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Abstract: In recent years, Faster-than-Nyquist (FTN) transmission has been regarded as one of the
key technologies for future 6G due to its advantages in high spectrum efficiency. However, as a price
to improve the spectrum efficiency, the FTN system introduces inter-symbol interference (ISI) at the
transmitting end, whicheads to a serious deterioration in the performance of traditional receiving
algorithms under high compression rates and harsh channel environments. The data-driven detection
algorithm has performance advantages for the detection of high compression rate FTN signaling, but
the current related work is mainly focused on the application in the Additive White Gaussian Noise
(AWGN) channel. In this article, for FTN signaling in multipath channels, a data and model-driven
joint detection algorithm, i.e., DMD-JD algorithm is proposed. This algorithm first uses the traditional
MMSE or ZFinear equalizer to complete the channel equalization, and then processes the serious ISI
introduced by FTN through the deepearning network based on CNN or LSTM, thereby effectively
avoiding the problem of insufficient generalization of the deepearning algorithm in different channel
scenarios. The simulation results show that in multipath channels, the performance of the proposed
DMD-JD algorithm is better than that of purely model-based or data-driven algorithms; in addition,
the deepearning network trained based on a single channel model can be well adapted to FTN signal
detection under other channel models, thereby improving the engineering practicability of the FTN
signal detection algorithm based on deepearning.

Keywords: FTN signaling; deepearning; detection; multipath; data-driven and model-driven combination;
neural network adaptability

1. Introduction

With the development of mobile multimedia services such as high-definition video
and XR, mobile communication systems have put forward higher and higher requirements
for transmission rates. In the current situation of increasingly tight spectrum resources,
improving the spectrum efficiency of the transmission system has increasingly become
a necessary way to improve the throughput of the communication system [1]. As a non-
orthogonal transmission technology that can achieve higher spectral efficiency, FTN has
attracted widespread attention in academia and industry worldwide.

FTN realizes the compression of the transmitted signal in the time domain and
the frequency domain by introducing a certain amount of ISI at the transmitting end
in advance [2–5], so as to obtain higher spectral efficiency than traditional orthogonal
transmission technology. As a non-orthogonal transmission technology, FTN breaks the
traditional Nyquist criterion. In the case of artificially introducing inevitable ISI, Mazo’s
research shows that the data rate can be increased by about 25% without performanceoss.
Although the existence of Mazo Limit enables FTN transmission to improve the spectrum
efficiency of the system while ensuring the reliability of the transmission, because the FTN
system will inevitably introduce ISI, it is necessary for the receiving end to use detection
techniques to eliminate ISI. However, compared to the orthogonal system, the receiver
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only needs to go through simple matched filtering to achieve the best detection symbol-
by-symbol, a non-orthogonal FTN system requires more complex receiver processing
algorithms to eliminate interference caused by ISI in order to obtain real gains. Therefore,
it can be considered that designing a detection algorithm with good performance and
acceptable computational complexity is the key to FTN research. In recent years, research
on FTN has mainly focused on model-driven detection algorithms, but for FTN signaling
with higher compression rates, whether it isinear detection algorithms based on MMSE or
ZF, or non-linear detection algorithms such as MAP or BCJR, the performance is not ideal,
and theatter’s implementation complexity is even very high. In order to overcome the
above-mentioned problems, the FTN signal detection algorithm based on data-driven has
gradually attracted the attention of scholars. Preliminary research results show that under
the condition of a high compression rate, the performance of the FTN signal detection
algorithm based on deepearning is better than the traditional model-driven algorithm.
However, due to the huge differences between training data and test data in time-varying
multipath channels in terms of channel characteristics such as multipath delay expansion
and moving speed, the FTN signal detection algorithm based on deepearning has a seri-
ous problem of insufficient generalization. Therefore, the current related research mainly
focuses on FTN signal detection in the AWGN channel or the microwave communication
environment that can be similar to AWGN.

In this article, we propose a DMD-JD detection algorithm to solve the problem of FTN
signal detection in time-varying multipath channels. The model-driven part adoptsinear
equalization technology to eliminate the influence of channel multipath fading to improve
the generalization ability of the model. The data-driven part adopts the Deep-Bi-LSTM
deepearning network model based on Long Short-Term Memory (LSTM) and uses the
two-way network structure to obtain the ISI information caused by the adjacent symbols
before and after the symbol of each FTN signaling to eliminate the influence of ISI caused
by FTN signaling compression. The channel equalization adopts theinear equalization
algorithm, and the deepearning network can complete the training offline. Therefore,
the overall implementation complexity of the proposed DMD-JD detection algorithm is
stillower than that of the traditional nonlinear detection algorithm, which improves the
engineering practicability of the algorithm.

In general, the main contributions of this article include:

• Combining the data-driven and the communication model-driven prior knowledge,
through the introduction of the channel equalization module, it is not only more
effective than the pure data-driven FTN detection algorithm. Additionally, to a certain
extent, the problem caused by the data mismatch under the multipath channel is
alleviated, so that the data sets under different channel states are adaptable, thereby
improving the robustness of the proposed algorithm.

• The LSTM network is applied to FTN signal detection in multipath channels, and
a Deep-Bi-LSTM structure more suitable for multipath channel FTN detection is
obtained by adjusting appropriate parameters,oss function, and network structure.
Compared with traditional algorithms, it not only hasower complexity but also can
obtain better ISI suppression performance for FTN signaling.

• Through aarge number of simulations, the performance advantages of the proposed
algorithm compared with the existing pure model-driven and pure data-driven al-
gorithms are verified. The effects of different channel equalization algorithms and
different deepearning networks on the performance of the proposed algorithm are
evaluated, and the effectiveness of the proposed scheme under QPSK modulation is
also verified. In addition, the network obtained by data training under a fixed channel
model is used to test the data under other channel models to verify the adaptability of
the proposed DMD-JD detection algorithm to actual time-varying multipath channels.
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2. Related Work

The concept of FTN was first introduced by James Mazo of Bell Labs in his 1975
research results [6], where he found that for a PAM(Pulse Amplitude Modulation) transmis-
sion system that uses SINC Pulses as a shaping filter, when the symbol interval isower than
the Nyquist criterion and is transmitted in the AWGN channel, the minimum Euclidean
distance between signals will not decrease in the symbol interval τT within the range of
0.802 ≤ τ ≤ 1. This means that the system can increase the spectrum efficiency by 25%
while ensuring that the bit error rate performance is not affected. FTN re-examined the
relationship between signal bandwidth, symbol rate, and spectrum efficiency, but it was
not taken seriously at that time due to theimitations of hardware conditions. After a period
of silence,iterature [7] observed that the FTN system formed by root raised cosine (RRC)
also has Mazo-limited properties. Subsequently, the team from Sweden completed a series
of groundbreaking studies on the development of FTN. They have successively confirmed
that the Mazoimit is universal in the frequency domain [8], high-order modulation [9],
multiple-antenna Multiple-Input and Multiple-Output (MIMO) [10], carrier [11], and other
systems. In addition, it was proven that when the time domain compression factor τ is
set appropriately, the FTN system can achieve a higher channel capacity than the general
orthogonal modulation system [12]. The research on FTN has gradually heated up in recent
years, and the design of the FTN detection algorithm is the top priority of FTN research.

Existing common model-driven FTN signal detection technologies mainly include
methods based on maximumikelihood sequence estimation (MLSE) or maximum a posteri-
ori (MAP). As part of the ISI information is known, and FTN signaling can be equivalently
regarded as trellis coding, most of them are realized by the Viterbi algorithm (VA) [13] or
BCJR [14] algorithm. The complexity of these optimal methods increases exponentially
with the number of ISI taps and modulation order considered. Therefore, there are many
efforts to find sub-optimal implementations. For example, the work in [15] introduces
the successful symbol-by-symbol with go-back-K sequence estimation (SSSgbKSE) de-
tection technology into the polar codes of FTN signaling, which is closer to the BCJR
algorithm while reducing the complexity. The authors of [16] proposed an FPGA-based
sliding-window max-log MAP algorithm that can be directly applied to FTN transmission
systems to mitigate ISI. Theiterature [17] proposed a convex quadratic relax-and-quantize
sequence estimation (CQRAQSE) algorithm suitable forow-rate FTN transmission based
on convex relaxation. Although suboptimal implementation algorithms based on MLSE
or MAP can achieve good detection accuracy, the implementation complexity is always
exponential. Compared with the exponential complexity algorithm with higher complexity,
the frequency domain equalization based oninear complexity hasower complexity, but
the performance is relatively poor. Compared with the exponential complexity algorithm
with higher complexity, the frequency domain equalization based oninear complexity ha-
sower complexity, but the performance is relatively poor. The article [18] proposed a cyclic
block transmission scheme, namely CB-FTN, which uses cyclic convolution instead ofinear
convolution for pulse shaping, andow-complexity frequency domain equalization can be
used at the receiver to compensate for channel damage and Inherent ISI. In reference to
the CB-FTN scheme, the authors of [19] proposed a transceiver equivalent implementation
scheme based on DFT (DBT-FTN), which can effectively reduce the complexity of base-
band signal processing at both ends of the transceiver. The works in [20,21] extended the
DBT-FTN transmission scheme from single-carrier to multicarrier, forming a multicarrier
DBT-FTN (DBT-MC-FTN) scheme. Literature [22] proposed a joint channel estimation and
precoding (JCEP) algorithm for data detection of FTN signaling on frequency selective
fading channels.

With the development of AI technology, the problem of data-driven communication
signal detection has received increasing attention. On the one hand, various deepearning
methods have recently been used to solve the problem of the physicalayer of wireless
communication, and valuable results have been obtained [23]. In addition, the signal
training process of LSTM has passed the basic principle of signal processing, and the
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LSTM expansion model has been formally explained in the framework of approximating
the IIR system with the FIR model, and it has been proven to be suitable for sufficient
conditions forearning signal sequences [24]. Yet, on the other hand, as far as our research
has uncovered, no or very few scholars use data-driven methods to solve FTN detection
algorithms in multipath channels. The existing data-driven related work mainly stays
in AWGN channel or special scene channel (similar to AWGN optical communication
channel and underwater communication channel) [25–27]. Preliminary research results
show that for FTN signaling with a higher compression rate, the detection algorithm based
on deepearning can obtain better performance than the MAP algorithm [28]. Compared
with the FTN research in the AWGN channel, the research of the FTN signaling receiving
algorithm based on the multipath fading channel has more practical value. However, FTN
signaling transmission in multipath channels will also bring major challenges to existing
receiver algorithms. This is because the inherent ISI of FTN signaling and the non-linear
interference caused by the multipath channel are aliased with each other, which makes
it difficult for traditional detection algorithms to recover the correct transmitted signal.
In addition, most of the existing data-driven FTN detection algorithms use traditional
neural networks such as DNN and CNN as the basic structure, and there are relatively few
structures that use RNN as a model. On the one hand, RNN networks are widely used in
the field of signal processing by virtue of their excellent sequence processing capabilities.
On the other hand, our simulation results also show that the RNN network structure is
better than the traditional neural network structure for feature extraction of FTN signal
interference. This article will propose a new idea for FTN detection with great potential.
Compared with traditional methods with perfect mathematical arguments, neural network
detection algorithms help to achieve online real-time detection by characterizing training
samples offline in advance. With this method, improvements with better robustness
andower complexity can be obtained. In general, as the spectrum resources areimited and
the computing power is increasing day by day, FTN and data-driven signal processing
algorithms are promising development directions and are expected to play an important
role in the future communication physicalayer transmission technology.

3. FTN System Model Design
Transmission System Model Based on DMD-JD FTN Signal Detection Algorithm

Figure 1 shows the principle block diagram of the communication system using the
DMD-JD FTN detection algorithm based on the data-driven Deep-Bi-LSTM structure in the
multipath channels. Among them, the ISI actively introduced by FTN at the transmitting
end is obtained by using τT as the sampling interval in the up-samplingink of the shaping
filter. It can be seen that the overall process of FTN signaling generation is roughly the
same as the signal generation process of a traditional communication system. In the data
preprocessing stage, targeted preprocessing will be done due to different modulation
methods. This allows the neural network to extract effective features from the signal data
to eliminate the introduced ISI and its nonlinear aliasing after passing through the channel.
For example, taking QPSK (4QAM) modulation as an example, it is assumed that the
transmitting end sends a transmission bit sequence with aength of N, which corresponds
to a receiving end symbol sequence with aength of N/2 after down-sampling. At the
receiving end, the received symbol sequence is divided according to the real part and the
imaginary part, and the data set is constructed according to the principle of one-to-one
pairing with the transmitted symbols.

What needs to be emphasized is the role of the channel equalization module. In
the purely data-driven situation, due to the time-varying characteristics of the multipath
channel, it will be difficult to match the training data and the test data, which willead to
a sharp deterioration in the performance of the test results and it is difficult to achieve
the desired performance. The increase of the channel equalization module can alleviate
the model training problem caused by the data mismatch. In addition, the introduction
of the equalization module can also achieve better generalization performance in various
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multipath channel switching scenarios, thereby improving the adaptability and robustness
of the system.
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Figure 1. Block diagram of the transmission model of FTN signal detection communication system
based on the DMD-JD algorithm.

Consider the binary phase-shift keying (BPSK) modulated FTN signaling system,
assuming that the information symbol is denoted as a(d). Where d and D respectively
represent the symbol index and the number of symbols in each information symbol. After
FTN shaping and filtering, the modulated base-band continuous signal can be expressed as

s(t) =
D−1

∑
d=0

a(d)p(t− dτT), 0 < τ < 1 (1)

p(t) is a pulse-shaped filter with T as the orthogonal shift interval, theength of the filter
is L, and τ is the time-domain compression factor. Sampling with ∆T as the interval, we
can obtain

s(n) =
D−1

∑
d=0

a(d)p
(

n− dN f

)
, 0 ≤ n ≤ (D− 1)× N f + L− 1 (2)

where τT = N f ∆T , τ = N f /Ns. N f is the pulse-shaped filter shift interval, and Ns is the
up-sampling rate of the pulse-shaped filter, which satisfies as

L−1

∑
0

p(n)p∗(n− dNs) =

{
1, d = 0
0, d 6= 0

(3)

After going through the multipath channel h(t), our signal can be expressed as

y(n) = s(n)⊗ h(n) + w(n) (4)

where h(n) is the channel impulse response, w(n) is the white noise generated by the
AWGN channel with variance σ2, and ⊗ represents the cyclic convolution operation.
Performing DFT on y(n) can transform the time domain convolution into the form of the
frequency-domain product. After passing through the multipath channel, perform IDFT on
the received signal to get the received signal at the receiving end y(d).

y(d) =
D−1

∑
d′=0

a
(
d′
)

g
(
d− d′

)
+
∫ +∞

−∞
w(n)p∗

(
n− dN f

)
dn (5)

The second term in Equation (5) is the colored noise after Gaussian white noise
and matched filter convolution. g(d − d′) is the channel equalization, the FTN signal
passes through the multipath channel through the shaping filter and then convolves with
the matched filter after the FTN system actively introduces the ISI coefficients and the
convolution sum of the channel. That is, the ISI tap coefficients are aliased in the nonlinear
interference generated by the fading channel. g(d− d′) can be expanded to

g
(
d− d′

)
=
∫ +∞

−∞
p
(
d′ − dτT

)
p∗
(

d′ − dN f

)
·

LF

∑
l=−LB

hl

[
dN f −

(
l + d′

)
N f

]
(6)
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where LF and LB represent the number of forward and backward multipaths, respectively,
and LD = LF + LB + 1 represents the delay spread of the frequency selective fading
channel. hl represents the influence of the channel gain of the lth channel on the current
received signal. That is, after the FTN signal passes through the multipath channel, the non-
linear noise interference that it receives can be approximately regarded as the non-linear
ISI interference and passes through a non-linear multipath channel. The aliasing of two
non-linear interferences will pose a major challenge to the existing receiver algorithms. In
particular, when LF = LB = 0, the multipath channel is equivalent to the AWGN channel,
and the interference will degenerate into only the ISI introduced by the convolution of the
shaping filter and the matched filter.

The noise elimination in the system is divided into two modules. First, the ideal
channel equalization is used to offset most of the multipath channel interference. The
filtered signal is then subjected to data-driven FTN signal detection to eliminate the ISI
introduced at the transmitting end and the nonlinear aliasing after the ISI passes through
the multipath channel. The description of the signal detection module will be described in
detail in the next section, and the specific simulation results will be explained in detail in
Section 5.2.

4. FTN Detection Scheme in Multipath Channels Based on Neural Network

The shaping filter withength L-length is expressed as p = [p1, p2, · · · , pL]
T , a is

expressed as N-length independent equal probability According to the content of the
previous section, the following discrete form of the FTN signal vector model can be obtained

s = Pa (7)

where s represents the transmission symbol sequence transmitted by the transmitting
end after shaping by a shaping filter with a period of τT, P = [p1, p2, · · · , pN ] ∈ RL×N

represents the pulse-shaping matrix. After the FTN signal passes through the multipath
channel, the received symbol at the receiving end can be equivalently modeled as a process
through the nonlinear channel as follows

r = P∗(Hs + w) = Ga + η (8)

where w is the Gaussian white noise signal,  is the colored noise generated after matched
filtering, H is the channel response matrix of the multipath channel, and it is also a cyclic
matrix. G = P∗HP is expressed as the non-linear aliasing of ISI introduced by FTN
and multipath channel, the inter-symbol interference matrices introduced by FTN are
represented as P∗ and P, respectively.

In order to recover the originally transmitted signal from the non-linear interference
aliased received signal, two different deepearning models, CNN and RNN, will be used to
detect FTN signaling.

4.1. Detection via CNN

In the CNN model, we treat FTN detection as a classification problem, select the
signal that has not been matched and filtered at the receiving end as the sample set,
and theabel set is the symbol sequence of the transmitted signal.The specific structure
of using a convolutional neural network as a classification model is shown in Figure 2.
Both convolutionalayers use Relu as a non-linear activation function. Finally, after passing
through the fully connectedayer, the output probability distribution is obtained from the
activation function SoftMax, where the symbol corresponding to the maximum probability
is the estimated signal â.
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Figure 2. Block diagram of using CNN network structure to detect FTN signaling.

The rationality of using CNN as the detection algorithm can be explained as follows. In
FTN, the influence of the value of the symbol before and after the symbol on the judgment
of the current symbol must be considered. From this perspective, the process of the filter
sliding on the input data in the CNN model to extractocal features can be regarded as a
series of related operations of a small-sized matched filter at different time positions, which
measures the magnitude of interference generated by symbols at different moments and
uses this as a feature to help subsequent classification judgments.

For high-order modulation, since the information bits are stored in the real and
imaginary parts of the signal, the signal at the receiving end is separated according to
the real and imaginary parts and then integrated into the corresponding transmission
symbol sequence. Specifically, IQ signals can be connected in parallel and the real and
imaginary parts can be input into the networkine byine, which is equivalent to processing
single-channel two-dimensional images (such as grayscale images). A more reasonable
method is to put the real and imaginary signals on different channels, that is, treat the real
and imaginary data as different images. This process can be analogous to the three-channel
processing of RGB in digital image processing. Furthermore, as the noise interference of
FTN signaling in the multipath channel is independent and identically distributed, the
correlation between the real part and the imaginary part of the noise is faress clear than
the correlation between the adjacent real part or imaginary part signals. Therefore, it can
consider using the real part and the imaginary part to be connected to different channels
respectively, and the corresponding feature information is extracted, and then the classified
results are merged and outputted.

The advantage of the symbol-by-symbol detection of the CNN model is that the model
is simple, but the sample signal is not clear enough to express ISI. Therefore, on this basis,
we try to use the idea of discrete signal sequence detection to deal with the problem of
strong correlation in the time dimension of the FTN—RNN network model.

RNN allows information to persist, that is, the current output depends on all previous
inputs. From a computational point of view, as the current state depends on previous
calculations, and the network performs the same task for each element of the input sequence.
In the next section, the Deep-Bi-LSTM network based on RNN will be introduced in detail,
and the effectiveness of FTN detection in multipath channels will be analyzed.

4.2. Proposed Deep-Bi-LSTM Architecture for FTN Signal Detection

In the previous section, FTN signal detection is regarded as a classification problem.
Consider using the CNN network to do different processing methods for different received
signal forms. In this section, we treat FTN signal detection as a regression problem and
explain the proposed Deep-Bi-LSTM network model in detail.

4.2.1. Use RNN-Based LSTM Unit for FTN Detection

Existing research has proven that the RNN-based sequence detection architecture has
proven effective in many fields. This is because the RNN network can map the effects of
all previous inputs to the current output through feedback connections, which makes the
RNN network ‘memorable’ and causal. Aiming at the problem of FTN signal detection,
these characteristics of the RNN network are suitable for solving this problem of strong
correlation in the time dimension. The proposed network architecture is shown in Figure 3.
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Figure 3. Block diagram of using CNN network structure to detect FTN signaling.

The input of the model is the preprocessed N-length received symbol sequence. After
extracting features through two identical fully connected hiddenayers using Bi-LSTM, the
fully connectedayer with tanh as the activation function obtains an output in the range
(−1, +1). In addition, batch normalization is added after each hiddenayer operation to
correct the data distribution to prevent gradient vanishing problems that are difficult toearn
effectively. Unlike traditional two-classification problems that mostly use cross-entropy
as theoss function, we found in the actual test that using the l2 norm as theoss function
can achieve relatively better performance in this problem. The possible reason is that the
activation function in the fully connected network chooses to use tanh instead of sigmoid.

The sequence detection model directly outputs the estimated symbol at each moment
as âk, and the correspondingoss function is

L(a, â) =
1
N

N

∑
k=1
|ak − âk|2 (9)

In the process of using traditional RNN, theoretically, it can handle arbitrarilyong
sequences. However, in actual application, it often encounters aong-term dependen-
cies problem. Generally, aong short-term memory (LSTM) unit [29] is used to alleviate
this problem.

4.2.2. Reasons for Using Bi-LSTM Structure

In FTN signal detection, it is necessary to consider that the shaping filter is axisym-
metric, which means that for the current time k, the interference caused by the symbols
at k− 1 and k + 1 is of the same magnitude. It is obviously not enough to only use the ISI
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before time k as the interference feature of the current signal. The method to solve this
problem is to introduce the Bi-directional LSTM model. As shown in the yellow part of
Figure 3, the bidirectional cyclic neural network model includes a cyclic neural network
with a front-to-back processing sequence and a cyclic neural network with a back-to-front
processing sequence, which are used to transmit the forward state

−→
ht and the backward

state
←−
ht .

−→
ht [n] = sigmoid

(
W ′x,cr~x[n] + W ′c,cr~c[n] + W ′h,cr

−→
h t[n + 1] +~b′cr

)
� tanh(~c[n]) (10)

←−
ht [n] = sigmoid

(
W ′x,cr~x[n] + W ′c,cr~c[n] + W ′h,cr

←−
h t[n + 1] +~b′cr

)
� tanh(~c[n]) (11)

where ~x[n] is the model input,~c[n] is the information storage unit in the LSTM, and W and
~b are the weights and offsets.

Then, the feature information from the pre-order traversal and the post-order traversal
is feature merged. Fusion strategies generally include addition, multiplication, averag-
ing, or simple concatenation, etc. The feature fusion method selected here is the default
concatenation, where ⊕ represents the integration operation.

ht =

[−→
h t⊕

←
h t

]
(12)

4.2.3. Reasons for Using Deep-LSTM Structure

Like Deep Neural Networks (DNN) with a deep architecture, Deep-LSTM has been
successfully used in fields such as speech recognition text generation, machine translation,
speech recognition, generated image description, and video tagging. In fact, any single
LSTM neural network is already a deep architecture, because it can be regarded as a
feed-forward neural network unfolded in time, in which eachayer shares the same model
parameters. Compared with traditional standard LSTM networks, Deep-LSTM networks
provide another advantage. They can make better use of parameters by distributing
parameters in multipleayers in space. For example, if the memory size of the standard
model is increased by 2 times, there can be 4ayers with roughly the same number of
parameters, whicheads to more non-linear operations for the input of each time step. The
simulation in Section 5.2 also proves that introducing a Bi-LSTM network with a suitable
depth can improve the performance of the network for FTN signal detection, especially in
multipath channel scenarios.

All in all, the interference of FTN signaling mainly comes from the influence of adjacent
symbols on the current symbol, which has something in common with the processing
architecture of Deep-Bi-LSTM.

4.3. Dataset

The data sets are all FTN signaling in the multipath channels obtained through the
same communication system. The data sets can be divided into training data sets and
test data sets according to their functions. Theength of each FTN signaling is N, and this
signaling represents independent data obtained in software simulation. In the data set, we
use the transmitted symbol as theabel, and the corresponding receiving end receives the
FTN signaling as the sample. The real part of the signal is regarded as the sample in BPSK
modulation, and the real and imaginary parts of the signal will be respectively regarded
as the sample in QPSK modulation. In the training and testing phase of the network, the
corresponding “label–sample” pairs are used as the data set of the Deep-Bi-LSTM network.

4.4. Complexity Analysis

M represents the modulation order, and LISI represents theength of the FTN signaling
affected by the ISI considered by the algorithm. It should be noted here that the ideal
theoretical value of LISI should be asong as the sequence, that is, ISI interference comes
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from the entire sequence. However, existing algorithms are generally set at a fixed value to
reduce the difficulty of implementation, which reduces performance to a certain extent.

The existing traditional algorithms includeinear-level complexity algorithms and
exponential-level complexity algorithms. Theower complexity is the frequency domain
equalization algorithm, whose complexity is O(N), while the complexity of the MAP algo-
rithm is O

(
LISI NM2LISI+1

)
. For data-driven algorithms, the training process is completed

offline in advance and does not occupy computing resources, so only the complexity of
online operations needs to be considered. Since the CNN model used is determined to be
twice the dimensionality of the input data when processing two-dimensional input, the
complexity measurementevel of the convolutionalayer operation is the same for the same
dimensional input, which is both O(N). For the DMD-JD algorithm, the computational
complexity of the online training stage is O

(
N2), but in the real-time detection stage, as

there is only simple forward reasoning, the computational complexity will be reduced to
O(N). Although the calculation amount of Deep-Bi-LSTM is four times that of LSTM, it
still has ainear relationship with the sequenceength.

What needs to be emphasized here is that the complexity of data-driven algorithms
does notie in their operations, but transfers the complexity to model adaptability. Specif-
ically, due to the time-varying characteristics of the channel, the data characteristics of
different channels, different moving speeds, and even different signal-to-noise ratios are
different, and targeted model training needs to be performed according to specific appli-
cation scenarios, which willead to higher complexity. For the problem of generalization
performance, we present targeted work in Section 5.2.3 to make up for this defect.

5. Experimental Evaluation
5.1. Experimental Setup

In this section, the system performance of the FTN signal detection scheme will
be evaluated in different channel simulation scenarios. Under the 64-bit Windows 10
operating system, the simulation was performed on the Intel (R) Core (TM) i7-6700K @
4.00 GHz CPU, Nvidia GeForce GTX 970 (4 GB / Nvidia) on Matlab2018B and PyCharm
platforms. Among them, the training and test data sets are randomly generated on the
Matlab simulation platform through different channels. The proposed neural network is
implemented by Keras, written in Python, and uses TensorFlow as the backend to perform
tensor operations. The main parameters of the FTN signal are shown in Table 1, the main
simulation parameters of deepearning are shown in Table 2, and the main parameters of
the system in multipath channel analysis are shown in Table 3 [30].

Unless otherwise specified, the mobile rate of the simulated multipath channel is the
result of aower mobile rate by default, that is, TU-6 is 30 km/h, PB is 3 km/h, and VA is
60 km/h. The hyperparameters Dropout rate and Num unit are updated based on the
validation set (the same way as the training set test set is generated). Specifically, in the
training phase of the model, after training for a certain epoch (verification too frequently
will affect the training speed), a validation set will be run to analyze whether theoss
function and evaluation indicators are in the expected target (gradual convergence) to
update the hyperparameters.

Table 1. Experimental settings for FTN signaling generation.

Parameter Value

Time squeezing factor τ 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Up-sampling rate 10

Type of pulse-shaping filter root-raised cosine (RRC)
Roll-off factor of filter 0.3

Signalength N 32
SNR range Eb/N0 0 dB to 15 dB

Sampling frequency (MHz) 15.36
Modulation scheme BPSK,QPSK

Channel model AWGN, TU6, PB, VA
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Table 2. Experimental settings in Deep Learning.

Parameter Value

Train set size 10,000
Test set size 10,000
Numayer 6

Dropout rate 1.0
Num unit 128

Learning Rate 5 × 10−4

Batch Size 64
Num Epochs 10

Optimizer Adam

Table 3. The delay and power of different paths in the channel model.

Channel Model Channel Parameters

TU (Typical Urban)
ζ = [ 0.0 µs, 0.2 µs, 0.5 µs, 1.6 µs, 2.3 µs, 5.0 µs ];

P = [ −3.0 dB, 0.0 dB, −2.0 dB, −6.0 dB, −8.0 dB, −10.0 dB ];

PB (Pedestrian test environment of Channel B)
ζ = [ 0.0 µs, 0.2 µs, 0.8 µs, 1.2 µs, 2.3 µs, 3.7 µs ];

P = [ 0.0 dB, −0.9 dB, −4.9 dB, −8.0 dB, −7.8 dB, −23.9 dB ];

VA (Vehicular test environment of Channel A)
ζ = [ 0.0 µs, 14.0 µs, 20.0 µs ];

P = [ 0.0 dB, −10.0 dB, −14.0 dB ];

In addition, the FTN signal generation process and the adopted deepearning model
are built on the basis of traditional models, which can be easily transplanted to dedicated
computers (such as FPGA).

5.2. Simulation Results

According to the simulation results of Section 5.2.4, it can be seen that using a two-
layer two-way LSTM structure for FTN signal detection will achieve relatively optimal
results. The following simulation will use the above-mentioned relatively optimal LSTM
structure for simulation unless otherwise specified. In addition, we convert the accuracy in
the data-driven model into BER, a performance indicator in the communication field, for
performance analysis.

Taking into account the feasibility of engineering implementation, we performed
simulations in a variety of different multipath channel scenarios, which also proved the
effectiveness of the proposed scheme to a certain extent.

5.2.1. Performance Comparison between DMD-JD FTN Detection Algorithm and Pure
Data-Driven Detection Algorithm

Firstly, as shown in Figure 4, shows the performance comparison of different channel
equalization algorithms when the compression factor τ = 0.7 in the TU channel. The curves
in different colors in the figure represent different channel equalization algorithms, followed
by no equalization, ZF equalization, and MMSE equalization. Differentine shapes represent
different data-driven algorithms. The redine represents the pure data-driven performance
curve, which has aarge performance gap compared with the results of the DMD-JD FTN
algorithm represented by the blue and black curves. The reason is that pure data driving
is difficult to solve the non-linear interference introduced by FTN and the aliasing of non-
linear interference through the multipath channel, which results in the mismatch of training
data and test data. In Section 5.2.3, the performance of the DMD-JD FTN algorithm will
also be compared with the performance of traditional model-driven algorithms.
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Figure 4. In the TU channel, when the compression factor τ = 0.7, compare the performance of
different channel equalization modules.

The black and blue curves in the figure represent the performance of using MMSE
equalization and ZF equalization, respectively. It can be seen that the performance of using
MMSE equalization is far superior to that of ZF equalization, even reaching 3–5 dB. The
possible reason is that the ZF equalization does not consider the influence of noise factors,
and the results of the MMSE equalization are quite different when the noise isarge, and the
performance gap is reduced when the signal-to-noise ratio is relatively high. In addition,
since ZF is an unbiased estimation, the noise signal will be amplified when the signal is
equalized, thereby affecting the performance of the data driving method.

5.2.2. DMD-JD Algorithm Performance Using Different FTN Detection Methods in
Multipath Channels

As shown in Figure 5, this is to compare the impact of different algorithms on BER
performance under the TU channel compression factor τ = 0.7. It can be seen that traditional
model-driven algorithms based oninear complexity have been difficult to use to achieve
better results in this situation, while data-driven CNN and LSTM structures can achieve
better performance than exponential complexity. Among them, the performance of the
algorithm based on the Deep-Bi-LSTM structure is the best, which is about 1.6 dB higher
than the performance of the MAP algorithm. The reason why such aarge gain can be
obtained is that FTN detection in multipath channels can be seen as the mutual aliasing of
two nonlinear processes, which will pose a greater challenge to the receiver algorithm. Tra-
ditional model-driven methods have been difficult to fit this kind of nonlinear interference.
The non-linear interference introduced by FTN is a targeted detection under the condition
of correct matching with a clear compression factor when the network is trained with the
prior knowledge that is controllable at the transmitting end.
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Figure 5. FTN detection performance results of different algorithm in the TU channel, MMSE
equalization, and the compression factor τ = 0.7.

As shown in Figures 6 and 7, the performance (blueine and blackine) of the DMD-JD
detection algorithm is better than the traditional pure model-driven results in both the VA
channel and the PB channel. The Deep-Bi-LSTM structure is more efficient than traditional
algorithms in extracting adjacent non-linear interference from FTN. Moreover, relying
on the characteristics of the network’s offline training online test number, the DMD-JD
FTN detection algorithm can achieve better performance than traditional algorithms while
havingower complexity.

5.2.3. Adaptability of DMD-JD Algorithm to Multipath Channels

A. DMD-JD Detection Performance Trained in the Same Channel

As shown in Figure 8, compare the generalization performance of the training model in
the same channel with a fixed signal-to-noise ratio. The curves of different colors represent
different multipath channels, the solidine represents the result of the normal pairing of the
signal-to-noise ratio of the training data and the test data, and the dottedine represents
the network trained with a fixed signal-to-noise ratio of 7 dB to test the BER performance
of the corresponding channel. On the whole, the performance of using a fixed signal-to-
noise ratio is somewhatost compared with the normal pairing of the signal-to-noise ratio
of the training data and the test data. However, when the data-driven method is truly
applied to engineering, only a fixed signal-to-noise ratio or a network model with a small
number of signal-to-noise ratios need to be trained in the offline state to detect signal at
all signal-to-noise ratios, which will greatly increase the reusability and practicability of
the model. In addition, the simulation results show that the performanceoss in different
channel conditions is acceptable, that is, the DMD-JD detection algorithm trained on the
same channel has better adaptive performance. Later, what this paper aims to explain is
that 7 dB is an empirical parameter, which is obtained through repeated experiments.
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Figure 6. FTN detection performance results of different algorithm in the VA channel, MMSE
equalization, and the compression factor τ = 0.7.
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Figure 7. FTN detection performance results of different algorithm in the PB channel, MMSE
equalization, and the compression factor τ = 0.7.
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Figure 8. Compression factor τ = 0.7, fixed signal-to-noise ratio (7 dB) for training, and test perfor-
mance for the same multipath channel with different signal-to-noise ratios.

B. DMD-JD Detection Performance under Different Channel Training and Signal-to-Noise
Ratio Matching Conditions

As shown in Figure 9, the comparison is when the FTN signaling compression factor
τ = 0.7, the training data are generated from different channel states, and the test set uses
the TU channel moving speed of 30 km for testing. In the figure, different colors represent
different moving rates, and differentinearities represent different multipath channels. From
an overall point of view, the BER performanceoss of networks trained on different channels
for TU-30KM detection is about 0.3∼0.75 dB, showing good adaptability. It can be seen
that the TU channel has the worst effect when the mobile speed is 120 km. This may
be due to the existence of time selective fading caused by Doppler frequency shift, and
theneads to the poor matching of data set, resulting in the decline of BER performance.
The performance of the PB channel when the moving speed is 3 km is relatively poor
in Figures 9 and 10. The possible reason is that the moving speed of the PB channel is
relativelyow, and the delay spread of the channel is relatively small, which willead to the
relatively insufficient feature extraction of Doppler shift and frequency selectivity for its
training network. The two red curves represent the BER performance of a TU channel with
a moving speed of 60 km for training, and the performance of training with a VA channel
of 60 km has a small difference in the case of a higher signal-to-noise ratio. Therefore, the
difference in channel state is not the only reason thateads to the generalization ability of the
model. Time-selective fading and frequency-selective fading can also be used as features
that affect the BER.

What needs a special explanation here is that we compared the adaptive simulation
of FTN detection in multipath channels without using the channel equalization module.
We found that the detection effect is very poor when the equalization module is not used,
and the adaptability is almost nonexistent. The addition of equalization modules can not
only greatly improve the BER performance, but also enable the FTN signaling to have a
better matching relationship between the data sets in different multipath channels. The
significance is that when used in actual scenarios, even if the mobile terminal is in different
multipath channel switching states, it can still have a better bit error rate guarantee.
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The simulation content in Figures 9–11 are similar, the differenceies in the different
channels represented by the test set. The performanceoss is all within 0.7 dB.

0 2 4 6 8 10 12

E
b
/N

0
(dB)

10

10

10

10

B
E

R

TU-30km-train

TU-60km-train

TU-120km-train

PB-3km-train

VA-60km-train

10 10.2 10.4 10.6 10.8 11

10

10

10

Figure 9. Perform training in different channel environments under the condition of matching signal-to-
noise ratio, test with TU-30 km/h, performance under the condition of compression factor τ = 0.7.
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Figure 10. Perform training in different channel environments under the condition of matching signal-to-
noise ratio, test with VA-60 km/h, performance under the condition of compression factor τ = 0.7.
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Figure 11. Perform training in different channel environments under the condition of matching signal-
to-noise ratio, test with PB-3 km/h, performance under the condition of compression factor τ = 0.7.

5.2.4. The Impact of LSTM Network Structure on The Performance of FTN Signal Detection

From Figure 12, we can see the influence of the number of LSTMayers on FTN detec-
tion in multipath channels. Among them, the red curve represents a Single-Layer-LSTM
network, the black curve represents a Double-Layer-LSTM network, and the green curve
represents a Triple-Layer-LSTM network. It can be seen that for all simulated compression
factors, there are cases where the performance of the Double-Layer-LSTM is better than
the Single-Layer-LSTM and the Triple-Layer-LSTM. The main reason is that nonlinear
interference consists of two parts. Fewerayers are difficult to extract enough features, and
too manyayers can easilyead to overfitting of the trained network. In addition, an inter-
esting phenomenon was observed in the simulation, that is, as the compression factor τ
decreases, the ISI introduced by FTN becomes more and more serious, and the performance
of the Triple-Layer-LSTM is getting closer and closer to the Double-Layer-LSTM. This
shows that it may be more effective to use a more complex network in the case of a higher
compression rate.

In addition to comparing the influence of the number of LSTMayers, the performance
of traditional RNN and LSTM structures is also compared. As shown in Figure 13, the
red curve represents the result using the RNN structure, and the black curve represents
the result using the LSTM structure. It can be seen that under all simulated compression
factors, the performance of using LSTM is better than that of RNN, and the gain range is
between 0.35 dB to 1.4 dB. Compared with LSTM using the gate structure to control the
weight change in the network, the weight reusability during RNN training is too high, and
some slight changes will have a huge impact on the entire network so that it is difficult to
obtain appropriate network parameters.

As shown in Figure 14, the influence of the Uni-LSTM and the Bi-LSTM network
structure on FTN signal detection is compared. It can be seen that the overall Bi-LSTM
structure represented by the blackine is about 1.8 dB better than the Uni-LSTM represented
by the redine. This is because the interference of the FTN signaling comes from the previous
traversal and the subsequent traversal, and the unidirectional network cannot extract the
ISI from the backward propagation, which causes aarge performanceoss.
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Figure 12. Under the TU channel moving speed of 60 km/h, compare the impact of the number of
LSTM networkayers on performance.
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Figure 13. TU channel moving speed is 60 km/h, compare the performance of traditional RNN and
LSTM unit.
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Figure 14. Under the TU channel moving speed of 60 km/h, compare the performance of unidirec-
tional LSTM (Uni-LSTM) and bidirectional LSTM (Bi-LSTM).

5.2.5. Performance of DMD-JD Detection Algorithm in Multipath Channel under
QPSK Modulation

As shown in Figure 15, the FTN detection algorithm under the condition of QPSK
(4QAM) modulation and TU channel compression factor τ = 0.8 is compared. It can
be seen that the DMD-JD algorithm can also be improved by about 2 dB under QPSK
(4QAM) modulation.
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Figure 15. FTN detection performance of different algorithms is obtained by using QPSK (4QAM)
modulation, MMSE equalization and compression factor τ = 0.8 in TU channel.
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6. Conclusions

This paper proposes a DMD-JD FTN detection algorithm to solve the nonlinear aliasing
problem in FTN detection of multipath channels. This algorithm can not only achieve
better detection performance than traditional algorithms, but also hasower complexity
and stronger robustness. The transmission quality can be guaranteed in the scenario
of channel switching, making the practical application of FTN possible. The core of the
algorithm is that the use of data-driven methods can better fit the aliasing of nonlinear noise
withower complexity, and the use of model-driven methods can enhance the robustness
and generality of the algorithm on the basis of improving the performance.

The experimental results show that the DMD-JD algorithm performs well in FTN
signal detection, and the performance is improved by nearly 1.6 dB compared with the
traditional algorithm. Similar performance has been achieved in QPSK (4QAM) modula-
tion,aying the foundation for future work under high-order modulation. In addition, the
relatively optimal network model structure parameters of FTN signal detection are obtained
through simulation and comparison. Finally, we verify that the addition of equalization
modules makes the DMD-JD algorithm more robust and adaptable in multipath channel
transmission scenarios.

It is worth pointing out that in order to simply verify the performance gain of the FTN
detection algorithm, an ideal channel equalization method is used. In future work, we will
try to use the traditional channel estimation and equalization methods from the perspectives
of signaling processing and data driving to analyze the adaptability of compression factor,
FTN transmission under high-order modulation, and time-frequency two-dimensional
FTN signal detection.
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