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ABSTRACT
Macromolecular assemblies play an important role in almost all cellular processes.
However, despite several large-scale studies, our current knowledge about pro-
tein complexes is still quite limited, thus advocating the use of in silico predic-
tions to gather information on complex composition in model organisms. Since
protein–protein interactions present certain constraints on the functional divergence
of macromolecular assemblies during evolution, it is possible to predict complexes
based on orthology data. Here, we show that incorporating interaction information
through network alignment significantly increases the precision of orthology-based
complex prediction. Moreover, we performed a large-scale in silico screen for protein
complexes in human, yeast and fly, through the alignment of hundreds of known
complexes to whole organism interactomes. Systematic comparison of the resulting
network alignments to all complexes currently known in those species revealed many
conserved complexes, as well as several novel complex components. In addition to
validating our predictions using orthogonal data, we were able to assign specific
functional roles to the predicted complexes. In several cases, the incorporation of
interaction data through network alignment allowed to distinguish real complex
components from other orthologous proteins. Our analyses indicate that current
knowledge of yeast protein complexes exceeds that in other organisms and that
predicting complexes in fly based on human and yeast data is complementary rather
than redundant. Lastly, assessing the conservation of protein complexes of the human
pathogen Mycoplasma pneumoniae, we discovered that its complexes repertoire is
different from that of eukaryotes, suggesting new points of therapeutic intervention,
whereas targeting the pathogen’s Restriction enzyme complex might lead to adverse
effects due to its similarity to ATP-dependent metalloproteases in the human host.
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INTRODUCTION
Almost every major process in a cell, such as replication, transcription, translation and

degradation, is carried out not by single proteins, but by macromolecular complexes,

regulated through intricate networks of protein–protein interactions. To understand

cellular behaviour on a systemic level, we thus need a comprehensive knowledge of the

protein complexes present in the respective organism.

In the last years, many small-scale studies have identified protein complexes in yeast and

human, which have been collected in the public databases MPACT (Güldener et al., 2006)

and CORUM (Ruepp et al., 2010), respectively. Moreover, several large-scale proteomics

experiments, using tandem-affinity purification coupled to mass spectrometry analysis,

have focused on systematically unveiling the composition of macromolecular complexes in

the budding yeast Saccharomyces cerevisiae (Gavin et al., 2002; Ho et al., 2002; Gavin et al.,

2006; Krogan et al., 2006; Babu et al., 2012), the human pathogen Mycoplasma pneumoniae

(Kühner et al., 2009), and recently also in the fruit fly Drosophila melanogaster (Guruharsha

et al., 2011) and in human (Hutchins et al., 2010; Havugimana et al., 2012). Although yeast

is the least complex eukaryotic model organism with about 6,000 genes, several hundreds

of protein complexes were found, and the total number of complexes in yeast was estimated

to be over 800 (Gavin et al., 2006). Moreover, the first screen in M. pneumoniae already

yielded 62 homo- and 116 heteromultimeric protein complexes, despite the pathogen’s

small genome of only 689 protein-coding genes (Kühner et al., 2009). The importance

of protein complexes for cell survival becomes apparent when probing the essentiality of

their protein-coding genes through knock-out mutations. Indeed, several studies have

shown that protein complexes in yeast are significantly enriched in essential genes (Dezso,

Oltvai & Barabási, 2003; Hart, Lee & Marcotte, 2007; Wang et al., 2009; Pache, Babu & Aloy,

2009). To discover the molecular details of how individual proteins function together as

macromolecular assemblies, follow-up initiatives have then aimed at identifying those

complexes that are suitable for structural studies by combining systematic bioinformatics

and experimental validation strategies (Pache & Aloy, 2008; Brooks et al., 2010).

So far, however, these important investigations, which have improved our under-

standing of the architecture and function of protein complexes, were limited to yeast,

not only due to the scarcity of functional data in other organisms, but also because their

protein complexes are yet largely unknown. To determine whether the findings for yeast

complexes describe general principles of molecular organization and to discover how

protein complexes have evolved, it is thus necessary to define protein complexes in other

species, complementing the results of recent screening efforts (Guruharsha et al., 2011;

Hutchins et al., 2010; Havugimana et al., 2012). Since the experimental characterization of

macromolecular assemblies is difficult and requires large amounts of time and resources,

predicting protein complexes based on existing protein–protein interaction (PPI) and

orthology data becomes an interesting alternative.

Indeed, different strategies have been developed to exploit these data. On the one hand,

several graph-clustering strategies have been applied to interactome networks in order

to identify functional modules and protein complexes as densely connected subgraphs
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(Spirin & Mirny, 2003; Pereira-Leal, Enright & Ouzounis, 2004; Poyatos & Hurst, 2004).

In addition, new algorithms have specifically been designed for this task with the aim

to distinguish real complex components from spurious interactors and to allow shared

components across different complexes (Bader & Hogue, 2003; Pu et al., 2007). Various

clustering techniques were also used to define protein complexes from purification data

in the original large-scale screens of macromolecular assemblies in yeast, fly, human and

M. pneumoniae (Gavin et al., 2006; Krogan et al., 2006; Babu et al., 2012; Kühner et al., 2009;

Hutchins et al., 2010; Havugimana et al., 2012). On the other hand, since protein complexes

are often conserved due to the constraints PPIs pose on functional divergence during

evolution (Roguev et al., 2008; van Dam & Snel, 2008), it is possible to predict complexes

using orthology information. In its simplest form, orthology-based complex prediction

reports the collection of all orthologous proteins of a given complex in one species as the

corresponding complex in the other organism (Koonin, Wolf & Aravind, 2001). However,

one-to-many and many-to-many orthology relationships between species often imply

functional divergence of paralogous genes after duplication, leading to the prediction of

many false complex components with increasing proteome size.

The recent advent of tools for the comparison and alignment of protein interaction

networks (Kelley et al., 2003; Sharan et al., 2005; Koyutürk et al., 2006; Sharan & Ideker,

2006; Cootes, Muggleton & Sternberg, 2007; Kiemer & Cesareni, 2007; Narayanan &

Karp, 2007) now opens up new possibilities for complex prediction. One strategy is to

align whole interactome networks of different species to search for conserved functional

modules (Sharan et al., 2005; Narayanan & Karp, 2007; Hirsh & Sharan, 2007; Ali & Deane,

2009). For instance, Sharan et al. (2005) aligned the yeast and H. pylori interactomes,

finding 11 conserved protein complexes, while Hirsh and colleagues found 150 conserved

complexes by aligning the yeast and fly interactomes, matching known complexes in yeast

with coherent functional annotations (Hirsh & Sharan, 2007). However, interactome

to interactome alignment does not exploit knowledge about the composition of known

complexes. This can only be done through complex to interactome alignment, in which

the network representation of a known query complex in a given organism such as yeast

is aligned to the interactome of a target species. For instance, Dost et al. (2008) developed

the QNet algorithm, which allows the querying of input graphs of treelike topology in

interaction networks, and used it to align 94 manually curated yeast complexes from the

MPACT database (Güldener et al., 2006) to the fly interactome, finding 36 of them to be

conserved in fly.

For this work, we applied our recently developed tool for network comparison,

NetAligner, which was demonstrated to outperform the current standard in the field in

a variety of different benchmarks (Pache & Aloy, 2012) and was already used successfully

to discover the role of structural disorder in the rewiring of interactomes during evolution

(Mosca, Pache & Aloy, 2012). Using NetAligner, we investigated how the incorporation of

interaction data through network alignment influences the performance of orthology-

based complex prediction. Moreover, we systematically aligned known protein complexes

in H. sapiens, S. cerevisiae and M. pneumoniae to whole species interactomes to find novel
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complex components in yeast and human, predict yet undiscovered complexes in the

fly D. melanogaster and search for similarities and differences between the complexes

repertoires of H. sapiens and the human pathogen M. pneumoniae.

RESULTS AND DISCUSSION
Network alignment increases precision in orthology-based
complex prediction
A standard, straightforward method to predict protein complexes in a target species

based on those known in a given query organism is the so-called ‘orthologs approach’.

In that method, the union of all orthologous proteins of the respective query complex

components is predicted to constitute that complex in the target species (Koonin,

Wolf & Aravind, 2001). The general idea behind this approach is that many protein

complexes are evolutionarily conserved, because they perform critical cellular tasks, such

as replication, transcription or translation, needed in all forms of cellular life. However,

due to evolutionary divergence of proteins after duplication, which can lead to functionally

non-overlapping paralogs, not all orthologs of the components of a given complex in

one species should be expected to be part of the corresponding complex in another

organism. Prediction of protein complexes using the standard orthologs approach can

thus result in false complex components (i.e., false positive predictions). To test whether

the incorporation of interaction information through network alignment can decrease

the number of false positives and thus increase the precision of orthology-based complex

prediction, we compared the performance of the orthologs approach to that of NetAligner

(Pache & Aloy, 2012) in predicting yeast protein complexes based on human complexes

and vice versa through complex to interactome alignment (Fig. 1A). For this, we used

the non-redundant benchmark set of 71 matching human-yeast complex pairs (see

Materials & Methods), which we previously defined (Pache & Aloy, 2012), and analysed

the complex predictions of the orthologs approach with respect to how well they agree

with the corresponding benchmark set complexes (see Materials & Methods). We evaluated

both precision (i.e., fraction of true complex components among all proteins predicted to

be part of the given complex) and recall (i.e., fraction of complex components recovered

in the given prediction) in the same way as in our previous study (Pache & Aloy, 2012),

so that we could directly compare the performance of the orthologs approach to the

performance reported for NetAligner in predicting protein complexes via complex to

interactome alignment (see below and Materials & Methods). We found that incorporating

interaction data through network alignment significantly increases the precision of

orthology-based complex prediction (i.e., the ability to distinguish orthologs that are

part of the complex in the target species from those that are not). When using NetAligner

with default parameters there is a significant increase in precision from 34.6% to 54.1%

(p-value = 2.04 × 10−32, one-sided Fisher’s exact test), which is also present when

calibrating NetAligner for the alignment of human complexes to the yeast interactome

(53.9%, p-value = 4.07 × 10−32, one-sided Fisher’s exact test) or vice versa (58.5%,

p-value = 2.65 × 10−36, one-sided Fisher’s exact test; Fig. 1B). This increase in precision
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Figure 1 Network alignment vs. simple orthologs approach in predicting protein complexes. Com-
parison of network alignment (using NetAligner Pache & Aloy, 2012) and a simple orthologs approach in
predicting protein complexes in a target species based on known complexes in a query organism. (A) In
the simple orthologs approach, all proteins in the target species (yellow) that are orthologous to the
proteins of the query complex (violet) are predicted to form the given complex in the target organism.
This can lead to false positives (proteins marked with red dashed lines) that are not part of the real
complex. In the more sophisticated network alignment strategy, only those orthologs are predicted to
be part of the given complex in the target species that are supported by conserved or likely-conserved
interactions (red) between the two organism interactomes. (B) Performance of the orthologs (grey) and
NetAligner (blue) methods on a benchmark set of known conserved human/yeast complex pairs, using
default parameters (default) or parameter sets trained on one species pair (H/Y, Y/H) and evaluated
across both species pairs. Error bars denote one standard error of the mean.

arises from NetAligner using protein–protein interaction data to identify and filter out

false positive orthology mappings. Due to current interactome networks still being

incomplete and missing many interactions existing in nature (Venkatesan et al., 2009), this

filtering step unavoidably leads to an increase in false negatives and thus a reduced recall

of true complex components (from 58.0% to 44.9% with default parameters; Fig. 1B).

This is caused by orthologous proteins getting filtered out of complex predictions, since

they seem not to interact with any other complex component, while those interactions

indeed do exist and are just missing from current interactome networks. So currently,

there is a tradeoff between precision and recall when using NetAligner to predict protein

complexes. However, once species interactomes become more complete, we would expect

network alignment approaches to deliver increased precision at the same level of recall

of simple orthology mapping. Ongoing and future interaction detection experiments

should increase interactome coverage and thus also increase the recall of true complex

components when predicting protein complexes through network alignment.

Strategy to predict complexes through complex to interactome
alignment
To predict complexes in yeast, human and fly, which are the species with the most

interaction data available, and to identify novel complex components, we aligned the

non-redundant sets of human, yeast and mycoplasma protein complexes (see Materials

& Methods) to whole species interactomes using NetAligner (Pache & Aloy, 2012). In
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Table 1 NetAligner parameters and expected alignment performance. The NetAligner parameters for
complex to interactome alignment were taken from Pache & Aloy (2012). For yeast to human and human
to yeast alignments, we took the best performing parameter combinations for these species as determined
in the benchmarks (Pache & Aloy, 2012). For all other species, we used the default parameters for complex
to interactome alignment. The option to predict likely conserved interactions is always set to true (1),
because this considerably improves alignment performance (Pache & Aloy, 2012). Precision and recall
describe the expected performance of NetAligner in correctly identifying protein complex components
(see Materials & Methods).

Complex to interactome alignment

Yeast to
human

Human to
yeast

Other
species

Parameters Predict likely conserved interactions 1 1 1

Vertex probability threshold 0.0 0.0 0.0

Edge probability threshold 0.1 0.0 0.0

Max insertion length 1 2 2

Vertex to edge score balance 0.2 0.0 0.1

Performance Precision [%] 49.17 60.91 54.07

Recall [%] 38.06 56.06 44.91

contrast to a pure orthologs-approach, network alignment via NetAligner incorporates

knowledge about protein–protein interactions into orthology-based complex prediction.

When aligning a query complex to the interactome of a target species, NetAligner aligns

those pairs of orthologous proteins that are part of the two input networks and identifies

conserved and likely conserved interactions, as well as parts where the query complex

and target interactome differ slightly, represented through gaps and mismatches in the

alignment graph constructed by the program (Pache & Aloy, 2012). Several program

parameters, such as the vertex and edge probability thresholds, further determine which

pairs of orthologous proteins will be part of the final alignment solutions. For those

alignment scenarios that were part of the complex to interactome alignment benchmark

reported in Pache & Aloy (2012) (i.e., yeast to human and human to yeast), we could use

the best-performing parameter combinations, while for the others there is no benchmark

data available, and we thus used the default parameters (Table 1). We considered only the

highest-ranked significant alignment solution (with a standard p-value threshold of 0.05)

for each query complex.

Finding novel components of yeast and human protein complexes
To find novel components of protein complexes in yeast and human, we aligned the

non-redundant sets of 1027 human complexes and 244 yeast complexes from the manually

curated databases CORUM (Ruepp et al., 2010) and MPACT (Güldener et al., 2006), to

the yeast and human interactome, respectively (see Materials & Methods). Here, we did

not use the complexes identified in large-scale studies to ensure that our predictions are

based only on curated data sources. This yielded 257 non-redundant significant complex

predictions in yeast and 89 in human (Table 2 and Figs. 2A and 2C). We then identified

novel components by comparing our complex predictions to all known complexes in
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Table 2 Complex predictions in yeast and human. Basic statistics of the complex prediction results
in yeast and human, based on aligning known human complexes to the yeast interactome and vice
versa (see Materials & Methods). Results are shown both for all complex predictions (All) and for the
high-confidence subset (HC). #, number of; nr, non-redundant.

Human to yeast Yeast to human

Prediction type All HC All HC

# query complexes 1027 645 244 236

# predicted complexes (nr) 257 105 89 61

Total # complex components (nr) 604 372 464 325

Average # proteins per complex 6.4 5.93 6.37 5.67

Total # novel components (nr) 307 107 175 91

Average # novel components per complex 2.75 1.46 2.4 1.62

# entirely novel complexes (nr) 0 0 2 2

the respective species (see Materials & Methods). We found 307 non-redundant novel

components across 181 yeast complexes and 175 non-redundant novel components in 65

human complexes (Table 2 and Figs. 2B and 2D). Given the recall of the method when

aligning human complexes to the yeast interactome and vice versa (Table 1), most of the

predicted complexes are probably sub-complexes (as our method misses some complex

components due to incomplete interaction data). Moreover, based on the precision of our

method (Table 1), we can estimate that at least 60% of the novel yeast complex components

we predicted (from aligning human complexes to the yeast interactome) and 49% of the

novel human components we predicted (from aligning known yeast complexes to the

human interactome) are real complex members. For an independent in silico validation of

our predictions, we computed the number of predicted complexes that are functionally

homogeneous (see Materials & Methods) separately for each Gene Ontology (GO)

category (i.e., biological process, molecular function and cellular component) (Ashburner

et al., 2000), and compared it to the respective number of functionally homogeneous

query complexes and predictions based on simple orthology mapping (Figs. 3A and

3B). We found that, even when requiring the complexes to fulfill this criterion in at least

two GO categories (e.g., ‘biological process’ and ‘molecular function’; see Materials &

Methods), the majority of the predicted complexes in yeast (70%) and human (73%) are

indeed functionally homogeneous. The fact that the fraction of human query complexes

that are homogeneous is smaller than the fraction of predicted yeast complexes (63%

vs. 70%) might indicate that our predictions are, on average, of similar quality as the

manually-curated human complexes stored in the CORUM database (Ruepp et al., 2010).

When using a simple orthologs approach instead of NetAligner, we got a similar fraction

of homogeneous complex predictions in yeast (73%). On the other hand, the fraction of

homogeneous yeast query complexes is larger than the fraction of homogeneous complex

predictions in human (97% vs. 73%), suggesting that in this case, our predictions are

of lower quality than the query complexes. However, when using a simple orthologs

approach, the resulting fraction of homogeneous complex predictions in human is even
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Figure 2 Complex size and number of novel components distributions for all predicted com-
plexes. Distributions of the total number of components of all predicted complexes (blue) and the
high-confidence (HC) subset (yellow) are shown on the left. Distributions of the number of novel
components found in all predicted complexes (violet) and in the HC subset (orange) are shown on the
right. (A) & (B) prediction of yeast complexes based on human data; (C) & (D) prediction of human
complexes based on yeast data; (E) & (F) prediction of fly complexes based on yeast data; (G) & (H)
prediction of fly complexes based on human data.

lower with only 58% (Figs. 3A and 3B). A likely explanation for these results is that our

current knowledge about protein complexes is considerably better in yeast than in human,

with several real human complex components still missing the respective functional

annotations and thus leading to less homogeneous complex predictions. Nevertheless,

in most cases we tested, using NetAligner led to a higher fraction of homogeneous complex

Pache and Aloy (2014), PeerJ, DOI 10.7717/peerj.413 8/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.413


Figure 3 Functional homogeneity of query and predicted complexes. Comparison of the functional
homogeneity of query (grey) and predicted complexes, using either a simple orthologs approach (purple)
or NetAligner (green), in the different Gene Ontology (GO) annotation categories. BP, Biological Process;
CC, Cellular Component; MF, Molecular Function. (A) prediction of yeast complexes based on human
data; (B) prediction of human complexes based on yeast data; (C) prediction of fly complexes based on
yeast data; (D) prediction of fly complexes based on human data.

predictions than a simple orthologs approach (Fig. 3). In addition, we tested whether the

annotations of the predicted complexes hint towards specific functional roles in the cell

by computing the statistical significance of GO term enrichments in each complex (see

Materials & Methods). We found that 233 of our complex predictions in yeast (91%)

and 87 in human (98%) were significantly functionally enriched with respect to the

given species interactome, indeed suggesting specific cellular roles for those complexes

and further validating our predictions. For the complete list of predicted complexes,
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see Table S1, in which we annotated the complexes with the GO terms that are shared

by most complex components to provide information about their possible biological

roles and highlighted those functional annotations that are significantly enriched in the

given complex. We also created subsets of high-confidence (HC) predictions (Table S1),

requiring each member complex to be functionally homogeneous and originate from a

homogeneous query complex with which it shares at least one homogeneous GO term

(see Materials & Methods). This resulted in HC sets of 105 yeast and 61 human complex

predictions (Table 2 and Figs. 2A and 2C), with 98% and 97% of them, respectively,

being significantly functionally enriched with respect to the given species interactome.

We found 107 non-redundant novel components across 63 HC yeast complexes and 91

non-redundant novel components in 41 HC human complexes (Table 2 and Figs. 2B

and 2D). For instance, we predicted the proteins MPPA, MPPB, QCR1 and QCR2 to

form a complex in human (Fig. 4A). All four proteins are orthologous to the alpha and

beta subunits of the Mitochondrial processing peptidase (MPP) complex in yeast, which

is involved in the maturation of mitochondrial proteins by proteolytic cleavage of the

N-terminal localization sequence (Nomura et al., 2006). NetAligner found the interaction

between MPPA and MPPB of the yeast query complex to be conserved between human

MPPA and MPPB, as well as between the QCR1 and QCR2 orthologs (also known as

UCR-1 and UCR-2). In addition, this interaction was predicted to be likely conserved

between the other components of the complex (Fig. 4A), but no subcomplex of any of

the four proteins was found in current databases. According to our in silico validation

experiments, all components of the predicted complex are involved in proteolysis and

have metalloendopeptidase activity, but two of them (MPPA and MPPB) localise to the

mitochondrial matrix, while the other two (QCR1 and QCR2) localise to the mitochon-

drial inner membrane as core components of the Cytochrome bc1 complex. Although

it might be that the MPP and QCR subunits form two separate complexes in vivo, a

combined MPP/QCR complex might also exist, since the two subcellular localizations

are adjacent, and it was observed that in plants, the MPP complex is actually integrated

into the Cytochrome bc1 complex, with QCR1 and QCR2 being identical to MPPB and

MPPA, respectively (Nomura et al., 2006). Another interesting example is the alignment

of the human EXO1-MLH1-PCNA complex, which is involved in DNA-mismatch repair,

to the yeast interactome (Fig. 4B). The yeast complex predicted by the alignment solution

consists of six different proteins, PCNA, RAD27, DIN7, EXO1, MLH1 and MLH3, based

on interactions existing either in human or yeast and predicted to be likely conserved in the

other species (Fig. 4B). The DNA sliding clamp PCNA and the endonuclease RAD27 (also

known as FEN1) are known to form a complex in DNA replication and repair (Gomes &

Burgers, 2000), and the interaction between MLH1 and MLH3 plays an important role in

meiotic recombination and mismatch repair (Wang, Kleckner & Hunter, 1999). In addition,

the double-stranded DNA exonucleases EXO1 and DIN7, both participating in mismatch

repair, have high sequence similarity, and the double knockout of EXO1 and RAD27 is

lethal (Tishkoff et al., 1997). Together, these findings point towards the possibility of a
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Figure 4 Examples for complex prediction based on network alignment. Examples of using NetAligner (Pache & Aloy, 2012) to predict protein
complexes based on aligning network representations of known protein complexes in one species to the interactome of another species. Notably,
NetAligner does not require query complexes to be fully connected. Edge colors in the alignment solutions show which species the given interaction
that was predicted to be likely conserved originates from. Green edges denote known conserved interactions. High-confidence interactions are
highlighted with thicker edges. Alignment solution nodes represent pairs of orthologous proteins (separated by ‘/’) between the respective species,
allowing both one-to-many and many-to-many orthology relationships. Components of the given predicted complex in the target species (extracted
from the respective alignment solution) are listed, together with the GO biological process and molecular function annotations that could be
assigned to the predicted complex. (A) prediction of a mitochondrial processing peptidase complex in human; (B) prediction of a mismatch
repair complex in yeast; (C) prediction of a SNX complex in fly. See main text for details. Network representations were created with Cytoscape
(Smoot et al., 2011).

six-component mismatch-repair complex in yeast and also that the corresponding human

complex might have additional components.

Finally, comparing the distributions of the total number of predicted (Figs. 2A and 2C)

and novel components (Figs. 2B and 2D), we found that both achieve higher values in yeast

than in human. However, this likely originates from the set of human query complexes

simply being considerably larger (1027 complexes) than the set of yeast query complexes

(244 complexes) and thus leading to both more complex predictions and a higher total

number of novel components in yeast. On the other hand, the exponential decrease in

the number of novel yeast complex components we observed (Fig. 2B) compared to

the considerably broader distribution of novel human complex components (Fig. 2D),

supports the view that our knowledge about yeast complexes surpasses that of human
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Table 3 Prediction of protein complexes in fly. Basic statistics of the complex prediction results in fly,
based on aligning known yeast and human complexes to the fly interactome (see Materials & Methods).
Results are shown both for all complex predictions (All) and for the high-confidence subset (HC). #,
number of; nr, non-redundant.

Yeast to fly Human to fly

Prediction type All HC All HC

# query complexes 244 236 1027 645

# predicted complexes (nr) 66 42 219 71

Total # complex components (nr) 405 255 640 291

Average # proteins per complex 7.5 6.69 5.84 5.93

Total # novel components (nr) 252 134 454 168

Average # novel components per complex 4.61 3.55 3.69 2.79

# entirely novel complexes (nr) 6 4 45 11

ones. This is because, relative to complex predictions in yeast, a larger fraction of predicted

human complexes contains a given number of novel components. For instance, only 24 out

of 257 predicted yeast complexes (9.3%) contain three novel components, while the same is

true for 16 out of 89 predicted human complexes (18%).

Predicting fly complexes from human and yeast data is comple-
mentary rather than redundant
The fruitfly Drosophila melanogaster is an important model organism. However, there

does not yet exist a dedicated database of protein complexes in fly, the first large-scale

screen, reporting 556 complexes, has only recently been completed (Guruharsha et al.,

2011), and only 221 complexes are annotated in GO (Ashburner et al., 2000). We thus

predicted protein complexes in that species by aligning the non-redundant sets of 244 yeast

complexes and 1027 human complexes to the fly interactome (see Materials & Methods).

This resulted in 66 non-redundant significant complex predictions originating from

yeast and 219 from human (Table 3 and Figs. 2E and 2G), with only little overlap (see

below). Compared to the set of 777 known complexes in fly (based on GO annotations and

the recent large-scale screen by Guruharsha et al. (2011); see Materials & Methods), our

complex predictions contained 252 non-redundant novel components across 56 complexes

based on yeast data and 454 non-redundant novel components in 200 complexes

originating from human data (Table 3 and Figs. 2F and 2H). Among those complexes, 6

and 45, respectively, were entirely novel. Again based on the recall and precision of the

method (Table 1), we can estimate that most of the predicted complexes are probably

sub-complexes and that at least 54% of the novel components we found are real complex

members. The independent in silico validation (see Materials & Methods) revealed that

the majority of the predicted fly complexes are functionally homogeneous, independent

of whether they originated from yeast (70%) or human (68%) query complexes (Figs.

3C and 3D). This indicates that both of those organisms represent interesting sources for

predicting evolutionary conserved protein complexes in fly based on network alignment.

The fraction of homogeneous predicted fly complexes also lies between that of the human
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(63%) and yeast (97%) query complexes, indicating that our predictions are, on average,

of at least the same quality as the manually-curated human complexes stored in the

CORUM database (Ruepp et al., 2010), but of lower quality than the manually-curated

yeast complexes in MPACT (Güldener et al., 2006). Here, we observed the biggest loss of

homogeneity in the cellular component category (Fig. 3C). This might, however, result

from the respective fly proteins missing sub-cellular annotations, which would again

suggest that the current knowledge about protein complexes in yeast surpasses that of

complexes in other species. Using a simple orthologs approach instead of NetAligner

again leads to lower fractions of homogeneous complex predictions, independent of

whether they originated from yeast (58%) or human (60%) query complexes. Among

the fly complex predictions, 58 based on yeast (88%) and 189 based on human data (86%)

were significantly functionally enriched with respect to the fly interactome (see Materials

& Methods), indicating specific cellular roles for those complexes and further validating

our predictions. For the complete list of all predicted fly complexes, see Table S2. The HC

subsets of fly complex predictions (see Materials & Methods and Table S2) consist of 42

fly complexes originating from yeast and 71 from human data (Table 3 and Figs. 2E and

2G), with 95% and 94% of them, respectively, being significantly functionally enriched

with respect to the fly interactome. We found 134 non-redundant novel components

across 32 HC complexes predicted from yeast and 168 non-redundant novel components

in 62 HC complexes originating from human query complexes, with 4 and 11 of those

complexes being completely novel (Table 3 and Figs. 2F and 2H). For instance, aligning

the yeast Replication factor C (RFC) complex, consisting of the components RFC1-5, to

the fly interactome predicted the corresponding fly assembly to encompass six proteins,

Q9VKW3, Q9VX15, RFC1, RFC2, Q7KLW6 and Q9U9Q1 (Fig. S1). According to the

complex annotations in GO (Ashburner et al., 2000), the first four of those are known to

belong to the RFC complex in fly, while the latter two are novel. Our alignments showed

that both Q7KLW6 and Q9U9Q1 are orthologous to RFC2-5 in yeast, and our in silico

validation experiments revealed that all six predicted components are involved in DNA

replication and have ATP-binding capability, important for performing the loading of

the DNA sliding clamp (Gomes, Schmidt & Burgers, 2001; Schmidt, Gomes & Burgers,

2001). Moreover, in the HTP screen of Guruharsha et al. (2011), the first five of those

proteins were purified together, which provides further evidence for Q7KLW6 to actually

be a component of the RFC complex in fly. On the other hand, this is also an example

where NetAligner (through the incorporation of interaction data) was able to filter out

false positive components that a simple orthologs approach would have predicted to

belong to the complex. These comprise the proteins Q8T3K3, Q8IQ05 and Q95WV5,

which are annotated as DNA replication accessory factors and most similar to the yeast

chromosome transmission fidelity protein 18 (CTF18), which is known to substitute RFC1

in the RFC-like complex that also contains the proteins CTF8 and DCC1 and is required

for establishment of chromosome cohesion in the S-phase of the cell cycle (Mayer et al.,

2001; Naiki et al., 2001). Moreover, the SNX subcomplex of the human Retromer complex,

which is involved in mediating endosome to trans-Golgi network retrograde transport
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(Wassmer et al., 2007; Hong et al., 2009), represents an example for predicting fly complexes

based on human data (Fig. 4C). It consists of the SNX1-SNX6 dimer that is important for

membrane-bound coat formation (Wassmer et al., 2007; Hong et al., 2009), and we predict

this complex to exist in fly as an assembly of Q9VQQ6 and Q9VLQ9. This prediction is

not only supported by SNX1 and SNX6 being the best BLAST (Altschul et al., 1997) hits

of Q9VQQ6 and Q9VLQ9, respectively, but also through the interaction between the

two human components being conserved in fly (Fig. 4C). Together, the examples shown

in Fig. 4 illustrate the fact that query complexes need not be fully connected (i.e., can

contain isolated proteins), but rather that NetAligner is indeed capable of identifying

conserved protein complexes despite the incompleteness of current interactome networks

(Venkatesan et al., 2009).

Comparing the fly complex predictions from yeast and human data (Fig. 5), we

found only 26 pairs of matching complexes (i.e., pairs of predicted fly complexes with

a component overlap of more than 50% of each complex), covering 21 non-redundant

predicted complexes from human (10%) and 12 from yeast data (18%). One reason

for this little overlap between the fly complex predictions is probably the low number

of matching human and yeast query complexes. Indeed, only 41 (4%) and 46 (19%) of

the non-redundant sets of 1027 human and 244 yeast query complexes, respectively, are

present in the non-redundant set of matching human/yeast complex pairs. Between the

HC subsets, there are only 11 pairs of matching complexes, covering 11 non-redundant

predicted HC complexes from human (15%) and 7 from yeast data (17%; Fig. 5).

Moreover, none of the completely novel complexes we predicted was found based on

both yeast and human data. This clearly indicates that predicting fly complexes from yeast

and human query complexes through network alignment is complementary rather than

redundant. Protein complexes that were found both when starting from human and from

yeast data include the Replication factor C complex, the Casein kinase II, the 20S core and

19/22S regulatory particles of the proteasome, as well as the Septin, Tubulin and Actin

filament complexes (Fig. 5), which all represent well-studied conserved assemblies.

Mycoplasma complexes differ substantially from those
of eukaryotes
Kühner et al. (2009) reported the first genome-wide analysis of protein complexes in the

human pathogen Mycoplasma pneumoniae, which has one of the smallest known genomes

(689 protein-encoding genes). This analysis revealed a rather complicated machinery of

almost 200 protein complexes, of which the majority were yet unknown (Kühner et al.,

2009). To predict whether some of these are actually conserved in other organisms, we

aligned the non-redundant set of 174 mycoplasma complexes to the interactomes of yeast,

fly and human (see Materials & Methods). The complex to interactome alignments led

to only 11, 9 and 6 non-redundant significant predictions in those species, respectively

(Table 4). Compared to the sets of known protein complexes (see Materials & Methods),

our predictions contained 86 non-redundant novel components across 6 yeast complexes,

68 across 9 fly complexes and 30 in 5 human complexes (Table 4). Based on the recall
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Figure 5 Comparison of fly complex predictions originating from yeast and human data. Comparison
of the 219 and 66 non-redundant fly complexes predicted through alignment of human (red) and yeast
(yellow) query complexes, respectively, to the fly interactome using NetAligner (Pache & Aloy, 2012).
High-confidence (HC) subsets of the complex predictions are shown in darker blue. Matching complexes,
i.e., those that were identified both from human and yeast query complexes with more than 50% shared
components, are highlighted in orange. The 11 pairs of matching complexes between the two HC subsets
are listed below.
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Table 4 Predictions based on known mycoplasma complexes. Basic statistics of the complex prediction
results in yeast, fly and human, based on aligning known mycoplasma complexes to the respective species
interactome (see Materials & Methods). Results are shown both for all complex predictions (All) and for
the high-confidence subset (HC). #, number of; nr, non-redundant.

Mycoplasma to

Yeast Fly Human

Prediction type All HC All HC All HC

# query complexes 174 67 174 67 174 67

# predicted complexes (nr) 11 3 9 1 6 1

Total # complex components (nr) 125 8 86 6 39 3

Average # components per complex 13.64 2.67 12.0 6 7.17 3

Total # novel components (nr) 86 1 68 4 30 0

Average # novel components per complex 9.36 0.33 9.56 4 5.33 0

# entirely novel complexes (nr) 0 0 0 0 1 0

and precision of the method (Table 1), we can again estimate that most of the predicted

complexes are probably sub-complexes and that at least 54% of the novel components

we found are real complex members. According to our independent in silico validation

(see Materials & Methods), only 55%, 44% and 33% of all predicted yeast, fly and human

complexes, respectively, are functionally homogeneous. If the mycoplasma interactome

(on which the query complexes are based) contained many false positive interactions, one

potential reason for the observed low functional homogeneity could be that these complex

predictions are less reliable. Other possible reasons include inherent differences in the

complexes repertoires of those species or aspects of biology that are less well studied. In

contrast, the fact that only 39% of all query mycoplasma complexes are homogeneous is

likely due to a lack of functional annotations in that organism.

Overall, since we used only the high-confidence subset of mycoplasma interactions

(to reduce the number of false positives), we think the very low numbers of significant

complex predictions (independent of the target species) and their low functional

homogeneity suggest that the mycoplasma interactome (at least the part currently known)

is very different from the interactomes of yeast, fly and human. This indicates that there

probably exist protein complexes that are unique to the pathogen and might thus be

targeted by drugs without causing adverse effects in the human host.

All complex predictions, except for one in yeast, were significantly functionally enriched

with respect to the given species interactome, suggesting that they perform specific

biological roles. For the complete list of predicted yeast, fly and human complexes, based

on mycoplasma data, see Table S3. The HC subsets of those complex predictions (see

Materials & Methods and Table S3), consist of only three predicted complexes in yeast

(one novel component), one in fly (four novel components) and one in human (no novel

components; Table 4), with all of them being significantly functionally enriched with

respect to the given species interactome. The mycoplasma query complexes that were

predicted to be conserved in those HC sets comprise the DNA polymerase III complex in
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Figure 6 Mycoplasma complexes leading to significant predictions in yeast, fly and human. Compari-
son of the different sets of mycoplasma complexes that led to significant predictions in yeast (yellow), fly
(blue) and human (red) through complex to network alignment using NetAligner (Pache & Aloy, 2012)
(grey arrows). Overlaps between the different sets are shown as a Venn diagram. Complexes found in at
least two species are listed.

human, the ATP synthase complex in fly and yeast, as well as the 6-Phosphofructokinase

and the Ribonucleoside-diphosphate reductase in yeast. The DNA polymerase III complex,

consisting of DPO3X and the yet uncharacterized proteins Y007 and Y450, represents

an interesting case: it was aligned to the RFC complex in human, whose clamp loading

function is actually incorporated into the DNA polymerase III holoenzyme complex in

prokaryotic species such as mycoplasma (Pomerantz & O’Donnell, 2007).

Comparing the different subsets of mycoplasma complexes that led to significant

predictions in the other species (Fig. 6), one complex, the Restriction enzyme complex,

could be aligned to protein complexes in all three species interactomes, two additional

complexes were found in both yeast and human (the DNA polymerase III and Cohesin-like

complexes), two in both fly and human (the Protein chaperone and Pyruvate dehydro-

genase complexes), and four complexes were found in both the yeast and fly interactome

(the ATP synthase, Peptidase, Ribosome and RNA polymerase complexes; Fig. 6). This

means that the majority of mycoplasma complexes that led to significant predictions (56%)

could be found in more than one target species, representing complexes involved in core

biological processes conserved from bacteria up to higher eukaryotes. The alignment

of the Restriction enzyme complex was, at first, surprising, because it is known to exist

only in bacteria and archaea. A closer inspection, however, revealed that it was aligned to

ATP-dependent metalloproteases in the eukaryotic species, suggesting that targeting the
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Restriction enzyme complex with drugs might also affect ATP-dependent metalloproteases

in the human host and thus lead to potential adverse effects.

CONCLUSIONS
Protein complexes represent key molecular entities that are implicated in many important

biological processes within a cell. However, complexes are yet largely uncharacterized

in most species and experimental determination of their composition is still a costly

endeavour. Increasing our knowledge about protein complexes in important model or-

ganisms via complex prediction thus represents an attractive option. Here, we showed that

incorporating PPI data through network alignment significantly increases the precision of

orthology-based complex prediction, though at the expense of missing some real complex

components. By aligning known protein complexes to the interactomes of human, yeast

and fly (the species with the highest number of interactions currently available in public

databases) using NetAligner (Pache & Aloy, 2012), our recently developed tool for network

alignment, we were able to identify conserved protein (sub)complexes between human

and yeast, as well as novel complex components, with higher precision than by using

a simple orthologs-based approach. In addition, we predicted novel macromolecular

assemblies (not present in current databases) in fly based on known yeast and human

complexes, and found that our contemporary knowledge of yeast complexes surpasses

that of other species, which is not surprising given the huge efforts invested into detecting

macromolecular assemblies in yeast (Gavin et al., 2002; Ho et al., 2002; Gavin et al., 2006;

Krogan et al., 2006; Babu et al., 2012). On the other hand, we found that current human

and yeast complex data leads to complementary predictions in fly, meaning that querying

known macromolecular assemblies of those species in the fly interactome unveils different

conserved complexes. In the in silico validation experiments that we performed, our

NetAligner-based complex predictions had about the same functional homogeneity as the

known complexes we used for querying, and we were able to assign specific functional roles

to almost all complexes. In contrast, predictions based on simple orthology mapping often

resulted in reduced functional homogeneity. Finally, aligning the protein complexes of

the human pathogen M. pneumoniae (Kühner et al., 2009) to the interactomes of human,

yeast and fly yielded only a handful of significant complex predictions, suggesting that

the mycoplasma interactome is at least in parts quite different from those of eukaryotic

species. Quantifying those differences is very difficult due to the incompleteness of current

interactome data (Venkatesan et al., 2009). Nevertheless, since this issue is at least partly

addressed through the prediction of likely conserved interactions by the NetAligner

algorithm, it indicates that some of the protein complexes that have been identified in

mycoplasma might not have any counterpart in eukaryotes and thus represent interesting

drug targets with little chances of causing adverse effects in the human host. On the other

hand, our analyses revealed that the pathogen’s Restriction enzyme complex, which is

known to be unique to bacteria and archaea, is similar to ATP-dependent metalloproteases

in human, implying that targeting this complex might have undesirable outcomes.
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MATERIALS & METHODS
Datasets of protein sequences
We collected datasets of protein sequences for human (Homo sapiens), fly (Drosophila

melanogaster), yeast (Saccharomyces cerevisiae) and mycoplasma (Mycoplasma pneu-

moniae) from the UniProt Knowledgebase release 15.8 (UniProt-Consortium, 2009) by

merging the set of sequences stored in Swiss-Prot (including splice variants) and TrEMBL

with experimental evidence on protein or transcript level. For mycoplasma, due to a lack

of annotation data, we also included sequences not yet marked as having experimental

evidence, but excluded all sequences that were only present in TrEMBL and thus of low

confidence. Clustering based on 100% sequence identity resulted in non-redundant sets of

75,981 human, 23,296 fly, 6,121 yeast and 687 mycoplasma protein sequences.

Lists of orthologous proteins
We determined lists of orthologous proteins for species combinations of human, fly, yeast

and mycoplasma by performing a reciprocal BLASTP (Altschul et al., 1997) search. We used

an E-value threshold of 10−10 and considered only hits in the top10 of the BLASTP output

to filter out spurious matches. This resulted in non-redundant sets of 91,112 human/fly,

19,558 human/yeast, 12,778 fly/yeast, 1,005 human/mycoplasma, 644 fly/mycoplasma and

488 yeast/mycoplasma orthologs.

Interactome construction
We built interactome networks for human, fly and yeast by extracting and merging binary

protein–protein interaction data from the major interaction databases IntAct (Aranda

et al., 2010), MINT (Ceol et al., 2010) and HPRD (for human) (Keshava Prasad et al.,

2009). To increase the quality of the resulting binary interactome networks, we then

filtered out all those interactions without support in form of Pubmed ID(s) or interaction

detection method(s). For mycoplasma, we extracted the list of high-confidence, binary

protein–protein interactions from Kühner et al. (2009), mapping ordered locus names

to UniProt accession codes (UniProt-Consortium, 2009). This resulted in non-redundant

interactomes consisting of 53,290 interactions in human, 19,260 in fly, 60,721 in yeast and

1,058 in mycoplasma (Table S4).

Non-redundant benchmark set of human/yeast complex pairs
We used the non-redundant benchmark set of conserved human/yeast complex pairs

described in Pache & Aloy (2012). In brief, this set is based on the manually-curated yeast

complexes from the MPACT database (Güldener et al., 2006) and human complexes

from the CORUM database (Ruepp et al., 2010) whose components are fully present

in the respective species interactome, and clustered to remove redundancy. Matching

(i.e., conserved) complexes between the two species are defined by requiring at least 2

and 25% of the components of the given human complex to have at least one ortholog

in the respective yeast complex and vice versa. The complete benchmark set encompasses

71 matching human/yeast complex pairs, consisting of 64 non-redundant human and 52

non-redundant yeast complexes.
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Complex to interactome alignment using NetAligner
We performed all complex to interactome alignments using the NetAligner algorithm

that we recently developed (Pache & Aloy, 2012) and which is also available as a web

server (Pache, Céol & Aloy, 2012). For all species combinations, we computed vertex and

interaction conservation probabilities required by NetAligner based on the interactomes

and lists of orthologous proteins as described in Pache & Aloy (2012), using default

parameters. We assigned reliabilities to each interaction based on the number of Pubmed

IDs supporting it as previously described (Kelley et al., 2003). For aligning the complexes

to whole organism interactomes, we created a network representation of each complex,

consisting of all interactions between complex components that are present in the

respective species interactome and including self-interactions with a reliability of 0 for

all singletons in order to not lose any information about complex composition (Pache &

Aloy, 2012).

Performance comparison to simple orthologs approach
To compare the performance of NetAligner to that of a simple orthologs approach, in

which the set of all orthologs of the components of a given query complex are predicted

to be part of the complex in the target species, we evaluated the results of this approach

with respect to the benchmark set of protein complexes as described in Pache & Aloy

(2012). In brief, the complex predictions are evaluated in terms of how well they agree

with the respective matching benchmark set complexes based on the overlap of their

protein components. For each complex predicted by the orthologs approach, we first

determined the best-matching benchmark complex of the same species by minimising

the total number of unmatched components. A complex prediction was deemed to ‘cover’

a benchmark complex if it contained at least 2 and at least 50% of its components. We

then calculated the number of true positives (TP) as the total number of distinct proteins

common to any given complex prediction and the benchmark complex it covers; the

number of false positives (FP) as the total number of distinct proteins that are part of any

given complex prediction, but not present in the benchmark complex it covers; and the

number of false negatives (FN) as the total number of distinct proteins present in any given

benchmark complex, but not part of any complex prediction covering that complex. Next,

we computed the performance of the orthologs approach in terms of precision and recall:

precision =
TP

TP + FP
; recall =

TP

TP + FN
.

Finally, we report the average precision and recall of predicting yeast complexes based on

human protein complex data and vice versa to avoid parameter overfitting (Fig. 1B). For

NetAligner, since we used the same performance evaluation strategy, as well as the same

list of orthologs and set of benchmark complexes, we could directly take the performance

results reported in our previous work for complex to interactome alignment (Pache & Aloy,

2012). We also evaluated the performance when using default parameters (Fig. 1B).
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Non-redundant sets of protein complexes in human, yeast and
mycoplasma
We collected non-redundant sets of protein complexes in human, yeast and mycoplasma.

For this, we first extracted all human complexes from the CORUM database (Ruepp et al.,

2010), the set of manually curated yeast complexes from the MPACT database (Güldener et

al., 2006), as well as all homo- and heteromeric mycoplasma complexes from Kühner et al.

(2009). Analogously to the procedure for constructing the non-redundant benchmark set

of human/yeast complex pairs (Pache & Aloy, 2012), we then filtered out those complexes

that were not fully present in the respective species interactome and clustered them based

on the overlap of their components using complete linkage hierarchical clustering to

remove redundancy. The distance d(c1,c2) between two complexes c1 and c2 was defined as:

d(c1,c2) = 1 −
|c1 ∩ c2|

max(|c1|,|c2|)

and we cut the resulting dendrogram using a distance threshold of 0.5, such that each pair

of complexes in the same cluster share more than 50% of their components (choosing the

largest complex of each cluster as its representative). This resulted in non-redundant sets of

1027 protein complexes in human, 244 in yeast and 174 in mycoplasma.

Identification of novel complex components
To identify novel components in our complex predictions, we compared them with the set

of known complexes of the respective species. We took all 1826 known human complexes

from the CORUM database (Ruepp et al., 2010), all 402 human complexes annotated in the

Gene Ontology (GO) (Ashburner et al., 2000), as well as the 155 and 622 complexes from

the recent high-throughput (HTP) studies of Hutchins et al. (2010) and Havugimana et

al. (2012), respectively (3005 complexes in total). For yeast, we collected all 263 manually

curated and all 871 HTP complexes from the MPACT database (Güldener et al., 2006),

which include the large-scale studies performed by Gavin et al. (2002) and Ho et al. (2002).

We then added the 491 and 547 complexes defined in the HTP studies by Gavin et al.

(2006) and Krogan et al. (2006), respectively, as well as all 350 yeast complexes annotated

in GO and the recently published set of 720 yeast complexes from Babu et al. (2012)

(3242 complexes in total). Since there does not yet exist a dedicated database of protein

complexes in fly, we determined the set of known fly complexes based on the set of HTP

complexes reported by Guruharsha et al. (2011) and shared GO annotations (child terms

of ‘macromolecular complex’ (GO:0032991)), similar to Bruckner et al. (2010), resulting

in a total of 777 fly protein complexes. For each predicted complex in a given organism,

we then determined the known complex of that species with the largest overlap in terms of

protein components and marked all those proteins as novel that are not part of the known

complex.

Computation of functional homogeneity
We computed the functional homogeneity of protein complexes as an automated strategy

to validate their composition in terms of protein components. First, we extracted the
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GO protein annotations from the UniProt database (UniProt-Consortium, 2009) for all

GO categories (i.e., biological process, molecular function and cellular component).

Then, we calculated the GO homogeneity h(c) of each complex c per GO category,

defined as the maximum fraction of protein components p(c) that share the same

GO term t (Goh et al., 2007):

h(c) = max
t

|pt(c)|

|p(c)|
.

We classified each complex with a GO homogeneity of higher than 0.5 as functionally

homogeneous in the given GO category. Lastly, to increase the confidence level of all

subsequent analyses, we defined all those complexes as functionally homogeneous that

fulfilled this criterion in at least two GO categories.

Statistical significance of functional enrichments
For all most-abundant functional annotations of a given complex and GO category

(i.e., those that contribute to its functional homogeneity in that category), we determined

the statistical significance of their enrichments in the complex with respect to the given

species interactome, using a one-sided Fisher’s exact test with Bonferroni multiple testing

correction and a strict p-value threshold of 0.025. We then defined all those complexes as

significantly functionally enriched that had a significant enrichment p-value in at least two

GO categories.

High-confidence subsets of complex predictions
We post-processed all sets of predicted complexes to define high-confidence (HC) subsets.

A predicted complex has to fulfil the following criteria to be present in the given HC set: it

has to (i) be part of the non-redundant subset of significant predictions, (ii) originate from

a functionally homogeneous query complex, (iii) be homogeneous itself and (iv) share at

least one homogeneous GO term with the given query complex. Query complexes were

defined as high-confidence if they were functionally homogeneous.
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Russell RB, Serrano L, Bork P, Gavin A-C. 2009. Proteome organization in a genome-reduced
bacterium. Science 326:1235–1240 DOI 10.1126/science.1176343.

Mayer ML, Gygi SP, Aebersold R, Hieter P. 2001. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an
alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Molecular Cell
7:959–970 DOI 10.1016/S1097-2765(01)00254-4.

Mosca R, Pache RA, Aloy P. 2012. The role of structural disorder in the rewiring of protein
interactions through evolution. Molecular & Cellular Proteomics 11:1–8
DOI 10.1074/mcp.M111.014969.

Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K. 2001. Chl12 (Ctf18) forms a novel
replication factor C-related complex and functions redundantly with Rad24 in the DNA
replication checkpoint pathway. Molecular and Cellular Biology 21:5838–5845
DOI 10.1128/MCB.21.17.5838-5845.2001.

Narayanan M, Karp RM. 2007. Comparing protein interaction networks via a graph match-and-
split algorithm. Journal of Computational Biology 14:892–907 DOI 10.1089/cmb.2007.0025.

Nomura H, Athauda SBP, Wada H, Maruyama Y, Takahashi K, Inoue H. 2006. Identification
and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the
cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode. Journal of
Biochemistry 139:967–979 DOI 10.1093/jb/mvj114.

Pache RA, Aloy P. 2008. Incorporating high-throughput proteomics experiments into structural
biology pipelines: identification of the low-hanging fruits. Proteomics 8:1959–1964
DOI 10.1002/pmic.200700966.

Pache RA, Aloy P. 2012. A novel framework for the comparative analysis of biological networks.
PLoS ONE 7:e31220 DOI 10.1371/journal.pone.0031220.

Pache RA, Babu MM, Aloy P. 2009. Exploiting gene deletion fitness effects in yeast to understand
the modular architecture of protein complexes under different growth conditions. BMC Systems
Biology 3:74 DOI 10.1186/1752-0509-3-74.
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