237]; Nordquist et al., 2007 [242]; 
Garparini et al., 2008 [240]; Liu et al., 2012 [241] 

MTEP mGlu5 NAM 
SIH, EPM, FST, 

TST 
anxiolytic, antidepressant-like 

Klodzinska et al., 2004 [247]; Palucha et al., 2005 [252]; 
Molina-Herandez et al., 2006 [248]; Pomierny-Chamioło 

et al., 2010 [249]; Ticha et al., 2011 [250]; Palucha-
Poniewiera et al., 2014 [356] 

GRN-529 mGlu5 NAM SIH, FST, TST anxiolytic, antidepressant-like Hughes et al., 2013 [254] 

AFQ056/ 
mavoglurant 

mGlu5 NAM SIH anxiolytic Vranesic et al., 2014 [255] 

Basimglurant mGlu5 NAM SIH anxiolytic Jaeschke et al., 2015 [231]; Lindemann et al., 2015 [233] 

CTEP mGlu5 NAM SIH, CSDS 

anxiolytic, antidepressant-like: 
reversal of CSDS-induced 

reduction of locomotion and 
anhedonia 

Lindemann et al., 2011 [228]; Wagner et al., 2014 [163] 

LY354740 mGlu2/3 agonist SIH, EPM anxiolytic 
Linden et al., 2004 [283]; Rorick-Kehn et al., 2005, 2006 

[268, 285]  

LY379268 mGlu2/3 agonist SIH, FST anxiolytic, antidepressant-like 
Matrisciano et al., 2007 [288]; Satow et al., 2008 [269]; 

Wieronska et al., 2012 [290] 

THIIC mGlu2 PAM SIH, FST anxiolytic, antidepressant-like Fell et al., 2011 [295] 

LY487379 mGlu2 PAM SIH anxiolytic Wieronska et al., 2012 [290] 

BINA mGlu2 PAM SIH, EPM anxiolytic Galici et al., 2006 [298] 

MGS0039 
mGlu2/3 

antagonist 
SIH, FST, TST, LH anxiolytic, antidepressant-like 

Chaki et al., 2004 [299]; Yoshimizu et al., 2006 [301]; 
Iijima et al., 2007 [304]; Palucha-Poniewiera et al., 2010 

[300]; Ago et al., 2013 [357] 

LY341495 
mGlu2/3 
preferring 
antagonist 

SIH, FST, TST, 
CMS 

anxiolytic, antidepressant-like: 
reversal of CMS-induced 

anhedonia 

Chaki et al., 2004 [299]; Iijima et al., 2007 [304]; 
Bespalov et al., 2008 [306]; Ago et al., 2013 [357]; 

Dwyer et al., 2013 [308] 

RO4491533 mGlu2/3 NAM FST, TST antidepressant-like Campo et al., 2011 [307] 

ACPT-I 
mGlu4/6/7/8 

agonist 
SIH, EPM, FST anxiolytic, antidepressant-like 

Tatarczynska et al., 2002 [318]; Stachowicz et al., 2009 
[319] 

PHCCC mGlu4 PAM FST 
antidepressant-like (in 

combination with ACPT-I) 
Klak et al., 2007 [321] 

Lu AF21934 mGlu4 PAM SIH anxiolytic Slawinska et al., 2013 [325]  

ADX88178 mGlu4 PAM EPM, FST anxiolytic, antidepressant-like Kalinichev et al., 2014 [326] 

DCPG mGlu8 agonist EPM anxiolytic Duvoisin et al., 2010 [332] 

AMN082 mGlu7 agonist 
SIH, EPM, FST, 

TST 
anxiolytic, antidepressant-like 

Palucha et al., 2007 [341]; Stachowicz et al., 2008 [345]; 
Palazzo et al., 2008 [346]; Bradley et al., 2012 [344]; 

O’Connor and Cryan, 2013 [351]; Palucha-Poniewiera et 
al., 2010, 2013, 2014 [72, 342, 343] 

ADX71743 mGlu7 NAM EPM anxiolytic Kalinichev et al., 2013 [350] 

XAP044 mGlu7 antagonist SIH, EPM, TST anxiolytic, antidepressant-like Gee et al., 2014 [353] 

Abbreviations: NAM, negative allosteric modulator; PAM, positive allosteric modulator; EPM, elevated plus maze; SIH, stress-induced hyperthermia; FST, forced swim test; TST, 
tail suspension test; LH, learned helplessness; CMS, chronic mild stress; CSDS, chronic social defeat stress. 
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However, as this anxiolytic effect was still present in mGlu8-
KO mice, the effect of 2-{[(4-bromophenyl)methyl] 
sulfanyl}-N-[4-(butan-2-yl)phenyl]acetamide (AZ12216052) 
on measures of anxiety likely involves molecular targets 
other than mGlu8, too [324]. Nevertheless, the behavioral 
data so far suggest that mGlu4 and mGlu8 receptor 
activation may render anxiolytic, anti-stress as well as 
antidepressant-like effects [334]. 
 With respect to mGlu7, there is clear evidence for a role 
of this receptor in fear and stress physiology from studies 
using mGlu7-KO mice [333, 335, 336]. Ablation of mGlu7 
in mice was shown to result in reduced amygdala-dependent 
conditioned fear and aversion. The phenotype of reduced 
anxiety- and stress-related behaviors and physiology of 
mGlu7-deficient mice extends also to tests for innate anxiety 
and despair [335, 336]. In addition, these mice also show an 
upregulated glucocorticoid receptor-dependent feedback 
suppression of the HPA axis [209], further supporting 
mGlu7’s critical role in stress physiology. Mitsukawa et al. 
[337] characterized an mGlu7-selective agonist, namely 
N,N'-bis[di(phenyl)methyl]ethane-1,2-diamine (AMN082), 
as a compound which is orally active and penetrates the 
blood-brain barrier, that enabled to further study mGlu7’s 
potential role in stress physiology. In the fear-potentiated 
startle paradigm, a model of acute stress, AMN082 impaired 
acquisition but enhanced extinction of conditioned fear, 
while mGlu7 knockdown using short interfering RNA 
attenuated extinction [338, 339]. In another study, Dobi et al. 
[340] demonstrated that direct AMN082-injection into the 
basolateral complex of the amygdala also facilitated 
extinction of contextual fear. Together, these data support a 
clear role for mGlu7 in both acquisition and extinction of 
conditioned fear. Moreover, AMN082 elevated plasma levels 
of the stress hormones ACTH and CORT [337], induced 
antidepressant-like effects in the FST and TST [72, 341-
344], and demonstrated robust anxiolytic efficacy in the SIH 
response, four-plate- and EPM test [345, 346]. At a first 
glance, these effects seem to be in contradiction with the 
anxiolytic- and antidepressant-like behavioral changes 
observed in mice lacking mGlu7 or after siRNA-mediated 
knockdown of the receptor [347]. However, AMN082 has 
been shown also to induce a rapid and lasting internalization 
of mGlu7 protein, which could well translate into functional 
antagonism of the receptor [348]. A further explanation for 
AMN082’s antidepressant-like profile in rodents would be 
that AMN082 not only binds to mGlu7 but with weaker 
affinity also to monoamine transporters, similar to its 
primary metabolite, N-benzhydrylethane-1,2-diamine (Met-
1), which inhibits serotonin and norepinephrine reuptake 
transporters with a physiologically relevant affinity [349]. 
 Two systemically active mGlu7 NAMs have yielded 
divergent results in behavioral tests despite displaying very 
similar pharmacological properties in vitro. 6-(2,4-
dimethylphenyl)-2-ethyl-4,5,6,7-tetrahydro-1,3-benzoxazol-
4-one (ADX71743) was shown to have robust anxiolytic 
effects in the EPM and the marble burying test [350]. In 
contrast, 6-(4-methoxyphenyl)-5-methyl-3-(pyridin-4-yl)-
4H,5H-[1,2]oxazolo[4,5-c]pyridin-4-one (MMPIP) was 
reported to have little anxiolytic activity but reversed 
antidepressant-like effects of AMN082 in rats [343, 351]. In 

addition, various behavioral studies also revealed that 
MMPIP impaired cognitive performances in the object 
recognition and the object location test [352]. As opposed to 
e.g. MMPIP, the recently discovered and first mGlu7-selective 
orthosteric antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-
chromen-4-one (XAP044) was shown to display binding 
within the VFTD of mGlu7 and a quite broad mode of 
functional mGlu7-blockade across multiple in vitro tests 
[353]. XAP044 is systemically active and demonstrates a 
wide spectrum of anti-stress-, antidepressant-, and anxiolytic-
like efficacy in vivo [353]. This supports the view that 
pharmacological blockade of mGlu7 in vivo might be a 
viable path forward attempting to reverse stress-related 
pathophysiological states in psychiatric illness. In line with 
this, human genetic studies with depressed siblings and 
recurrent MDD patients pointed at GRM7 (the gene coding 
for mGlu7 receptors) as a gene potentially involved in 
human depression [354, 355]. Taken together, considerable 
progress has been made in recent years in increasing our 
understanding of group III mGlu receptors within the CNS, 
and has remarkably revealed key roles for these receptors in 
acute stress, fear- and depression-related behavior, thereby 
emphasizing the therapeutic potential of group III-directed 
ligands and asking for future studies under chronic stress 
conditions (see below). 

CONCLUSION AND OUTLOOK 
 Encouraging evidence has emerged from both preclinical 
and clinical research in recent years, supporting key roles for 
the brain glutamatergic neurotransmitter system in the 
physiology of psychiatric disorders. However, only little is 
known about the contribution of the glutamate system to the 
pathophysiology following chronic psychosocial stress, 
which is the most acknowledged risk factor for emotion 
disorders, such as anxiety and depression [1, 2, 4-7, 9]. 
Moreover, current drug discovery efforts targeting the mGlu 
receptors led to the identification of pharmacological tools 
with promising efficacy in psychiatric conditions [51, 55, 58, 
65, 71, 231, 233, 358]. The potential of these pharmacological 
tools in the manifestation of physiological and behavioral 
consequences of chronic psychosocial stress still needs to  
be investigated. On a preclinical basis, the CSC paradigm 
might be an appropriate animal model, as it utilizes chronic 
psychosocial stressor exposure and results in decreased GC 
signaling and concomitant somatic, immunological, and 
affective pathologies, such as an overall proinflammatory- 
and cancer-prone phenotype and an anxiogenic and substance 
abuse phenotype [40, 41, 140, 179, 180, 186, 196, 359]. All 
these consequences are relevant for the development of 
somatic, e.g. gastrointestinal, and/or psychiatric disorders 
and the question whether mGlu receptors have the potential 
to exert control on these consequences is of great interest. 
Early evidence for the potential involvement of mGlu 
receptor subtypes in chronic psychosocial stress pathology 
comes from recent studies described above, suggesting that 
the mGlu7 receptor might play a controlling role in the PFC 
and the mGlu5 receptor in the hypothalamus. The recent 
development of CTEP and basimglurant, two compounds 
with markedly improved pharmacokinetic and safety profiles 
as compared to previous mGlu5 NAMs, such as MPEP and 
MTEP, may be most suitable to study the long-term effects 
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of mGlu5-blockade in vivo following chronic stress 
exposure. Most notably, CTEP’s sufficiently long half-life 
amenable for once daily administration in rodents and its 
high in vivo potency to achieve a low application dose makes 
it a suitable compound for chronic application and for the 
study of mGlu5’s role in chronic stress conditions. Indeed, 
first evidence of efficacy already comes from a very recent 
study conducted by Wagner et al. [163], who demonstrated 
that sustained mGlu5 receptor blockade via chronic 
administration of CTEP was able to recover CSDS-induced 
behavioral alterations [163]. The finding, that CTEP did not 
reverse the stress-induced physiological changes, requires 
further investigation. A potentially profitable approach in 
this regard may be to investigate whether chronic CTEP 
administration can attenuate the various physiological, 
immunological, and also behavioral consequences of chronic 
psychosocial stress induced by CSC exposure. Such studies 
may suggest future application routes for mGlu5 NAMs in 
chronic clinical conditions, including somatoform psychiatric 
disorders. 

 The mGlu7 receptor is also a promising target in chronic 
stress physiology, but the question still remains, which 
mechanism of action – its activation or blockade – might be 
effective in ameliorating the detrimental consequences of 
chronic psychosocial stress. Considerable progress has been 
made with the discovery of the mGlu7 agonist AMN082 
[337] and the mGlu7 NAM ADX71743 [350], two 
compounds that have already shown robust efficacy in 
animal models for anxiety and depression, but have not yet 
been investigated in any context of chronic or even 
psychosocial stress. For the present time, it is very difficult 
to speculate whether activation or inhibition of the mGlu7 
receptor would be more efficacious in reversing the 
consequences of chronic stress in man. However, the 
characterization of the recently discovered orthosteric-like 
mGlu7 antagonist XAP044 [353], which shows wide 
spectrum anti-stress (acute), antidepressant-, and anxiolytic-
like efficacy in vivo, might provide an additional and suitable 
tool compound to elucidate the role of mGlu7 under chronic 
psychosocial stress conditions, at least in rodents. Taken 
together, there is emerging evidence that makes it 
worthwhile to further investigate in detail the potentially 
beneficial roles of especially mGlu5 and mGlu7 subtype-
selective modulation in the context of chronic psychosocial 
stress and to provide a better understanding of the neural 
mechanisms involved and regulated by mGlu receptors. 
Besides providing fundamental neurophysiological insights, 
these investigations will hopefully stimulate drug development 
towards mGlu5- and mGlu7-targeted therapies aiming at the 
large panel of human chronic stress-induced neuropsychiatric 
disorders. 
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