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Abstract

Background: During the past two decades, vaccination programs have greatly reduced global morbidity and mortality
due to measles, but recently this progress has stalled. Even in countries that report high vaccination coverage rates,
transmission has continued, particularly in spatially clustered subpopulations with low vaccination coverage.

Methods: We examined the spatial heterogeneity of measles vaccination coverage among children aged 12–23 months
in ten Sub-Saharan African countries. We used the Anselin Local Moran’s I to estimate clustering of vaccination coverage
based on data from Demographic and Health Surveys conducted between 2008 and 2013. We also examined the role
of sociodemographic factors to explain clustering of low vaccination.

Results: We detected 477 spatial clusters with low vaccination coverage, many of which were located in countries with
relatively high nationwide vaccination coverage rates such as Zambia and Malawi. We also found clusters in border areas
with transient populations. Clustering of low vaccination coverage was related to low health education and limited
access to healthcare.

Conclusions: Systematically monitoring clustered populations with low vaccination coverage can inform supplemental
immunization activities and strengthen elimination programs. Metrics of spatial heterogeneity should be used routinely
to determine the success of immunization programs and the risk of disease persistence.
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Background
Measles is a highly contagious viral disease and is one of
the leading causes of death among children in low-
income countries, accounting for 114,900 deaths globally
in 2014 of which 73,914 (63%) occurred in Africa [1, 2].
Measles also continues to cause epidemics in high-
income countries, despite the availability of a safe and
highly efficacious vaccine [3, 4].
The Measles-Rubella Initiative, spearheaded by the

American Red Cross, the US Centers for Disease
Control and Prevention (CDC), the World Health
Organization (WHO), and others, has targeted the mea-
sles virus for global elimination. This initiative aims to re-
duce annual measles incidence rates (IRs) to less than five

cases per million, requiring >90% coverage of at least one
dose of measles containing vaccine (MCV), recommended
at age 12 months, by the end of 2015 and >95% coverage
by 2020 in all countries [5]. Improvement in vaccination
coverage has decreased measles deaths from over half a
million globally in 2000 to 114,900 in 2014 [1]. Since
2010, however, progress has stalled [1]: The 2015 vaccin-
ation goal was not met and IRs remained relatively
unchanged between 2013 and 2014 [1].
Measles elimination is complicated by the high trans-

mission rate of the measles virus. This transmission rate
can be expressed as the basic reproductive rate (R0),
defined as the number of infections caused, on average,
by one infectious person in a fully susceptible population
[6]. The R0 for measles ranges from 15 to 20 infections,
which is one of the highest among all infectious diseases
(e.g., influenza has an R0 around 1.5–2.0) [7]. This high
R0 leads to the very high critical vaccination fraction for
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measles of 95%, i.e., the vaccination coverage needed for
herd immunity [8]. This critical vaccination fraction as-
sumes that vaccination coverage and population mixing
are distributed homogeneously throughout a country [9].
This assumption of homogeneity is not always realistic,
as recently found in Mozambique [10] and Malawi [11].
Spatial heterogeneity of vaccination coverage can in-
crease the critical vaccination fraction required for herd
immunity to a level exceeding the 95% coverage goal set
by the Measles-Rubella Initiative [12, 13].
Spatial heterogeneity of vaccination coverage can delay

disease elimination, as illustrated by continued measles
outbreaks, even in countries with high average nation-
wide vaccination coverage rates [14, 15]. Substantial het-
erogeneity in measles vaccination coverage has been
demonstrated previously in Sub-Saharan Africa [16], but
drivers for this heterogeneity are poorly understood.
Timely detection and targeting of low-coverage popula-
tion clusters by supplemental immunization activities
(SIAs) can lead to protective herd immunity and acceler-
ate disease elimination, as demonstrated by the success-
ful strategy used for measles elimination in the Americas
[17]. We used publicly available microdata from the
Demographic and Health Surveys (DHS) in Sub-Saharan
Africa to determine if subpopulations with low vaccination
coverage are clustered and explore possible determinants.

Methods
Clustering algorithm
We collected measles vaccination coverage data from
the most recent DHS conducted in ten countries:
Burundi in 2010; the Democratic Republic of the Congo
(DRC) in 2013; Kenya in 2008; Madagascar in 2008;
Malawi in 2010; Mozambique in 2011; Rwanda in 2010;
Tanzania in 2010; Zambia in 2013–14; and Zimbabwe in
2010–11 [18]. These countries were selected based on
their contiguity and data availability. We obtained ap-
proval from DHS to download and use these data for
this study.
DHS are nationwide surveys that are representative of

the population and detailed survey methodology has
been published elsewhere [19]. In short, DHS are per-
formed using a two-stage cluster sampling design: In the
first stage, the DHS selects a random sample of clusters
(groups of possible sample households in close proximity
to each other) from an already existing sample frame
(e.g., a population census); in the second stage, a random
sample of households is selected within each cluster.
The DHS also determines sample weights that should be
applied to survey data to ensure that all subpopulations
are equally represented [20]. We extracted, from DHS,
the vaccination status (first dose MCV) of children aged
12–23 months measured from sampled households in
each cluster, not differentiating between vaccine doses

received from routine immunization or SIAs. In the
DHS, vaccination status is obtained from vaccination
cards where possible and otherwise from mothers’ re-
ports [20]. We calculated the cluster-level vaccination
coverage rate as the median of the weighted household-
level vaccination coverage rates.
We estimated the spatial association of MCV coverage

rates among DHS clusters using the Global Moran’s I
and Anselin Local Moran’s I statistics. The Global
Moran’s I ranges from −1 to 1 and is a single estimate of
spatial association among all DHS clusters (spatial auto-
correlation). Values close to zero indicate the absence of
a spatial association (i.e., a random distribution), values
close to negative one indicate strong spatial dispersion,
and values close to positive one indicate strong
clustering (autocorrelation). The Anselin Local Moran’s
I estimates the association of vaccination coverage rates
between a DHS cluster and its neighboring clusters
within a specified geographical area (inter-cluster vari-
ation). The Anselin Local Moran’s I has been used previ-
ously for similar analyses to locate pockets of childhood
stunting in Nigeria [21]. We used the Anselin Local
Moran’s I to estimate spatial clustering of low (< 75%),
high (≥ 75%), or mixed (low near high or vice versa)
weighted vaccination coverage. We considered Moran’s I
statistics with p-values < 0.05 to be statistically signifi-
cant. DHS cluster data have been used previously for
similar clustering analyses, such as examining malnutri-
tion in Ethiopia [22], of HIV prevalence in Burundi [23],
and of childhood stunting in Nigeria [24].

Determinants of low-vaccination clusters
We explored possible determinants for clustering of
low-vaccination using additional information from coun-
try DHS: (1) child in possession of a health card or not
(Hc); (2) mother had heard of oral rehydration salts
(ORS) or not (O); (3) mother is literate or not (T); (4)
mother visited a health facility in the last 12 months or
not (Hf ); (5) mother mentioned that money had been a
barrier to seeking healthcare in the past or not (M). We
calculated the cluster-level percent children with a
health card as the median of the weighted household-
level percentages of children with a health card. From
the other household-level variables, we computed the
cluster-level equivalents as the percent of mothers
(households) that answered each question affirmatively.
We used a logistic regression model to estimate the

association between the odds for a DHS cluster being
part of a low-vaccination spatial cluster and the afore-
mentioned explanatory factors. We adjusted for spatial
autocorrelation (inter-cluster variation) of vaccination
status among clusters with a queen contiguity weights
matrix based on spatial lags. Queen contiguity calculates
spatial autocorrelation of the outcome variable among
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all contiguous neighbors, after creating Thiessen poly-
gons around cluster coordinates [25–27]. We selected a
contiguity weights matrix instead of a distance matrix
due to the large variability in distances between clusters
in our ten-country study area.
Our model took the following form:

ln
L xð Þ

1−L xð Þ
� �

¼ ρW ln
L xð Þ

1−L xð Þ
� �

þ β0 þ β1Hc

þ β2Oþ β3T þ β4Hf þ β5M þ ε

where L xð Þ
1−L xð Þ

� �
represented the odds of being in a low-

vaccination spatial cluster, ρ represented the spatial
autoregressive coefficient for the log odds of being in a
low-vaccination spatial cluster, W represented the queen
contiguity matrix, β1–5 represented the regression coeffi-
cients for aforementioned covariates, and ε represented
the error term.
We used SAS version 9.4 and ArcGIS version 10.4 for

this analysis.

Results
Country-level vaccination coverage
We included a total of 5458 DHS clusters containing
70,092 households across all ten countries (Fig. 1,
Table 1). This sample is representative of a total popula-
tion of 214,339,000 people. Nationwide MCV coverage
among children aged 12–23 months was below the

measles critical vaccination fraction of 95% for nine out
of the ten countries and ranged from a low of 69.6% for
Madagascar to a high of 95% for Rwanda. The average
MCV coverage for all 10 countries, weighted by popula-
tion size, was 83.6%.

Clustering of low vaccination coverage rates
We found strong spatial heterogeneity in measles vac-
cination coverage across the entire ten-country region
(Global Moran’s I of 0.388, p < 0.001). Based on the
Anselin Local Moran’s I, we identified statistically
significant spatial correlation of low vaccination cover-
age (< 75%) between 477 DHS clusters, of mixed cover-
age between 148 clusters, and of high coverage (≥ 75%)
between 645 clusters (Fig. 2a). The DRC had the
second-lowest nationwide vaccination coverage rate in
our study region and had clustering of low coverage
throughout the country. We found clustering of high
coverage almost uniformly throughout Rwanda and
Burundi, two countries with the highest nationwide
average vaccination coverage in our sample. In other
countries, clustering of low-coverage was concentrated
in specific geographic areas: e.g., East Kenya, North
Malawi, North Zambia, South Zimbabwe, and South
Mozambique. Madagascar had the lowest average
nationwide MCV coverage in our sample and had
clustering of low-coverage throughout the country
except in the capital region. We also found clustering of
low coverage across the Kenya-Tanzania and the
Malawi-Zambia borders.
We found three areas with clustering of vaccination

coverage that contrasted nationwide average rates: (1) the
Zanzibar/Pemba island population in Kenya-Tanzania had
clustering of low coverage while nationwide rates were
relatively high (Fig. 2b); (2) the Madagascar capital region
had clustering of high coverage while the nationwide rates
were low (Fig. 2c); and (3) the Northern Malawi region
had clustering of low vaccine coverage compared to high
nationwide coverage (Fig. 2d). Each of these areas has dis-
tinctive geological features that separated them from the
surrounding area: Zanzibar and Pemba are Tanzanian
island-populations with semi-autonomous governments;
the Madagascar capital region of Antananarivo is located
in the mountainous Hauts Plateaux region, separated from
the rest of the country; and Northern Malawi includes
most of Lake Malawi and areas of higher elevation
compared to the South of the country that includes the
river Shire.

Determinants of low-vaccination
We explored possible determinants for clustering of low
vaccination coverage using a spatial regression model.
Clustering of low vaccination coverage was associated
with children not having a health card and mothers not

Fig. 1 Vaccination coverage and DHS clusters in the study area. The
location of each DHS cluster is depicted as a grey circle. We computed
the average vaccination coverage rate for each country from DHS
cluster-level data. Both maps were created by study investigators using
open access data sources
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Table 1 DHS survey populations included by country

Country Survey year Clusters House-holds Populationa in sampled households Population in all households (1000’s) MCVb coverage (%)

Burundi 2010 376 4662 7742 9233 94.3

DRC 2013–2014 536 10,023 18,716 67,514 71.6

Kenya 2008–2009 398 3864 6079 3877 85.0

Madagascar 2008–2009 595 8151 12,448 19,927 69.6

Malawi 2010 849 12,889 19,967 15,014 93.0

Mozambique 2011 610 6882 11,102 24,581 81.5

Rwanda 2010 492 6019 9002 10,837 95.0

Tanzania 2010 475 4862 8023 44,973 84.5

Zambia 2013–2014 721 8692 13,457 14,539 84.9

Zimbabwe 2010–2011 406 4048 5564 13,077 79.1

Total 5458 70,092 112,100 214,339 83.6

Legend: achildren 12–23 months of age, bMeasles containing vaccine

Fig. 2 Spatial clustering of vaccination coverage in DHS clusters. Using the Anselin Local Moran’s I, we classified each DHS cluster as being part
of a spatial cluster with low-vaccination, high-vaccination, or mixed vaccination coverage (low-vaccination near high-vaccination or vice versa).
Grey circles indicate that vaccination coverage for a DHS cluster was not statistically significantly clustered. a We detected clustering of low,
mixed, and high vaccination coverage in all countries. Vaccination coverage in some spatial clusters contrasted nationwide vaccination coverage
rates: e.g., b in the Zanzibar/Pemba islands and the Kenya-Tanzania border population (low vaccination vs. high nationwide); c in Northern Malawi
(low vaccination vs. high nationwide); and (d) in the Madagascar capital region (high vaccination vs. low nationwide)
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having knowledge of ORS. Clustering of low vaccination
was 4.6% less likely for each percentage point increase in
children with a health card (95% CI: -0.066, −0.026,
p < 0.01) and 1.7% less likely for each percentage
point increase in mothers with knowledge of ORS
(95% CI: -0.033, −0.001, p < 0.05). In addition, cluster-
ing of low coverage was inversely related to having
financial restrictions to healthcare, where we found
1.6% less likely per percentage point increase in
mothers listing financial barriers to seeking healthcare
(95% CI: -0.029, −0.003, p < 0.05). Maternal literacy
rates and a maternal history of visiting a health clinic
were not statistically significantly associated with clus-
tering of low vaccination coverage.

Discussion
Using publicly available DHS data from 10 countries, we
found 477 geographical clusters of low measles vaccin-
ation coverage spread across Sub-Saharan Africa, many
of which contrasted relatively high nationwide average
vaccination coverage rates. These clusters can weaken
herd immunity, cause inequity in disease risk, and delay
elimination programs. Indeed, recent measles outbreaks
have occurred in subpopulations with low immunization
rates: Zambia had an average MCV coverage of 84.9%,
and Malawi of 93%, but both countries experienced a
large measles outbreak in 2010–2011 [28]; this outbreak
spread from high-risk subpopulations in South Africa to
Zambia, Malawi, and to high-risk subpopulations in
Tanzania consistent with the clusters that we identified
[29, 30]. The persistence of virus transmission due to
highly connected, clustered, unimmunized subpopula-
tions has also been demonstrated by mathematical meta-
population models [31–33]. These models can be used
to compute vaccination coverage goals that take into ac-
count spatial clustering of low vaccination.
We found that clustering of low vaccination coverage

was more likely in populations with low health
education and with limited access to healthcare.
Previous studies have found similar risk factors for low
immunization rates [11, 34, 35]. We also found that
financial barriers to healthcare were associated with
better vaccination rates, which seems counterintuitive.
One possibility for this observed relationship may be
that vaccination is often free of charge and may not be
affected by financial barriers. In Malawi, for example,
high vaccine uptake was observed despite significant cost
and travel time, possibly related to high levels of trust in
the effectiveness of the vaccine to prevent serious dis-
ease [36]. In high-income countries, indirect measures
of wealth have been found to correlate with decreased
vaccination coverage due to vaccination hesitancy [37],
but income-related vaccination hesitancy has not been
found (yet) in Sub-Saharan Africa.

Subpopulations with low vaccination coverage across
country borders are a particular concern for measles elim-
ination because these transient populations are often not
covered by national immunization programs [10, 16, 17].
We found such subpopulations at the Kenya-Tanzania
border and the Malawi-Zambia border. The Kenya-
Tanzania border area includes the famous Serengeti and
Kilimanjaro national parks and is inhabited by the
nomadic Maasai people, who have among the lowest
vaccination coverage in Tanzania due to lower use of
healthcare services [38, 39]. The Malawi-Zambia border is
crossed frequently by the Chewa people that reside in
both countries, though this group has been found to be
no less vaccination-compliant than other groups of similar
socioeconomic status in the region [40, 41]. Trans-border
populations with low vaccination coverage can be espe-
cially vulnerable to disease importations from one country
into another. Such importations occurred during the
2010–2011 measles outbreak that spread from Malawi
into Zambia [28]. Coordination of immunization activ-
ities between countries will be essential to increase
coverage and eliminate measles in these cross-border
populations [17].
Most countries in our sample had vaccination coverage

rates well below the measles critical vaccination fraction
and have already been identified by the Measles-Rubella
Initiative as high priority areas for continued activities to
increase immunization rates [42]. We found strong spatial
heterogeneity of vaccination coverage in some of these
countries, indicating that the nationwide vaccination
coverage target of 95% set by the Measles-Rubella
Initiative may not lead to herd immunity, but that targeted
SIAs will be necessary to reach particularly vulnerable
populations. For this reason, the Measles-Rubella Initiative
also monitors vaccination coverage at the district level.

Conclusions
Even in countries where national average vaccination
coverage rates approach the critical vaccination fraction
for measles, subnational vaccination coverage can fall
short, leaving subpopulations, including those that cross
country borders, vulnerable to outbreaks. Systematically
identifying and monitoring these low vaccination sub-
populations can inform SIAs and strengthen elimination
programs. In addition to monitoring average vaccination
coverage statistics, metrics of spatial heterogeneity should
be used to determine the success of immunization pro-
grams and the risk of disease persistence.
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