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Abstract

The rodent homolog of the primate pulvinar, the lateral posterior (LP) thalamus, is

extensively interconnected with multiple cortical areas. While these cortical interac-

tions can span the entire LP, subdivisions of the LP are characterized by differential

connections with specific cortical regions. In particular, the medial LP has reciprocal

connections with frontoparietal cortical areas, including the anterior cingulate cor-

tex (ACC). The ACC plays an integral role in top-down sensory processing and atten-

tional regulation, likely exerting some of these functions via the LP. However, little is

known about how ACC and LP interact, and about the information potentially inte-

grated in this reciprocal network. Here, we address this gap by employing a projection-

specificmonosynaptic rabies tracing strategy todelineatebrain-wide inputs tobottom-

up LP→ACC and top-down ACC→LP neurons. We find that LP→ACC neurons receive

inputs from widespread cortical regions, including primary and higher order sensory

and motor cortical areas. LP→ACC neurons also receive extensive subcortical inputs,

particularly from the intermediate and deep layers of the superior colliculus (SC).

Sensory inputs to ACC→LP neurons largely arise from visual cortical areas. In addi-

tion, ACC→LP neurons integrate cross-hemispheric prefrontal cortex inputs as well as

inputs from higher order medial cortex. Our brain-wide anatomical mapping of inputs

to the reciprocal LP-ACC pathways provides a roadmap for understanding how LP and

ACC communicate different sources of information tomediate attentional control and

visuomotor functions.
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1 INTRODUCTION

The rodent homolog of the primate pulvinar, the lateral posterior

(LP) thalamic nucleus, is a higher order visual thalamic structure that

shares reciprocal connectivity with multiple visual, associational, and

frontal cortical areas (Adams et al., 2000; Juavinett et al., 2019; Scholl
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et al., 2020). The pulvinar/LP has been implicated in a broad range

of functions that extend beyond visual processing, including convey-

ing saccade-related activity, coordinating visually guided movements,

and mediating spatial attention (Kaas & Lyon, 2007; Kastner et al.,

2020; Robinson et al., 1986). Like the primate pulvinar, rodent LP is

organized into different subregions, eachwith preferential inputs from
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distinct subcortical and cortical areas along the visual hierarchy (Ben-

nett et al., 2019). LP has at least two subdivisions, each containing a

retinotopic map of visual space, with the posterior LP (pLP) driven by

superficial layer superior colliculus (SC) visual inputs and the anterior

LP (aLP) driven by visual inputs from the primary visual cortex (VISp)

(Beltramo & Scanziani, 2019; Bennett et al., 2019). A third LP subre-

gion, medial LP (mLP), has also been defined by its reciprocal connec-

tivity with frontal areas, including the anterior cingulate cortex (ACC)

and the orbito-frontal cortex (OFC) (Bennett et al., 2019). However, lit-

tle is known about the inputs to mLP-frontal cortex neurons and how

thesemight mediate the functions of this circuit.

Themedial pulvinar is one of the thalamic structures that has under-

gone the greatest expansion during evolution (Baldwin et al., 2017;

Kaas & Baldwin, 2019; Rosenberg et al., 2008). Medial pulvinar con-

nections with frontal and premotor areas are likely involved in higher

order visual cognition rather than early visual processing (Homman-

Ludiye & Bourne, 2019; Homman-Ludiye & Bourne, 2021; Romanski

et al., 1997).Mutual interactions between the pulvinar and the frontal-

parietal attention network regulate sustained and selective attentional

allocation during visual decision making (Rafal & Posner, 1987; Snow

et al., 2020; Kastner et al., 2020). Lesions or inactivation of the pri-

mate dorsal/medial pulvinar appear to impair visual decision making,

but performance in visual tasks remains intact followingmanipulations

to the tasks’ incentive structure and presumably attentional alloca-

tion (Komura et al., 2013;Wilke et al., 2013), suggesting that inactivat-

ing medial pulvinar does not impair simple visual processing. Further-

more, deficits in grasping and proprioception following dorsal-medial

pulvinar lesions have also been attributed to pulvinar interactionswith

premotor areas and primate frontal eye fields (FEFs) (Trojanowski &

Jacobson, 1974; Wilke et al., 2018), which are likely responsible for

coordinatingmotor strategies for orienting toward attended targets.

Attentional regulation and sensorimotor integration are complex

cognitive operations involving the integration of information from

more than just the visual areas. Yet, our understanding of the inputs

integrated by the pulvinar remains mostly restricted to its interac-

tion with visual structures and has been largely cortico-centric. Con-

sequently, understanding of the brain-wide and multimodal influences

on pulvinar/LP circuits is limited, particularly in rodents. Although

the medial pulvinar has been thought to be exclusive to primates

(Homman-Ludiye & Bourne, 2019; Rosenberg et al., 2008), the identi-

fication of a homologous rodent medial LP subregion with frontal cor-

tex interconnectivity (Bennett et al., 2019) suggests that rodentmedial

LP could have comparable brain-wide interactions as primates to sub-

serve potentially similar roles in sensorimotor integration and spatial

attention. Furthermore, while the fronto-parietal networks typical of

primates are less prominent in rodents, the rodent ACC and secondary

motor areas (MOs) have been associated with comparable sensori-

motor functions. Notably, a region of the rodent ACC/MOs has been

described as rodent “frontal orienting field” (FOF), in putative homol-

ogy to theprimateFEF, given theACC/MOsarea’s extensive connectiv-

ity with the SC and the visual areas (Zingg et al., 2014, but see Preuss

& Wise, 2021), as well as its functional involvement in controlling eye

movements (Sato et al., 2019) and other orienting actions (Ebbesen

et al., 2018; Huda et al., 2020).

Inputs from the rodent ACC/MOs region to the SC have also

recently been shown to control orienting andmotor biases (Huda et al.,

2020), and modulate visual perception (Hu et al., 2019). Indeed, the

fronto-parietal areas, the SC, and the pulvinar seem to constitute an

integrated network critical for attentional selection (Baleydier &Mau-

guiere, 1985; Snow et al., 2009). However, in spite of the top-down

influence of ACC/MOs upon the SC, the SC does appear not send any

direct input back to ACC/MOs. As with the pulvinar, the rodent LP can

potentially serve as one of the relays for SC input back to the frontal

areas. It remains anopenquestionwhether rodent LPconnectivitywith

the ACC/MOs region could parallel the SC-pulvinar-frontal/FEF net-

works described in primates (Baleydier &Mauguiere, 1985; Homman-

Ludiye & Bourne, 2019; Homman-Ludiye et al., 2019; Romanski et al.,

1997; Wilke et al., 2018). To address this gap, we sought to delineate

the anatomical network in which the rodent medial LP is embedded,

focusing on its connections with the ACC. Specifically, we comprehen-

sively mapped brain-wide inputs to reciprocal nodes of the LP→ACC

circuit, in order to understand: (1) the nature of inputs integrated by

LP, which influences its eventual output to higher order areas, such as

the ACC, and (2) inputs influencing top-down feedback from ACC to

LP, which can serve as a conduit for modulating visual or sensorimotor

processing (Hu et al., 2019). We show that the sources of inputs inte-

grated by medial LP and ACC are comparable to those of the medial

pulvinar described in primates (Baleydier &Mauguiere, 1985; Roman-

ski et al., 1997; Rosenberg et al., 2008). From the different comple-

ment of sources, we suggest that the top-down ACC→LP projection

may serve to provide spatial context or visuomotor instructions, while

the bottom-up LP→ACC circuit integrates multisensory information

and could serve as a route for SC feedback to frontal cortex.

2 MATERIALS AND METHODS

2.1 Mice and surgery procedures

All experiments were performed under protocols approved by theMIT

Institutional Animal Care and Use Committee and conformed to NIH

guidelines. A total of 20 C57BL/6J wild-type mice and four Vgat1-Cre

micewereused in theseexperiments,with sixmiceexcludeddue to lack

of fluorescent labeling in starter cell region. Mice of both sexes were

used in this study. Allmicewere group-housedon a12-h reversed light-

dark cycle before and after surgeries.

2.2 Viral injections and rabies tracing

Throughout stereotaxic surgeries, mice were maintained anesthetized

using isofluorane (4% for induction and 1% for maintenance) while

head-fixed on a stereotaxic frame. Viral injections were performed

using glass micropipettes and injected at a rate of 50–75 nl/min. After

injection, micropipettes were slightly withdrawn by 0.05 mm and then

left in place for 10–15min after injection tominimize nonspecific diffu-

sion of the virus along the needle track. After each surgery, the scalp

was tightly sutured and mice recovered on heated water-circulation

pad.
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To map reciprocal inputs between LP and ACC, anterograde and

retrograde tracers were simultaneously injected into medial LP in

a 1:1 mixture (AP: −1.9, ML: 1.2, DV: −2.65 mm from Bregma) of

retroAAV-hSyn-mCherry and AAV1-hSyn-eYFP (150 nl total). To con-

firm that medial LP neurons projected to ACC, CTB-Alexa Fluor 488

was injected in ACC (AP: +0.75, ML: 0.3, DV: 100 nl each at 1 and

0.5mm from pial surface).

To trace inputs to projection-specific populations, we used a

monosynaptic rabies tracing strategy where only cells projecting to a

target population would express proteins necessary for rabies virus

infection and retrograde transsynaptic spread (Lavin et al., 2019;Wick-

ershamet al., 2006). Briefly, Cre-recombinase-dependent transcription

of helper proteins for rabies infection and transynaptic spread allow

projection-specific targeting when Cre recombinase is present in the

starter cell region, which can be delivered by a retrograde AAV in the

projection target. For LP→ACC projections, retroAAV-Cre (Addgene:

105553-AAVrg, 2.1 × 1013 genome copies [gc]/ml) was first injected in

ACC (AP: +0.8, ML: 0.3 mm from Bregma, 150 nl each at DV: 1.25 and

0.75 mm from pial surface). AAV helper viruses contained a 1:1 mix-

ture of AAV-syn-FLEX-splitTVA-EGFP-tTA (Addgene: 100798-AAV1,

7.6 × 1010 gc/ml) and AAV1-TREtight-mTagBFP2-B19G (Addgene:

100799-AAV1, 6.5 × 1011 gc/ml), each diluted to viral titers as pre-

viously described (Lavin et al., 2019), and were injected in medial LP

(150 nl; AP: −1.8, ML: 1.2, DV: 2.6 mm from Bregma). After a week

to allow for viral expression, G-deleted rabies virus (200 nl; RVΔG-
4mCherry (EnvA), 9.53×1010 infectious units/ml)was injected into the

same LP site. For inputs to ACC→LP projections, retroAAV-Cre was

injected in medial LP. AAV helper viruses were injected in ACC (AP:

+0.8, ML: 0.5 mm from Bregma, 300 nl at DV: 1 mm from pial surface),

followed by rabies virus (300 nl) at the same site a week after AAV

injections.

In control experiments to test for cre-independent expression of

viral transgenes, we performed all above except injecting the same vol-

ume of sterile 0.9% NaCl instead of retroAAV-cre. To test for rabies

infection-independent labeling, an AAV construct without the G pro-

tein, AAV1-TREtight-mTagBFP2 (∼6.5 × 1011 gc/ml), was used instead

of AAV1-TREtight-mTagBFP2-B19G.

For mapping inhibitory inputs to LP, 100 nl of retroAAV-hSyn-

mCherry (Addgene: 50459-AAVrg, 1×1013 gc/ml) was injected into LP

(AP:−1.9, ML: 1.2, DV:−2.6mm fromBregma) of Vgat1-Cremice.

2.3 Histology and immunohistochemistry

Mice were deeply anesthetized before transcardial perfusion with 4%

paraformaldehyde (PFA) a week after rabies virus injection. The brains

were kept in 4% PFA overnight, and then transferred to phosphate

buffered saline for storage at 4◦C until sectioning. Hundred microm-

eters thick coronal sections were prepared on a vibratome (VT1200S,

Leica). With the exception of 8–10 slices in sections containing starter

cells (for LP→ACC inputs—AP relative to Bregma approximately:−1.6

to −2.3 mm; for ACC→LP inputs—AP: +0.5 to +1.2 mm), sections

were mounted upon slicing with Vectashield mounting medium with

DAPI. Starter cell slices from each brain sample were kept for fur-

ther immunohistochemistry to amplify the green fluorescent protein

(GFP) signal in regions containing starter cells. Sections were stained

with the primary antibody (Chicken anti-GFP) at 1:500 concentration

(overnight at 4◦C), and subsequently the secondary antibody (Donkey

anti-chicken Alexa Fluor 488-conjugate) at 1:200 concentration (4 h at

room temperature).

2.4 Confocal imaging

Slices were imaged with a Leica TCS SP8 confocal microscope using a

10X / 0.40 NA objective lens at 2X zoom. Full slices were acquired by

tiling reconstruction through the Leica Application Suite.

2.5 Image and data analysis

Slices were manually aligned to templates from the Allen Reference

Atlas (Mouse, Adult, 3D Coronal). Cells positive for mCherry outside

of the starter cell region were all manually counted and assigned to

regions as defined in the Allen Reference Atlas following alignment.

A small number of labeled cells (< 10 per brain) with astrocytic mor-

phology were excluded from input cell counts. For each brain sample,

the number of cells in a region was normalized as a percentage of all

counted cells outside the starter cell region.Wewereunable to identify

GFP-containing starter cells due to the lowviral titer optimized for dual

AAV transfection. Thus, after verifying that injections were targeted

to desired nuclei (LP and ACC) indicated by injection needle track, we

define the starter cell region as the full starter region (whole LP for

LP→ACC input tracing or whole ACC for ACC→LP input tracing) as

determinedafter atlas alignment. Plotsweregeneratedwithmatplotlib

(Python) and figures assembled on Adobe Illustrator. After manual cell

counts, percentage of input from each regionwas determined as a pro-

portion of all input cells within the single brain sample. The proportion

of input from each brain samplewas then averaged across subjects and

plotted as a group average.

3 RESULTS

3.1 Anatomical gradients of reciprocal LP→ACC
circuits

First, to examine the location of ACC-projecting LP neurons, we

injected the retrograde tracer CTB in both rostral and caudal ACC (see

below). Retrogradely labeled LP→ACCneuronswere densest inmedial

LP although sparser labeling of LP→ACC neurons was also observed in

lateral areas of LP (Figure 1a). Consistent with previous descriptions of

LP connectivity (Bennett et al., 2019), we found that LP→ACCneurons

were mostly located in anterior sections of medial LP. With the loca-

tion of LP→ACC neurons being densest about −1.8 mm posterior of

Bregma, we used this to guide subsequent LP injections. Injecting an
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F IGURE 1 Anatomical gradients of reciprocal LP→ACC circuits. (a1) Retrograde labeling fromACCwith fluorophore-conjugated CTB. (a2)
Injection site in ACC. (a3 and a4) CTB retrogradely labeled neurons in LP found inmedial subregions. (b1) Anterograde labeling of LP axons in ACC,
with injection inmedial LP. (b2–b4) LP axons in ACC spanning (b2)+0.15, (b3)+0.6, and (b4)+1.2mm anterior fromBregma. (c1) Retrograde
labeling of LP-projecting ACC neurons, with retrograde AAV injection inmedial LP. (c2–c4) ACC neurons projecting to LP spanning (c2)+0.15, (c3)
+0.6, and (c4)+1.2mm anterior fromBregma. (d1) Retrograde labeling of LP-projecting ACC neurons, with CTB injection inmedial LP. ACC
neurons projecting to LP at (d2)+0 and (d3)+1.0mm anterior fromBregma. (e) Quantification of ACC→LP projecting neurons along the
rostrocaudal axis shows peak projection density at about 0.75–0.85mm anterior to Bregma. Bars represent mean of n= 3mice. Individual lines
represent samples from eachmouse
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anterograde tracer (AAV1-hSyn-eYFP) inmedial LP, we found LP axons

throughout the rostro-caudal axis of the ACC and secondary motor

area (MOs) (Figure 1b). Thus, a relatively discrete region of LP pro-

vides the majority of inputs that span a large area of the ACC/MOs

cortex.

Retrograde tracing from LPwith retroAAV-mCherry (Figure 1c) and

CTB (Figure 1d) shows that ACC neurons project to LP from both lay-

ers 5 and 6. The rodent ACC spans a broad extent along the rostral-

caudal axis, which may contain anatomical and functional “gradients”

(van Heukelum et al., 2020) or even distinct areas. For example, caudal

ACC is more likely than rostral ACC to receive primary visual cortex

(VISp/V1) input, while rostral rather than caudal ACC receives greater

proportion of input from medial higher visual cortices (Huda et al.,

2020). As these anatomical gradients can influence the information

integrated by ACC neurons, we sought to identify where along the ros-

trocaudal axis the ACC neurons that project to LP predominate. We

injected retrograde AAV carrying fluorescent mCherry in medial LP

and quantified retrogradely labeled layer 5 and layer 6 ACC neurons

along the anterior-posterior axis (Figure 1c). We found LP-projecting

ACC neurons all along the rostral-caudal axis, from 0 to+1.5 mm from

Bregma, with peak density at about +0.8 mm (Figure 1d). Thus, the

peak of ACC→LP neurons did not strictly correspond to rostral or cau-

dal ACC—and may instead reflect the integrative nature of ACC input

to LP. Notably, the peak density of ACC→LP projections also included

areas of ACC/MOs that have been described as the rodent FOF (Ebbe-

sen et al., 2018; Zingg et al., 2014).

3.2 Mapping of inputs integrated by ACC→LP
neurons and LP→ACC neurons

We sought to map monosynaptic inputs specifically to ACC neurons

projecting to LP (Figure 2a,b) and LP neurons projecting to ACC

(Figure 2c,d), using a projection-specific monosynaptic rabies trac-

ing approach (Wickersham et al., 2007; Lavin et al., 2019). The trac-

ing strategy involved injecting retrograde AAV carrying Cre recom-

binase (retroAAV-cre) in the postsynaptic target region, LP or ACC

(Figure 2a,c). The retrograde transport of Cre-recombinase to the

source of the projection facilitated the Cre-dependent transcription

of transgenes encoding helper proteins necessary for rabies infec-

tion (TVA receptor) and transsynaptic spread (rabies G protein). G-

deleted rabies viruswas then injected at the site of projection, entering

starter cells expressing TVA receptors but only spreading transynapti-

cally from starter cells containing G. After a week to allow rabies virus

transsynaptic spread,wecharacterizedexogenous inputs toeachof the

projector populationsbyquantifying all rabies-infected cells (mCherry-

positive) outside of the starter cell region.

Within starter cell regions, the LP contained an average of 45.3

mCherry-labeled somas (putatively LP→ACC neurons). For ACC→LP

input mapping, the ipsilateral ACC and MOs contained an average

of ∼654 and ∼511 mCherry-labeled somas, respectively. However,

the number of ACC→LP neurons, or true starter cells, is expected

to be much lower due to inclusion of cells in all layers and the

strong recurrent local connectivitywithinACC (Figure4a–c). In control

experiments where helper and rabies viruses were injected without

retroAAV-cre, an average of 11 rabies-infected cells found in ipsilateral

ACC were found in the ACC→LP control (Figure 3d–f), while 0 rabies-

infected cells were found throughout the brain in the LP→ACC con-

trol (Figure3j–l), together indicating avery lowrateof cre-independent

expression of helper proteins.

Due to difficulty in unambiguously distinguishing starter and input

cells in ACC, we excluded all ACC and MO cells from the ipsilat-

eral hemisphere from quantification of exogenous inputs. Quantifying

brain-wide exogenous inputs, we found an average of∼7014 input cells

to ACC→LP neurons (n = 3 mice) and ∼1657 input cells to LP→ACC

neurons (n = 3 mice). In control experiments with no G protein com-

plementation to facilitate transsynaptic spread of the rabies virus, we

found rabies-infected cells only limited to the starter cell regions—

ipsilateral ACC/MOs for ACC→LP experiments (Figure 3b) and LP for

LP→ACC experiments (Figure 3h). The absence of rabies-infected cells

in regions outside of the starter cell region in absence of G protein

complementation suggests that input cells in the full experiments are

likely true inputs to the LP→ACC and ACC→LP populations, and that

artifactual labeling resulting fromoff-target anterogradeor retrograde

transport of helper viruses is minimal if at all under our experimental

conditions.

First, we sought to characterize the major brain areas sending

input to these projection cells, delineating input regions as defined

by the Allen Reference Atlas. An overview of the brain regions send-

ing inputs to ACC→LP and LP→ACC neurons is shown in Figure 2e.

Both ACC→LP and LP→ACC neurons received a substantial propor-

tion of their input from the cortex. The isocortex made up approx-

imately 62% of input to ACC→LP neurons, and 38% of input to

LP→ACC neurons (Figure 2e). ACC→LP neurons received subcorti-

cal inputs from diverse sources throughout the brain, with the tha-

lamus as the second dominant source of input to ACC→LP neurons

(9.4%of input), followed by the pallidum (7.2%). In contrast, subcortical

sources constituted a larger proportion of inputs to LP→ACC neurons

(62%), approximately half of which originate from midbrain sources

(29.9%).

3.3 Bilateral prefrontal and frontal cortex
connectivity dominates inputs to ACC→LP neurons

Consistent with the highly interconnected nature of prefrontal and

frontal areas, we found that a large proportion of inputs (32.6%of total

inputs and 52.5% of cortical inputs) to ACC→LP neurons were from

the prelimbic (PL), infralimbic (ILA), and the orbitofrontal cortex (ORB)

(Figures4a–c and5a). These areas sent input toACC→LPneurons from

both hemispheres, but predominantly from the ipsilateral cortex.

Outside of the ipsilateral ACC and MOs, rabies-infected cells were

found extensively in the contralateral hemisphere of these regions. The

abundance of contralateral ACC neurons labeled reflects the strong

recurrent connectivity within ACC and also the intra-ACC interhemi-

spheric information that ACC→LP neurons integrate. Interestingly,
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F IGURE 2 Whole-brain input tracing to ACC→LP neurons and LP→ACC neurons. (a) Rabies viral tracing strategy for ACC→LP neurons
involved retrograde transport of Cre recombinase injected in LP. Helper AAVswere injected in ACC for Cre-dependent expression of rabies helper
proteins. After a week, G-deleted rabies virus was injected in ACC. (b) Starter cell region (ipsilateral ACC) for ACC→LP input mapping. (c) Rabies
viral tracing strategy for LP→ACC neurons. Retrograde-AAV carrying Cre recombinase was injected in ACC, while helper viruses were injected in
LP. G-deleted rabies virus was injected in LP aweek after AAV injections. (d) Starter cell region (ipsilateral LP) for LP→ACC input mapping. (e)
Overview of brain regions projecting to ACC→LP (blue) and LP→ACC (magenta) neurons. Bars represent mean of n= 3mice, error bars show the
standard deviation, and circles represent samples from individual mice

these contralateral ACC inputs to ACC→LP neurons were densest

in the ventral subdivision of ACC (Figure 4c,d), which accounted for

12.6% of total inputs, and 56.8% of all contralateral cortical inputs to

ACC→LP neurons. In contrast, contralateral ACAd and MO neurons

represented 22.0% of total and 3.7% of all contralateral cortical inputs

to ACC→LP neurons. In sum, these findings indicate that the top-down

ACC→LP projections integrate inputs bilaterally and extensively from

frontal and prefrontal networks.

3.4 Cortical input distributions reflect top-down
and bottom-up nature of projections

We broadly categorized cortical inputs into sensory, associational,

motor, prefrontal, and orbitofrontal areas to examine the distribution

of functionalmodalities in the cortical inputs to the top-downACC→LP

neurons and bottom-up LP→ACC neurons. In general, LP→ACC
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F IGURE 3 Control experiments lacking G complementation or lacking cre recombinase for rabies tracing of inputs. (a–c) No
G-complementation control for mapping inputs to ACC→LP neurons. (a) Quantification of rabies-infected (mCherry-positive cells) in ACA region
in the experiment (+G, n= 3) and control (– G, n= 2). Error bars indicate standard deviation. (b1) Labeled cells found in ACA andMOs but not in
adjacent cortical regions. Scale bar= 250 µm. (b2)Magnified region in (b1). Scale bar= 125 µm.Magnified region of (b1) and (b2) with individual
fluorescent channels: (b3) mCherry (rabies-infected) (b4) BFP, and (b5) GFP (TVA).Without G protein complementation, there were no cells found
in regions other than ACA andMOs, including (c1) LP, (c2) RSP, and (c3) SC. (d–f) No retroAAV-Cre Control for mapping inputs to ACC→LP
neurons. (d) Quantification of rabies-infected (mCherry-positive cells) in ACA region in the experiment (+ retro-cre, n= 3) and control (– retro-cre,
n= 2). Error bars indicate standard deviation. Very few cells were found to have cre-independent labeling with low if any leak expression of
cre-dependent transgenes. (e1)Micrographs showing a labeled cell found in ACAd. Scale bar= 500 µm. (e2)Magnified region in (e1). Scale
bar= 250 µm. (f1 and f2) No labeled cells found in adjacent cortical regions and ACC regions. (g–i) No G-complementation control for mapping
inputs to LP→ACC neurons. (g) Quantification of rabies-infected (mCherry-positive cells) in LP in the experiment (+G, n= 3) and control (– G,
n= 2). Error bars indicate standard deviation. (h1) Labeled cells found in LP but not in any other regions. Scale bar= 500 µm. (h2)Magnified region
in (h1). Scale bar= 250 µm.Magnified region of (h1) and (h2) with individual fluorescent channels: (h3) mCherry (rabies-infected), (h4) BFP, and
(h5) GFP (TVA).Without G protein complementation, there were no cells found in regions other than LP, including (i1) ACA andMOs, (i2) SC and
(i3) RSP. (j–l) No retroAAV-Cre Control for mapping inputs to LP→ACC neurons. (j) Quantification of rabies-infected (mCherry-positive cells) in LP
in the experiment (+ retro-cre, n= 3) and control (– retro-cre, n= 2). Error bars indicate standard deviation. No cells were found to have
cre-independent labeling with low if any leak expression of cre-dependent transgenes, (k) no rabies-infected cells in all regions shown in section.
Scale bar= 500 µm. (l1) No rabies-infected cells found inmLP. Scale bar= 500 µm. (l2)Magnified region in (l1). Scale bar= 250 µm
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F IGURE 4 Frontal, prefrontal, and retrosplenial inputs to ACC→LP neurons. (a) Micrographs showing inputs from dorsal ACC, PL, ORB areas,
and the agranular insula cortices. (b and c) Inputs to ACC→LP neurons include contralateral ACC, particularly ventral ACC. (d) Comparison of
proportions of cells found in each hemisphere in ACA subregions andMOs, the values are taken as a percentage to all cells counted in each
ACC→LP experimental animal. Bars represent mean of n= 3mice, error bars indicate the standard deviation, and circles represent samples from
individual mice. (E and f) Retrosplenial cortex inputs to ACC→LP neurons can arise from all retrosplenial subregions. Scale bars= 250 µm

neurons received inputs from a greater diversity of cortical areas than

ACC→LP neurons. As described above, prefrontal areas dominated

inputs to ACC→LP neurons. This was followed by inputs from asso-

ciational areas (18.4%) (Figure 5a,c). In particular, these inputs were

starkly dominated by inputs from the retrosplenial cortex, which rep-

resented almost all of the input from associational areas (Figure 5c).

Inputs from primary and higher order sensory areas represented 8.4%

of inputs toACC→LPneurons (Figure5a,e). In contrast, consistentwith

the bottom-up nature of LP→ACC projections, sensory cortices rep-

resented the majority of cortical inputs, while prefrontal and associa-

tional areas contributed to 8.4% and 6.1% of total input to LP→ACC

neurons (Figure 5b,d).
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F IGURE 5 Cortical inputs to ACC→LP and LP→ACC projectors. (a and b) Distributions of the functional domains of cortical inputs to
ACC→LP (A) and LP→ACC (B) neurons. (c and d) Cortical inputs to ACC→LP (c) and LP→ACC (d) neurons sorted by functional domains. These
inputs are represented with a circle with radius proportional to the percentage of total inputs it represents for each layer, and also as a whole
region with all layers summed (mean of n= 3mice)

Reciprocal inputs from ACC to LP→ACC neurons were found all

along the anterior-posterior axis ofACC (Figure6a–d) and represented

5.5%of total input (Figure 5d).Most of the other prefrontal inputs orig-

inated from the secondary motor cortex (MOs) and the prelimbic cor-

tex (PL) (Figures 5d and 6a–d), with minimal inputs from the infral-

imbic cortex. Associational cortex inputs to LP→ACC neurons were

largely from the posterior temporal association area (TeA), ectorhinal

cortex (ECT) (Figures 5d and 6e), and the retrosplenial cortices (RSP)

(Figures 5d and 6f). Notably, these associational areas are all known

to have visually driven activity, particularly in response to visuospatial

cues and other higher order visual features (Fischer et al., 2020; Nishio

et al., 2018; Powell et al., 2020). In sum, similar to ACC→LP neurons,

LP→ACC neurons receive common association cortex input from ret-

rosplenial areas, albeit to a lesser extent. Instead, LP→ACC neurons

additionally received a broader range of association cortex inputs from

temporal cortical areas likely involved in visuospatial andmultisensory

integration.

3.5 Asymmetric sensory cortical contributions
to the reciprocal LP→ACC circuit

We next examined the sensory modalities that made up sensory cor-

tical inputs to these projector populations. Apart from input originat-

ing from visual areas, LP→ACC neurons also received substantial cor-

tical input from primary auditory (Figure 6g) and somatosensory areas

(Figure 5h). In fact, when considering cortical areas by their domi-

nant modality, the different sensory modalities (visual, auditory, and

somatosensory) appeared to send comparable proportions of input to

LP→ACC neurons (Figure 5f), arguing for a multimodal associational
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F IGURE 6 Cortical inputs to LP→ACC neurons. LP→ACC neurons receive cortical inputs from (a–d) prefrontal areas ACC, PL, andMOs, scale
bars= 250 µm. (e) Temporal association cortical areas TeA and ectorhinal cortex, scale bar= 125 µm. (f) Retrosplenial areas, scale bar= 125 µm. (g)
Auditory cortex and (h) somatosensory cortex, scale bars= 250 µm

nature of information integrated and relayed by the medial LP region.

Furthermore, inputs from the higher order sensory areas (e.g., VISpm

andAUDv)were generally greater than from theprimary sensory areas

(VISp and AUDp). Thus, the sensory information received by LP→ACC

neurons is unlikely to encode simple sensory features, and involves the

integration of information from multisensory sources. In contrast, the

direct sensory cortical inputs to ACC→LP neurons (Figure 5e) were

dominated by visual cortices (Figure 5f), although it is likely that cross-

modal information is conveyed indirectly via associational cortex input

and other ACC neurons. In summary, when considering inputs from

sensory cortices, the LP→ACC pathway integrates much more multi-

modal input, while the ACC→LP pathway is dominated by the visual

modality.

Both LP→ACCandACC→LP neurons appeared to receive predomi-

nantly higher order visual cortical input rather than fromprimary visual

cortex (Figure 5e,f). When comparing inputs from specific visual areas
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F IGURE 7 Visual cortical inputs to ACC→LP and LP→ACC projectors. (a–c)Micrographs showing inputs to ACC→LP neurons (a) VISp, (b)
VISa and VISam, (c) VISp and VISpm. (d–f) Micrographs showing inputs to LP→ACC neurons (a) VISp and VISrl, (b) VISa, and (c) VISam. Scale
bars= 125 µm. (g and h) Distribution of inputs from different visual cortical areas to ACC→LP (g) and LP→ACC (h) projectors

that surround VISp, ACC→LP neurons largely received input from the

medial higher order visual cortical areas, predominantly VISam and

VISpm (Figures 5c, 7a–c, and 7g). VISam was also the largest visual

cortical input source for LP→ACC (2.3% of total input) neurons, but

LP→ACC neurons also received substantial input from more higher

order visual cortices than ACC→LP neurons (Figures 5d and 7d–f).

Parts of VISrl and VISa overlap with a region that many rodent stud-

ies have defined as the posterior parietal cortex (Goard et al., 2016;

Lyamzin&Benucci, 2019; Pho et al., 2018), and representation of these

areas may reflect how the pulvinar is embedded in the frontal-parietal

network (Zhou et al., 2016). To summarize, medial higher visual areas

provide greatest input to both LP-ACC andACC-LP neurons, but visual

cortical input to LP-ACC neurons comes from a greater diversity of

areas.

3.6 Subcortical inputs to ACC→LP neurons arise
predominantly from areas regulating arousal and
spatial cognition

In the rostral pallidum, ACC→LP neurons receive input from the lateral

septum (LS, Figure 8a,b), a limbic structure involved in the regulation of
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F IGURE 8 Subcortical inputs to ACC→LP neurons. (a and b) Inputs from the lateral septal area. (c1, c2, and c3) Claustral inputs span the
anterior–posterior axis. Scale bars= 100 µm. (d–g) Thalamic inputs to ACC→LP neurons are largely from the anterior thalamic nuclear group,
submedial thalamus (SMT), and lateral group. Scale bars (except (c))= 250 µm

arousal, spatial cognition, as well as motivationally driven movements

and actions (Wirtshafter &Wilson, 2021). From themidbrain, the dom-

inant source of input toACC→LP is the ventral tegmental area, indicat-

ing that the ACC→LP network also receives mesocortical (presumably

dopaminergic) input.

Another input involved in arousal regulation is the claustrum (CLA),

which is characterized by reciprocal connections with all cortical areas

(Chia et al., 2020; Zingg et al., 2014; Zingg et al., 2018) and sharesmany

functions also attributed to the frontal-parietal-pulvinar network, such

as salience processing and top-down attention (Mathur, 2014; White

et al., 2018). While claustral inputs alone made up just 2.5% of total

input to ACC→LP neurons, they were found consistently throughout

the rostrocaudal axis in the ipsilateral hemisphere (Figure 8c1–c3).

The distribution of thalamic input to ACC→LP neurons was con-

sistent with known thalamic inputs to the ACC itself (Zhang et al.,

2016), with thalamic inputs dominated by nuclei in the anterior nuclear

group (particularly the anteromedial [AM] nucleus) and the submedial

thalamus (Figure 8d). Other prominent thalamic inputs included

the arousal-regulating central lateral (CL) thalamic nucleus (Redin-

baugh et al., 2020; Schiff, 2008), as well as motor thalamic structures
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receiving basal ganglia outputs, including the lateral anterior ventral

nucleus (VAL) and ventral medial thalamus (VM) (Figure 8d,e), and

parafasicular thalamus (PF, Figure 8f). Reciprocal inputs from LP were

present along the medial aspects in anterior LP (Figure 8g) but were

not as numerous as inputs from other anterior thalamic nuclei. This

highlights the fact that ACC→LP input is likely more than simple

feedback of LP→ACC input. Instead, the densest thalamic input to

ACC→LP neurons was from the anterior thalamic nuclei, which play

important roles in regulating memory encoding and spatial cognition

(Jankowski et al., 2013; Roy et al., 2021). Taken together, ACC→LP

neurons integrate subcortical inputs predominantly from arousal-

regulating areas (e.g., claustrum, CL, and VM) and areas involved in

memory and spatial cognition (e.g., anterior thalamic nuclei and LS),

whichmay specify behavioral contexts for top-downmodulation.

3.7 Tectal input to LP→ACC neurons arises
predominantly from intermediate and deep
layers of SC

LP→ACCneurons received approximately 62%of input cells from sub-

cortical structures; of these, the SC is the pathway’s largest single sub-

cortical input source (Figure 9a), constituting 13.2% of total anatom-

ical input to LP→ACC neurons. The SC is made up of multiple inter-

connected layers composed of distinct cell types and is well-known

to be an input to the pulvinar/LP (Beltramo & Scanziani, 2019; Ben-

nett et al., 2019; Stepniewska et al., 2009). Recent work has revealed

that LP, particularly its posterior subregion, receives significant visual

input from the superficial layers of the SC, which receive direct reti-

nal input (Beltramo & Scanziani, 2019; Bennett et al., 2019). However,

LP→ACC neurons are located in anterior and medial LP subregions

that do not appear to receive substantial superficial SC input. As such,

we explored the laminar origins of SC inputs in more detail to deter-

mine if the SC inputs were likely to be of visual origin, or from multi-

sensory and motor-related SC layers. With finer layer-specific quan-

tification of SC input, we found that more than 90% of SC inputs to

LP→ACC neurons instead originated from the intermediate and deep

SC layers (Figure 9b,c), which are more strongly associated with motor

andmultisensory functions (Lee et al., 2020). SC also has different pro-

jection zones along its mediolateral axis that differ in their comple-

ment of cortical inputs (Benavidez et al., 2021).We note that SC inputs

to LP→ACC neurons were mostly found along the midline, the zone

of SC that receives the most visual cortical and retrosplenial inputs

(Benavidez et al., 2021). A small proportion of SC inputs were also

labeled in the contralateral SC, although ipsilateral projections domi-

nated (Figure 9b).

Within the thalamus, LP→ACC neurons received inputs from TRN

and the ventral lateral geniculate nucleus (LGv) (Figure 10a), which

likely serves as intrathalamic sources of inhibition (see next section).

LP→ACC neurons also received abundant inputs from the pretectal

areas, specifically the anterior pretectal nucleus (APN), nucleus of the

posterior commissure (NPC), and posterior pretectal nucleus (PPT)

(Figure 10a,b). These pretectal areas receive direct retinal input and

are involved in the control of oculomotor functions and ocular reflexes,

such as the pupillary light reflex and optokinetic reflex (Carpenter &

Pierson, 1973; Levine & Schwartz, 2020; Masseck & Hoffman, 2009).

In the caudalmidbrain and hindbrain, LP→ACCneurons received some

sparse input from the periaqueductal gray (Figure 10c–e). Sources of

cholinergic inputs, such as the laterodorsal tegmental nucleus (LDT,

Figure 10d) to the thalamus, also send input to LP→ACC (Huerta-

Ocampo et al., 2020). LP→ACC neurons also receive input from the

midbrain reticular nucleus (Figure 10f) that controls motor functions,

including, but not limited to, eye movements. Pontine areas send

sparse input to LP→ACC neurons from the parabrachial nucleus (PB,

Figure 10h) and the pontine reticular formation (PRF, Figure 10h).

Thus, the mid and hindbrain inputs to LP-ACC neurons appear to pre-

dominantly be sources of oculomotor and other movement-related

activity.

3.8 Subcortical inputs to LP→ACC neurons
include long-range inhibitory sources

As a higher order thalamic nucleus, LP is expected to receive its driv-

ing input from the cortex (Bickford, 2016; Guillery & Sherman, 2002).

Consistentwith this notion, LP firing is strongly suppressed during cor-

tical silencing of the visual cortices (Beltramo & Scanziani, 2019; Ben-

nett et al., 2019). However, we found that the number of subcorti-

cal inputs outnumbered cortical inputs to LP→ACC neurons by about

20% (Figure 2e). This is likely explained by the contribution of numer-

ousmodulatory subcortical inputs withweak excitatory drive. Alterna-

tively, it is possible that some of these subcortical inputs instead pro-

vide inhibitory input.

Indeed, a major source—the second largest subcortical source—of

input to LP→ACC neurons was the zona incerta (ZI) (8A, 9A), a sub-

thalamic structure that sends strongGABAergic inputs to higher order

thalamic nuclei (Bartho et al., 2002). As such, we asked whether other

subcortical regions provided inhibitory inputs to LP-ACC neurons.

As our projection-specific rabies tracing strategy did not allow us

to distinguish between excitatory and inhibitory input cell types, we

performed a separate set of anatomical tracing of inputs to LP, specif-

ically in Vgat1-Cre mice. To target Vgat1-positive inhibitory inputs to

LP, we injected retrograde AAV carrying Cre-dependent fluorophore,

mCherry (Figure 11a). Several subcortical structures identified as

inputs to LP→ACC neurons were also labeled as Vgat1-positive inputs

to LP. As expected, within the thalamus, the inhibitory thalamic retic-

ular nucleus (RT) was labeled as an inhibitory source (Figure 11c).

Inhibitory inputs were also found to originate from the ventral LGN

(LGv, Figure 11b,d,e). In addition, sparse Vgat1-positive cell bodies

were observed in LP anddorsal LGN (LGd), particularly along thedorsal

aspects within the nuclei. These are likely thalamic inhibitory interneu-

rons,which are relatively sparse and typically restricted to visual nuclei

in the rodent thalamus (Evangelio et al., 2018). Thus, intrathalamic inhi-

bition of LP neurons can come from RT, LGv, and to a more limited

extent, from local LP interneurons. Vgat1-positive cell bodies in the

thalamus were found almost exclusively in the hemisphere ipsilateral
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F IGURE 9 Tectal and pretectal midbrain inputs to LP→ACC neurons. (a) Distribution of midbrain and hypothalamic inputs to LP→ACC
neurons. (b)Micrograph showing laminar distribution of superior colliculus inputs to LP→ACC neurons and (c) its quantification. Bars represent
mean of n= 3mice, and circles represent samples from individual mice. Scale bars= 250 µm

to the retrograde injection. However, at least some of the brain-wide

inhibitory inputs to LP also project to the contralateral thalamus, as

Vgat1-positive axon collaterals could be seen in the contralateral hemi-

sphere (Figure 11d).

Other areas identified as potential sources of inhibitory inputs

to LP→ACC neurons included pretectal areas, such as the NPC

(Figure 11f) and APN (Figure 11g) in addition to the zona incerta (ZI,

Figure 11h), where GABAergic neurons are the major cell type (Giolli

et al., 1985). While the SC is also a potential source of long-range

inhibitory input (Takahashi et al., 2005),we found that theSCcontained

only Vgat1-positive axon collaterals but not cell bodies (Figure 11i),

suggesting that SC input to LP is likely not inhibitory. The presence of

axonal labeling in SC also indicates that some of the inhibitory pro-

jections to LP collateralize beyond the thalamus to include the ipsi-

lateral SC. Together, these findings reveal several specific long-range

inhibitory inputs to LP that potentially shape its functional responses,

including those conveyed to ACC.

4 DISCUSSION

Our study provides a comprehensive anatomical overview of inputs

integrated by the rodent reciprocal LP→ACC circuit (Figure 12).

The pulvinar/LP has been established as a hub-like structure with
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F IGURE 10 Midbrain and hindbrain inputs to LP→ACC neurons. Inputs to LP→ACC neurons from (a) ZI, LGv, and the APN, (b) pretectal areas,
(c) SC and reticular formation. (d) Superior and inferior colliculi and the cholinergic laterodorsal tegmentum (LDT). Scale bars= 250 µm. (e)
Periaqueductal gray (PAG), (f) midbrain reticular nucleus (MRN), (g) parabrachial nucleus (PB), and (h) pontine reticular nucleus (PRN). Scale
bars= 100 µm

extensive reciprocal connectivity with many cortical regions (Bennett

et al., 2019; Bridge et al., 2016; Kaas & Lyon, 2007; Shipp, 2003). Our

brain-widemapping of inputs to the circuit establishes not only the cor-

tical areas that can influence LP→ACC interactions but also highlights

the important subcortical contributions. These data position LP as a

site of convergence for both cortical and subcortical inputs that is con-

veyed not just to the sensory cortices but also to prefrontal areas such

as the ACC to potentially exert top-down influence (Bollimunta et al.,

2018; Hu et al., 2019). The inputs integrated by the ACC→LP path-

way, particularly the proportion of prefrontal and frontal inputs, sug-

gest strong incorporation of prefrontal local computations with a role

for top-down priorities conveyed by the ACC. These behavioral priori-

ties also likely incorporate spatial contexts (Aggleton et al., 2010) from

another strong source of input to ACC→LP neurons, the retrosplenial

areas. ACC→LP projections also receive abundant interhemispheric

inputs locally within ACC and from other prefrontal areas. In turn,

the LP relays predominantly sensorimotor andmultimodal information

to ACC. This is evident from the extensive inputs from sensorimotor-

associated layers and zones of the SC, pretectal areas, as well as inputs

from sensorimotor cortices, such as the parietal areas (including VISa
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F IGURE 11 Inhibitory (Vgat1-positive) inputs to LP. (a) Retrograde labeling of inhibitory inputs to LP, with injection of AAV carrying
Cre-dependent fluorescent tracer in LP of a Vgat1-Cremouse. (b) Vgat1-positive axons in LP, and cell bodies in LGv. (c) Intrathalamic inhibition
from the thalamic reticular nucleus (RT). (d) Vgat1-positive cell bodies in ipsilateral APN and LGv. Sparse interneuronal labeling in LP and LGd.
Vgat1-positive axons in contralateral thalamus. (e) Vgat1-positive inputs from LGv. (f) Sparse inhibitory inputs from both hemispheres of the
nucleus of the posterior commisure (NPC). (g) Vgat1-positive inputs from the anterior pretectal nucleus (APN). (h) Inhibitory inputs from the zona
incerta. (i) Vgat1-positive axons but not cell bodies in ipsilateral SC. Scale bars= 250 µm

andVISam) and the retrosplenial cortex.Higherorder sensory informa-

tion from these areasmay combinewith inputs about eye and orienting

movements, from the tectal and pretectal areas, to contribute to speci-

fying spatial contexts formodulation and coordinating spatial selective

attention.

4.1 Recurrent local ACC inputs to ACC→LP
neurons

ACC→LP neurons were found to have many local inputs from within

ACC, with many found in the contralateral ACC, suggesting that

top-down ACC→LP input incorporates information from both hemi-

spheres. We also observed that the contralateral ACC inputs mostly

clustered in the ventral ACC. Although we lack consensus regarding

rodent ACC and its subdivisions (van Heukelum et al., 2020), corti-

cal connectivity-based models suggest the ventral ACC subdivision,

as mapped to the Allen Reference Atlas, may be additionally involved

in a medial subnetwork important for relaying spatial information

from the dorsal subiculum to the mPFC (Zingg et al., 2014). Mod-

els of pulvinar function show that interhemispheric competition can

explain some deficits in distractor filtering following pulvinar lesions

(Jaramillo et al., 2019); unilateral pulvinar microstimulation leads to

cortical activation in both hemispheres (Kagan et al., 2021), suggest-

ing that pulvinar activation is likely to involve both hemispheres and its

function involves cross-hemispheric communication. Interhemispheric
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interaction of ACC and ACC→LP projections is particularly interesting

in context of work showing that transcranial magnetic stimulation of

the frontoparietal area biases spatial attention to shift to the contralat-

eral visual space (Kinsbourne, 1977; Szczepanski&Kastner, 2013). Fur-

thermore, hemispatial neglect of contralesional space due to unilateral

pulvinar inactivation could be partly alleviated by the presence of an

asymmetrically larger reward in the contralesional space (Wilke et al.,

2013), highlighting the powerful role of top-downmodulation in prior-

itizing visual space. Further investigation into ACC as a source of inter-

hemispheric information incorporated into pulvinar circuits is likely to

be an important step forward in understanding the control of spatial

attention.

4.2 Asymmetric representation of sensory
modalities in LP→ACC circuits

The top-down ACC→LP projection and bottom-up LP→ACC projec-

tion differ in the sensory modalities represented in their input. When

considering only inputs along the sensory domain, LP→ACC neurons

receive input from broadlymultisensory cortical and subcortical areas,

whereas ACC→LP neurons receive predominantly visual input. We

find that the higher visual cortical input to LP→ACC neurons is con-

sistent with previous reports of medial LP neurons generally having

broader visual tuning to oriented gratings but greater responsiveness

to complex visual stimuli, such as pattern motion (Foik et al., 2020).

Compared to the range of visual cortical inputs to LP→ACC neurons,

ACC→LP neurons receive visual cortical activity from more restricted

areas, specifically VISp, VISam, and VISpm. As such, the LP input to

ACC is able to provide ACC with information from a greater range

of visual cortical areas. Activation of ACC→LP and ACC→SC projec-

tions improves performance inmice performing a visual discrimination

F IGURE 12 Overview of inputs to ACC→LP and LP→ACC
neurons. Blue arrows represent inputs to ACC→LP neurons. Magenta
arrows represent inputs to LP→ACC neurons.Weight of the arrows
reflects projection-specific relative proportion of inputs (not to scale)
and should only be comparedwithin projections (blue for ACC→LP
andmagenta for LP→ACC)

task (Hu et al., 2019), whereas suppressing ACC-SC activity improves

contraversive orienting behavior in mice performing ball rotations in

response to visual stimuli in the contralateral or ipsilateral hemifield

(Huda et al., 2020). Downstream ACC projections thus link vision to

action, and the role of ACC-LP projectionsmay be to provide top-down

signals for action selection.

The LP→ACC projection is more multimodal and did not exhibit a

strong bias for visual inputs over other sensory modalities. In nonhu-

man primates, the medial pulvinar is the most broadly multisensory

pulvinar subregion, with examples of responsiveness to complex visual,

auditory, and somatosensory stimuli (Gattass et al., 1978; Homman-

Ludiye & Bourne, 2021; Yirmiya &Hocherman, 1987). The somatosen-

sory system appears to be strongly represented among LP→ACC

inputs and could reflect the embedded functions of the parietal cor-

tices in this network, where there is also integrated processing of mul-

timodal information (Mohan et al., 2019; Runyan et al., 2017). In human

subjects, impaired performance in a visual target detection task under

sedation with noradrenergic a2 agonists is partly rescued by the pres-

ence of loud auditory white noise in a manner that appears dependent

onmedial pulvinar activation (Coull et al., 2004). The cross-modal inter-

action may not be restricted to visual perception, as rodent LP activa-

tion has also been found to sharpen auditory frequency tuning in pri-

mary auditory cortex, particularly in the presence of noise (Chou et al.,

2020).

4.3 LP as a bottom-up integrator of subcortical
inputs

Although the distribution of cortical inputs to LP→ACCneurons shows

that higher sensory and associational cortical information is integrated

by these neurons, LP→ACC neurons still receive substantial subcorti-

cal input, some of which provide inhibitory control.

The largest extrathalamic inhibitory source to LP→ACC neurons is

the ZI, which has direct reciprocal connectionswith the cortex (Chen&

Kriegstein, 2015) and the SC (May & Basso, 2018). The ZI is a hetero-

geneous structure, and the GABAergic projections from ZI have been

associated with various approaches and avoidance behaviors (Ahmad-

lou et al., 2021; Chou et al., 2018; Zhao et al., 2019). ZI projections to

a closely related thalamic nucleus, the POm, have been shown to gate

somatosensoryactivity inPOm(Trageser&Keller, 2004;Trageser et al.,

2006) and regulatenocifensivebehaviors (Wanget al., 2020). ZI projec-

tions to pulvinar/LP have been much less studied, but will be an inter-

esting avenue for future research. The ZI also has extensive connec-

tions with another major source of inhibitory inputs to LP→ACC neu-

rons, the APN (Giber et al., 2008), and receives cholinergic inputs from

brainstem PPN and LDT that can cause thalamic disinhibition via the

ZI (Trageser et al., 2006). Thus, the subcortical inputs to LP→ACC neu-

rons are extensively interconnectedwithmultiple paths to LP.We note

that these subcortical inputs to LP→ACC neurons are also not unique

to this projection, and have also been identified in LP inputs to VISal

andVISpm (Blot et al., 2021), and are thus likely to influence LP activity

as a whole.
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4.4 Collicular influences on LP–ACC interactions

Wefound that the SC is the single largest subcortical sourceof anatom-

ical input to LP→ACC neurons. However, unlike other LP subregions

(Beltramoet al., 2019; Bennett et al., 2019), these collicular inputs orig-

inate not from the superficial retino-recipient layers of SC but from

medial intermediate and deep layers. In primates, intermediate and

deep SC also serve as the primary source of subcortical input to the

medial pulvinar (Benevento & Standage, 1983). Notably, SC inputs to

LP→ACC neurons aremostly found alongmedial SC. Interestingly, this

SC projection zone receives a distribution of cortical inputs that cor-

responds to visuomotor areas with the highest density of inputs from

visual cortical areas, ACC, RSC, TeA, and parietal inputs (Benavidez

et al., 2021)—all major areas embedded in the bidirectional LP-ACC

network we delineated.

Intermediate and deep layers of SC are not directly retino-recipient,

and also have responses to a greater range of sensory modalities (Ito

et al., 2017; Lee et al., 2020). The SC plays a major role in orient-

ing and reaching movements, with eye and head orienting movements

being of particular relevance to the pulvinar circuitry (Gandhi & Kat-

nani, 2011; Zénon & Krauzlis, 2012; Basso & May, 2017; Huda et al.,

2020). ACC inputs to superficial SC modulate visual responses in V1

(Hu et al., 2019), while ACC inputs to intermediate and deep SC pro-

jections decrease contraversive and increase ipsiversive actions (Huda

et al., 2020). Since the SC does not project directly to ACC, the LP

may serve as one of the feedback pathways for ACC-SC circuits. Mul-

tiple human and nonhuman primate studies implicate the pulvinar, SC,

FEFs, and ACC together in attentional orienting (Rafal & Posner, 1987)

and oculomotor functions (Schneider et al., 2020). Together with the

abundance of pretectal inputs to LP→ACC neurons, it is likely that

intermediate and deep layer SC inputs to medial LP in rodents are

also involved in visuomotor orienting. Beyond orienting, the interme-

diate layer SC input to LP has been identified to be critical for mediat-

ing behavioral responses to visually evoked threat (Wei et al., 2015),

with LP serving a critical relay for medial (but not lateral) interme-

diate SC layer input to the lateral amygdala. Deep and intermediate

SC input on innate visual threats may also be relayed to ACC via the

LP to serve as a rapid parallel pathway for the salient visual threat

before various steps of visual processing, to signal different atten-

tional priorities or coordinate orienting eye movements toward the

threat.

4.5 Technical considerations

Our study mapped inputs to ACC→LP and LP→ACC projector pop-

ulations by aligning DAPI-stained imaged coronal brain sections to

the Allen Reference Atlas using cytoarchitectonic landmarks. Cell

counts within regional boundaries and cortical laminar assignments

were defined by alignments to the atlas which represent an average

across many mice. Boundaries, such as those between individual tha-

lamic nuclei and between different visual cortical areas, nonetheless

vary across individual mice. Precise assignment of regional bound-

aries can only be achieved by further functional or molecular charac-

terization. As such, we caution that cell counts between tightly adja-

cent regions may be inevitably conflated and more challenging to

compare.

Although ACC→LP projections originate from both layers 5 and

6, it is important to point out that tropism of retrograde-AAVs used

in our rabies tracing approach preferentially transfects layer 5 over

layer 6 neurons (Figure 1c,d). Thus, the mapped inputs to ACC→LP

starter cells likely represent inputs to a greater proportion of layer

5 than to layer 6 ACC→LP neurons. As corticothalamic projections

from layers 5 and 6 can have different functional impact on tha-

lamic neurons (Kirchgessner et al., 2020; Kirchgessner et al., 2021;

Usrey & Sherman, 2018), it will also be important for future work

to compare how inputs to top-down ACC→LP drivers and modula-

tors may differ. Indeed, layer 5 ACC→LP neurons may also have col-

laterals in other subcortical structures, such as the SC (Hu et al.,

2019), while layer 6 projections are exclusively corticothalamic—these

laminar-defined projections could be embedded in distinct interacting

subnetworks.

Although our study mapped inputs specific to ACC→LP and

LP→ACCprojector populations, eachof theseprojectionsmayalso col-

lateralize tomultipledownstreamtargets. For example, at least someof

layer 5 ACC→LP neurons also simultaneously project to SC (Hu et al.,

2019), while LP neurons projecting to ACC often also extend axons to

multiple other cortical regions, particularly medial higher visual areas

(Nakamura et al., 2015). As such, the inputs integrated will also likely

impact a larger network to which the neurons simultaneously project.

The multiple parallel pathways embedded in the ACC→LP network

could be critical in coordinating synchronous activity across areas and

speak to the integrated nature of their proposed functions.

Finally, we note that in our ACC→LP experiment, we found sparse

artifactual labeling of some midbrain sources such as the SC that are

not known to have direct cortical projections. It is possible that antero-

grade transductionofAAVhelper viruses fromACCto thalamic regions

could lead to small numbers of starter cells outside of the cortex. Our

control experiments where transsynaptic spread is prevented by pro-

viding no G protein complementation (Figure 3a) indicated no labeled

cells outside of the starter cell region, suggesting that glycoprotein-

independent labeling occurs at an extremely low rate, if at all. Further-

more, the rabies-infected cells found in themidbrainwere considerably

sparser in contrast to midbrain inputs to LP→ACC. Thus, we expect

that our results predominantly reflect inputs to ACC→LP starter

neurons.

5 CONCLUSIONS

We present in this study a comprehensive projection-specific monosy-

naptic mapping of inputs to the reciprocal LP and ACC network in

mice. We show that the LP-ACC network integrates information from

regionswhich parallel that of the primate pulvinar-prefrontal network.
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Much like the primate medial pulvinar, mouse LP→ACC neurons in

the medial LP also incorporate multimodal inputs from many differ-

ent sensory domains, although sensory input to ACC→LP neurons

appears to be predominantly visual. This circuit in mice may serve as

an evolutionary roadmap for pulvinar–prefrontal interactions that

control advanced visuomotor capacities in primates. We also identify

several common sources of inputs to LP→ACC and ACC→LP neurons

from regions involved in orienting and sensorimotor control. Finally,

our findings highlight that interhemispheric interactions of top-down

ACC→LP inputs may be an important contributor to visuospatial

attention. In sum, our study serves as a primer for future circuit-level

examination of LP–ACC interactions and inputs integrated by this

circuit.
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