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Abstract

Genetic differences among major types of wheat are well characterized; however, little is known about how these
distinctions affect the small molecule profile of the wheat seed. Ethanol/water (65% v/v) extracts of seed from 45 wheat
lines representing 3 genetically distinct classes, tetraploid durum (Triticum turgidum subspecies durum) (DW) and hexaploid
hard and soft bread wheat (T. aestivum subspecies aestivum) (BW) were subjected to ultraperformance liquid
chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS). Discriminant analyses distinguished DW
from BW with 100% accuracy due to differences in expression of nonpolar and polar ions, with differences attributed to
sterol lipids/fatty acids and phospholipids/glycerolipids, respectively. Hard versus soft BW was distinguished with 100%
accuracy by polar ions, with differences attributed to heterocyclic amines and polyketides versus phospholipid ions,
respectively. This work provides a foundation for identification of metabolite profiles associated with desirable agronomic
and human health traits and for assessing how environmental factors impact these characteristics.
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Introduction

As a staple crop, wheat is grown on more land area worldwide

than any other crop and is a close third to rice and corn in total

world production [1]. In 2009, the average American consumed

178.2 lbs. of wheat products [2], making this crop an important

source of dietary calories as well as fiber, micronutrients, and

protein. Importantly, the types of wheat used to make major

consumer products like pasta and bread are genetically distinct [3–

5]. Contemporary wheat, though genetically diverse, originated

from a natural hybridization event between Triticum urartu (AA

genome) and Aegilops speltoides (SS genome (BB progenitor)) that

ultimately gave rise to a tetraploid species identified as Triticum

turgidum subsp. dicoccoides (2n = 4X = 28, AABB genome) [6–8].

This wild ancestor of wheat had two fates: cultivation leading to

Triticum turgidum subspecies (ssp.) durum, today’s tetraploid pasta

wheat, or further natural hybridization with Aegilops tauschii (DD

genome) to ultimately give rise to Triticum aestivum ssp. aestivum

(2n = 6X = 42, AABBDD genome), which is the progenitor of

contemporary hexaploid bread wheat (BW) [6–8].

Three genetically distinct types of wheat that are economically

important are: 1) tetraploid durum wheat (DW), 2) hexaploid hard

bread wheat (HBW), and 3) hexaploid soft bread wheat (SBW),

with the latter classification based on starch fractionation patterns

during milling, which is heritable through chromosome 5D [6].

Each type of bread wheat, which is also referred to as common

wheat and has uses in addition to making bread, is further

subdivided by grain color (red vs. white), based on the number of

dominant alleles at the R/r locus on group 3 chromosomes, and

growing season (spring vs. winter), based on the dominant alleles at

vernalization (Vrn) loci on group 5 and 7 chromosomes [6,9].

Though these designations are globally accepted, they are

predominantly used in the United States as all three types are

grown domestically [6]. For the purposes of this paper, ‘class’ will

refer to major market designations (DW, HBW, or SBW) while

‘subclass’ will refer to subsets of these market designations based

on seed coat color and growing season, recognizing that this

classification scheme differs from the official classification system

used in the United States.

Breeding programs for wheat have traditionally focused on the

enhancement of agronomic traits including yield, time to maturity,

disease and insect resistance, and protein/gluten content and

functionality [10]; this approach has been critical to establishing a

plentiful and affordable food supply. However, the rapid rate of
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Table 1. Pedigree information for 45 wheat lines evaluated.

Number Wheat Line Source Class Subclass Pedigree

6 Cham1 Syria DW DW Pelicano/Ruff//Gaviota/Rolette

14 Jennah Khetifa Morocco DW DW Landrace collected from the Atlas Mountains of Morocco

18 Kofa California, USA DW DW Selection from composite cross T. dicoccon alpha-85 S-1

21 Maier North Dakota, USA DW DW D8193/D8335

37 Rugby North Dakota, USA DW DW Langdon/5/(Heiti/Stewart//Mindum/Carleton, Ld 357 )/4/CI 7780/Ld 362/6/Br
180/Wells

44 UC1113 California, USA DW DW Selection from cross CD52600 Kingfisher ’S/Roussia/BD1419/3/Mexi ’S - CP/4/
Waha ’S/5/Yavaros 79

9 Conan Montana, USA HBW HRS Rambo/Westbred 906R

11 Grandin North Dakota, USA HBW HRS Len//Butte*2/ND507/3/ND593

16 Jupateco 73S Mexico HBW HRS NIL selection from Jupateco 73 (II12300/Lerma Rojo 64/8156/3/Norteno
67 = II30842)

22 McNeal Montana, USA HBW HRS PI 125000/Centana//PK176/Frontiera/3/Glenman

23 MTRWA116 Montana, USA HBW HRS PI372129/2*Pondera

31 PI610750 Mexico HBW HRS Crocl/Ae. tauschii (205)//Kauz

34 Reeder North Dakota, USA HBW HRS IAS20*4/H567.71//Stoa/3/ND674

39 Steele North Dakota, USA HBW HRS Parshall’ (PI 613587)/ND706

42 Thatcher Minnesota, USA HBW HRS Marquis/Iumillo//Marquis/Kanred

1 2174 Oklahoma, USA HBW HRW IL71-5662/‘PL145’ (PI 600840)//‘2165’

2 Ankor Colorado, USA HBW HRW Akron/Halt//4*Akron

10 Flamura 85 Romania HBW HRW Mixture (in equal proportions) of 5 lines produced by backcrossing Flamura
80 for resistance to powdery mildew [Erysiphe. graminis]

12 Hatcher Colorado, USA HBW HRW Yuma/PI 372129//TAM-200/3/4*Yuma/4/KS91H184/Vista

13 IDO444 Idaho, USA HBW HRW Utah 216c-12 - 10/Cheyenne/5/PI 476212/4/Burt/3/Rio/Rex//Nebred//6//Utah
216c-12 - 10/Cheyenne/5/PI 476212/4/Burt/3/Rio/Rex//Nebred

15 Jagger Kansas, USA HBW HRW KS82W418/Stephens

20 Lovrin 34 Romania HBW HRW Raniniaja 12/Nadadores 63//Lovrin 12

41 TAM107-R7 Colorado, USA HBW HRW CO850034/PI372129//5*TAM107

45 Weebill 1 Mexico HBW HWS Babax/Amadina//Babax

17 Kauz Mexico HBW HWS Jupateco F73/Bluejay//Ures T81

36 Sokoll Mexico HBW HWS Pastor/3/Altar84/Ae. tauschii//Opata

43 UC1110 California, USA HBW HWS Nord Desprez/Pullman Sel. 101, CI 13438

3 Arlin Kansas, USA HBW HWW Selection from population of intercrossed HRW wheat and HRS wheat
genotypes

7 CO940610 Colorado, USA HBW HWW KS87H22/MW09 (KS87H22 = H15A13333/5*Larned//Eagle/Sage/3/TAM 105,
MW09 = Clark’s Cream/5*KS75216 (Newton Sib))

24 ND735 North Dakota, USA HBW HWW ND 2907/3/Grandin*3//Ramsey/ND 622/4/ND 2809

33 Platte Colorado, USA HBW HWW N84-1104/Abilene (OK11252/W76-1226)

35 Rio Blanco Kansas, USA HBW HWW OK11252A/W76-1226

26 NY18/Clarks Cream
40-1

New York, USA HBW HWW N/A

28 P91193 Indiana, USA SBW SRW Benhur//Arthur/Knox62/3/Arthur/NY5715AB/4/Hart/Beau/9/Arthur/8/
Afghanistan/Knox*4/6/Kawvale 3/Fultz/Hungarian//W381/4/Wabash/3/
Fairfield/Trumbull//G2343/5/Knox/4/Fairfield/3/PI94587//Fultz/Hungarian/7/
Redcoat/6/Norin33/5/Fairfield/3/PI94587//Fultz/Hungarian/4/Knox/10/
Auburn/Coker8427/3/OH256/Scotty//Clark

29 P92201 Indiana, USA SBW SRW Tyler//Caldwell *2/S76/3/Clark/4/CI15549/5/Caldwell*2/Roazon//Glory

32 Pioneer Variety
26R46

Georgia, USA SBW SRW FL7927-G14//2555*3/Coker 80-28

38 SS550 Virginia, USA SBW SRW Coker 9803/Freedom

19 Louise Washington, USA SBW SWS Wakanz/Wawawai

30 Penawawa Washington, USA SBW SWS Potam 70/Fielder

4 Brundage Idaho, USA SBW SWW Stephens/Geneva
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global climate change will make it difficult to sustain progress using

only conventional approaches, especially in light of the expected

increase in the world’s population to 9–10 billion by 2050 [11].

Moreover, in regions of the world unlikely to be affected by food

shortages, the consumer is demanding foods with enhanced

human health benefits.

To meet the daunting challenge of improving wheat for both

agronomic and human health traits, new approaches using the

advancement of microtechnologies have enabled rapid, high-

throughput and affordable analyses of major classes of biologically

important molecules. While the most advanced of these develop-

ments have focused on nucleic acid polymers, other microscale

approaches are being applied to proteins and small molecules. The

investigation of an organism’s metabolome, comprising non-

protein small molecules, is a recent development in the ‘‘omics

revolution’’ and provides a rich, real-time source of information

about that organism’s functional state. However, metabolomics is

arguably the least explored ‘‘omics’’ field, in part because the

systems for extraction and analysis of small molecules have yet to

be standardized, resulting in limited power to assign specific

identities to detected ions similar to genomics and proteomics

technologies a decade ago. Thus, the focus of the work reported in

this manuscript was on metabolite profiling, which measures

thousands of metabolites from cellular extracts and which seeks to

characterize the systemic metabolic state of a plant, rather than

metabolomics per se, which is generally considered the precise

quantitation and identification of every metabolite in a sample

[12] and which is currently not possible due to the infancy of plant

metabolite databases.

Not surprisingly, very few reports have addressed the applica-

tion of metabolite profiling analysis to wheat. The work reported

herein was based on the hypothesis that genetic individuality of

wheat classes confers uniqueness to metabolite profiles, enabling

discrimination of tetraploid DW from genetically distinct hexa-

ploid HBW and SBW, without controlling for environmental

effects. It was also hypothesized that metabolic profiling would

distinguish HBW from SBW as well as the subclasses within BW

market classes. Ions with greatest discriminatory capacity in the

comparisons of DW vs. BW and also HBW vs. SBW classes were

identified and evaluated for trends in chemical expression patterns.

Materials and Methods

Plant Material
Members of the wheat improvement team at Colorado State

University provided wheat seed from a diverse collection of wheat

germplasm that included parents from the Wheat Coordinated

Agricultural Project (http://maswheat.ucdavis.edu/Mapping/

index.htm). This study was double-blinded in that the individuals

providing seed were blinded to the intent of the analyses and the

analytical team was blinded to class and identity of wheat seed.

The growing location for the samples evaluated was not

standardized, i.e. they came from a wide array of different

environments. Forty-five wheat cultivars, advanced breeding lines,

and germplasm representing three U.S. market classes (DW, n = 6;

HBW, n = 27; and SBW, n = 12) were investigated. Bread wheat

(BW) was further subdivided based on grain color and growing

season into 4 subclasses: hard white winter (HWW) (n = 6), hard

white spring (HWS) (n = 4), hard red winter (HRW) (n = 8), and

hard red spring (HRS) (n = 9), for a total of 27 HBW lines

evaluated in this study; soft white winter (SWW) (n = 6), soft white

spring (SWS) (n = 2), soft red winter (SRW) (n = 4), for a total of 12

SBW lines evaluated in this study. (Note: soft red spring (SRS)

wheat designation is not used within the United States wheat grain

classification system.) Most lines were domestic; however,

international lines from Mexico, Romania and Syria were also

included. Pedigree information was collected using the Germ-

plasm Resources Information Network (GRIN) web platform [13],

and is summarized in Table 1.

Metabolite Extraction
Ethanol (65% v/v), sonicator, and a refrigerated centrifuge were

used for metabolite extraction. Extraction was carried out using

ultrasound assisted extraction (UAE), which both accelerates and

facilitates extraction of organic and inorganic compounds as

reviewed in [14]. Ten mL of ethanol (65%) was added to 0.5 g

milled, uncooked wheat seed, in triplicate for each line and the

mixture sonicated for 2 h at room temperature (2262uC). This

was followed by a centrifugation step (10086g, 4uC, 10 min) to

remove insoluble material. Extracts were then decanted into fresh

50 mL conical tubes and aliquots transferred to separate vials for

analysis. The remaining solution was placed in a freezer (220uC)

for storage (up to one month).

Metabolite Analysis by UPLC-TOF-MS
An Acquity UPLC controlled with MassLynx software,

version 4.1 (Waters, Milford, MA) was used for sample analysis,

in which 45 wheat extracts were randomized and analyzed in

three independent iterations based on our previously described

analytical protocol [15]. Briefly, dried extracts were resuspended

in eluent and held at 10uC in a sample manager during the

analysis to prevent evaporation prior to UPLC-TOF-MS analysis.

For sample separation, an Acquity UPLC held at 40uC with a

1.06100 mm Waters Acquity UPLC was used, with 1.7 mm

Ethylene Bridged Hybrid (BEH)-C18 particles. One mL sample

Table 1. Cont.

Number Wheat Line Source Class Subclass Pedigree

5 Caledonia New York, USA SBW SWW Variant in Geneva

8 Coda Idaho, USA SBW SWW Tres/Madsen//Tres

25 NY Cayuga New York, USA SBW SWW Geneva/Clark’s Cream//Geneva

27 OR9900553 Oregon, USA SBW SWW Arminda/3/VPM/MOS951//2*Hill/5/ID#870337

40 Stephens Oregon, USA SBW SWW Nord Desprez/Pullman Sel. 101, CI 13438

Table columns: Numbers = identifiers used within manuscript to visualize chemical separations in scatter plots and dendrograms; Wheat Line = common field identifier;
Source = geographical location where grown; Class = 1 of 3 market classes: durum (DW), hard bread wheat (HBW), or soft bread wheat (SBW); Subclass = subclass within
bread wheat market classes based on seed coat color and growth habit (HWW = hard white winter; HWS = hard white spring; HRW = hard red winter; HRS = hard red
spring; SWW = soft white winter; SWS = soft white spring; SRW = soft red winter); Pedigree = wheat line development and breeding.
doi:10.1371/journal.pone.0044179.t001
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injections were made from 100 mL total sample volumes. Reversed

phase chromatography at a flow rate of 0.14 mL?min-1 was used

for separation, with eluent compositions of 95:5 water: methanol

(solvent A) (LC-MS grade, Thermo Fisher, San Jose, CA) and

100% methanol (solvent B) (LC-MS) grade, Fluka, St. Louis, MO)

both with 0.1% (v/v) formic acid. Separation was achieved by

58 min method as follows: 3 min hold at 100% A, 30 min linear

gradient to 100% B, 12 min hold at 100% B, 3 min linear

gradient to 100% A, and 10 min hold at 100% A for equilibration.

A Q-Tof Micro hybrid quadrupole, orthogonal acceleration time-

of-flight mass spectrometer (Waters/MicroMass) using positive

mode electrospray ionization (ESI+), was used to collect mass

spectral data at a rate of two scans per second over a mass to

charge (m/z) range 50–1500 Da.

UPLC-TOF-MS parameters were set as follows: capil-

lary = 3000 V; cone nitrogen flow = 50 L/h; sample cone = 30 V;

extraction cone = 2.0 V; desolvation temperature = 250uC; deso-

lvation flow = 400 L/h; source temperature = 130uC. Leucine

enkephalin was used as a lock mass reference to ensure accurate

mass measurements within 7 ppm. The lock mass compound was

introduced via a separate orthogonal ESI+ spray and baffle system

(LockSpray) for detection of ions for 0.5 s every 10 s in an

independent data collection channel. The standard mass was

averaged across 10 scans providing a continuous reference for

mass correction of analyte data. Mass spectral scans were mean-

centered in real time using MassLynx software.

Peak Detection, Deconvolution, Filtering, and Scaling
Each wheat line was analyzed in triplicate, resulting in a total of

9 technical replicates per biological replicate (e.g., each wheat

line). Mean-centered and integrated peaks were detected, extract-

ed, and aligned using MarkerLynx software (Waters). Chromato-

graphic peaks were extracted from 0 to 35 min with a retention

time error window of 0.1 min and mass spectral peaks detected

from 50 to 1500 m/z with a mass error window of 7 ppm,

generating a data matrix consisting of retention time, m/z, and

peak intensity based on peak area for all features.

High Quality Ion List
A total of 3727 chemical features were detected from UPLC-

TOF-MS yielding a preliminary dataset with 405 rows and 3727

features (columns). Initial data reduction was achieved by

averaging each wheat line over technical replicates, followed by

2 filtering steps to ensure high quality ions. The first filtering step

used a ‘‘$80% present’’ cut-off criterion within at least one class.

For example, if $80% DW lines had non-zero intensity values for

a specific feature, that feature was retained irrespective of whether

SBW or HBW fulfilled the same criteria for that ion. This step

removed 2355 ions as noise, or 63.1% of the original dataset. The

second filtering step used a $1.0 cut-off criterion for averaged

intensity values across all classes. For example, if the averaged

intensity value of all 45 wheat lines for a specific feature was $1.0,

the feature was retained. The second filtering step removed an

additional 437 ions, for total removal of 2792 ions (75%), leaving a

high quality list containing 935 ions for subsequent analysis. Data

were normalized with Pareto scaling (scaling factor = standard

deviation) before statistical evaluation.

Statistical Analysis
Supervised and unsupervised multivariate techniques were

employed to evaluate and visualize the data [16–19].

PCA (Unsupervised)
Interpretation of multivariate analysis was recently described by

our laboratory [20]. Principal components analysis (PCA) sum-

marizes a set of correlated variables by transforming them, by

means of an eigen decomposition, into a new set of uncorrelated

variables, reducing the dimensionality of the original high-

dimensional dataset, and is carried out with no prior knowledge

of class membership. The first principal component (PC) is the

linear combination of the features (935 ions) that passes through

the centroid of the full dataset while minimizing the square of the

perpendicular distance of each point to that line; each subsequent

PC is constructed in a similar manner while being mutually

orthogonal [21]. The PCA model is written:

X~ �XXzTP’TzE ð1Þ

where X is the matrix of 935 ions, �XX is a vector of means (all 0

when the data are centered), T is a matrix of scores that

summarize the X variables, P’ is a matrix of loadings, superscript T

denotes matrix transposition, and E is a matrix of residuals.

OPLS-DA (Supervised)
Orthogonal projections to latent structures for discriminant

analysis (OPLD-DA) is a supervised, class-based method where

class membership is assigned to samples and used to elicit

maximum data separation [17–19,22], and is written:

X~TPP’P
TzTOP’O

TzE ð2Þ

where the interpretation of equation 2 is similar to that for the

PCA model, however, an additional rotation has been applied

using the class information to partition TPT into predictive,

TPP’P
T , and orthogonal, TOP’O

T , components. The number of

predictive and orthogonal components in the models was

determined by 7-fold cross-validation. Three key statistics, which

are summarized in Table S1, are required to describe the fit of

each model. First, R2X(cum) is the total amount of explained

variation in X; R2Y(cum) is the total amount of variation

explained in Y; and third, Q2Y(cum) is the total amount of

predicted variability in Y, estimated by 7-fold cross validation. The

contribution of each component partitioned into between-class

(predictive) and within-class (orthogonal) variance is also estimat-

ed, and summarized as R2Xp and R2Xo, respectively, with

number of components denoted as subscripts (e.g. R2Xp1–2 for a

model with two predictive principal components). R2Xp and

R2Xo sum to R2X(cum). The ability of the model to classify the

observations into the defined classes is reflected in misclassification

rates for each model, where wheat lines were classified based on

the modeled probability of a single observation belonging to a

particular class.

Visualization of PCA and OPLS-DA
Scatter plots of the first two score vectors for the PCA models

were drawn, along with 95% confidence ellipses based on

Hotelling’s multivariate T2, to identify outliers that might bias

the results of OPLS-DA. For OPLS-DA, class separation was

shown in several ways. The first predictive score was plotted

against the first orthogonal score to visualize the within- and

between-class variability associated with the first principal

component, and dendrograms were drawn using the first (or first

and second) predictive scores, by the single linkage method, and

sorted by size. In the single linkage method, observations were

merged by proximity to neighbors based on Euclidean distance,

Metabolite Profiling of Wheat Classes
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building the hierarchy from individual observations by progres-

sively merging clusters until all observations are merged into one

parent cluster. The resulting clusters are further characterized by

compactness and distinctness. Compactness is the Euclidean

distance of the cluster node from 0; the smaller the number, the

more chemically similar are the elements in the cluster [23].

Similarly, distinctness is the Euclidean distance from the cluster

node to the next highest cluster; the larger the number, the more

chemically distinct the clusters are from each other [23].

Finally, S-plots were constructed to identify influential ions in

the separation of tetraploid DW from hexaploid BW and SBW

from HBW. S-plots based on the first principal component show

reliability (modeled correlation) plotted against feature magnitude

(loadings or modeled covariance). If ions have variation in

correlation and covariance between classes, this plot will assume

an S-shape (giving the plot its name), with heavily influential

features separating from other features at the upper right and

lower left tails of the feature cloud within the model space [18,19].

From these S-plots, ions with high discriminatory capacity, that is,

with high likelihood for potential biomarkers, were manually

chosen based on their physical separation (high magnitude and

high reliability), as well as statistical significance [19]. This

approach ensures that influential ions are not chosen solely on

the basis of high spectral intensity or magnitude (high covariance)

nor chosen solely on the basis of high X2Y correlation, in which

case an abundance of low-intensity ions with high correlation

would increase the false positive rate. All analyses were done using

SIMCA-P+ v.12.0.1 (Umetrics, Umea, Sweden).

Identification of Chemical Features
METLIN: Metabolite and Tandem MS Database (http://

metlin.scripps.edu/) was used to assign tentative compound

identities and empirical formulas [24]. Upon entering m/z of

influential ions chosen from the S-plot, METLIN queried the

database with expanded lipids with maximal error set at 10 ppm

under the following positive ionization adduct scan modes: parent

ion mass (M)+H; M+Na; M+H22H20; M+H2H20; M+K;

M+2Na2H; M+2H; M+3H; M+H+Na; M+2H+Na; M+2Na;

M+2Na+H; M+Li; and M+CH3OH+H.

Note: The step-wise workflow for the metabolite profiling

described above is depicted in Figure S1.

Results

Between-class Discrimination
To determine if genetic individuality of wheat classes confers

chemical distinctness, the high quality ion list was first evaluated

using PCA on all 3 classes of wheat. PCA identified 7 significant

components that explained a total of 68.6% of the variance in the

high quality ion list. The first 2 component scores of the model are

shown in Figure 1A. Hexaploid hard (HBW) and soft (SBW) lines

separated well from tetraploid durum (DW) lines; the scatter of

DW lines relative to the scatter of BW lines was indicative of

increased chemical diversity within the durum lines evaluated.

Three of the 6 DW lines, 14, 44, and 6, fell outside the 95%

confidence ellipse.

OPLS-DA was then used to refine the model fit and partition

the variance into predictive (ion differences related to wheat class)

and orthogonal (ion differences unrelated to wheat class) sources.

The first predictive and orthogonal components are plotted in

Figure 1B; 11.8% of the variance in ion type and concentration

was related to wheat class (first of 2 predictive principal

components), whereas 21.4% of the variance was unrelated to

wheat class (first of 4 orthogonal principal components). HBW and

SBW lines clustered around 0 on the y-axis, with DW lines having

the widest scatter. All 45 wheat lines were correctly classified and

the overall fit of the model was excellent (R2XP1,2 = 22.0%,

R2XO1–4 = 37.7%, R2Y(cum) = 93.2%, Q2(cum) = 71.0%).

The dendrogram in Figure 1C, constructed using the first 2

score vectors form the OPLS-DA model, illustrates the classifica-

tion accuracy. Two main clusters were defined: 1) DW lines and 2)

BW lines, which subsequently splits into clusters comprising 2A)

SBW and 2B) HBW lines. The dendrogram indicates that cluster 1

(DW) is more compact (compactness = 7.2) and therefore durum

lines are more chemically similar than lines within cluster 2 (BW)

(compactness = 19.2). However, within cluster 2, HBW lines in

cluster 2B (compactness = 3.9) are more chemically similar than

are SBW lines in cluster 2A (compactness = 8.7). Similarly, DW

lines forming cluster 1 are chemically distinct from the BW lines

within cluster 2, based on vertical distance to the parent cluster

(distinctness = 18.1 and 30.2 for DW and BW, respectively).

Chemically comparable wheat lines can be identified based on the

hierarchical distance from 0 at which they cluster; HBW lines 1

and 20 were the first to cluster and thus are the most chemically

similar lines within the dataset, followed by the addition of HBW

line 10 and so on until all lines converge in a single primary

cluster.

Within-class Discrimination
Hexaploid HBW and SBW are classified into subclasses based

on grain color and growing season [25]. The compactness and

lower diversity of the HBW cluster (2B) compared to SBW (2A)

observed in the 3-class dendrogram in Figure 1C, offers a test of

the capacity of metabolite profiling to distinguish among subclasses

of the same ploidy level.

Hard bread wheat. A total of 27 HBW lines comprising data

from the high quality ion list were evaluated by PCA, for which

the first 2 scores vectors are plotted in Figure 2A. Overall, the

model consisted of 3 principal components that explained 40.3%

of the variance within the high quality ion list, and which resulted

in a relatively poor separation of the 4 subclasses.

An OPLS-DA model for HBW with the 4 subclasses for color

and growing season coded as the Y variable, produced the scores

plotted in Figure 2B. The first predictive principal component

explained 9.7% of the variability in the ion set, while 11.4% was

explained by the first orthogonal principal component. In addition

to the improved separation of subclasses, Figure 2B demonstrates

that the hard red spring (HRS), hard red winter (HRW), and hard

white winter (HWW) subclasses have approximately equal scatter

around 0 on the vertical axis and thus similar amounts of variation

due to orthogonal sources of the HBW lines evaluated herein. Ten

of the 27 lines were misclassified (63% classified correctly) and the

overall fit of the model was poor (R2XP1 = 9.7%, R2XO1 = 11.4%,

R2Y(cum) = 36.6%, Q2(cum) = 17.3%).

The dendrogram constructed from this model is shown in

Figure 2C. There are two main clusters comprising 1) the HRS

subclass and 2) the other 3 subclasses. While cluster 1, comprising

HRS lines, is chemically distinct (compactness = 2.5, distinct-

ness = 5.0) from the other subclasses with 100% classification

accuracy, the remaining subclasses do not readily cluster using

hierarchical clustering methods.

Soft bread wheat. Twelve SBW lines were evaluated using

the PCA model, shown in Figure 3A with the first 2 score vectors

plotted. Overall, the model consisted of 2 predictive components

that explained a total of 48.9% of the variance within the high

quality ion list, and which resulted in complete separation of the 4

subclasses on the first score vector.

Metabolite Profiling of Wheat Classes
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An OPLS-DA model was next constructed on the 3 SBW

subclasses. The first of 2 predictive principal components

explained 22.7% of variance in the ion set related to the classes,

and the first of 3 orthogonal principal components explained

23.0% of the variance in the ion set unrelated to Y. There were no

misclassifications, and while the overall fit of the model was

excellent, predictability was relatively poor due to the small sample

size (R2XP1,2 = 32.1%, R2XO1–3 = 40.0%, R2Y(cum) = 99.1%,

Q2(cum) = 64.9%).

The dendrogram constructed from this analysis, shown in

Figure 3C, shows two main clusters comprising 1) the SWS

subclass and 2) the other 2 subclasses, which splits into 2A) SWW

and 2B) SRW subclasses. Each cluster, comprising one subclass, is

characterized by homogeneity and is highly chemically distinct

from the other subclasses (compactness = 1.5, 4.9, and 2.3;

distinctness = 37.5, 34.1, and 36.7 for SWS, SWW, and SRW,

respectively).

Tentative Identification of Influential Ions
To determine the identity of ions responsible for the unique

chemical profiles of wheat classes, a two-class OPLS-DA model

comparing tetraploid durum to all hexaploid BW lines (HBW +
SBW) was used to generate the S-plot shown in Figure 4A. From

the S-plot, discriminatory ions were manually chosen based on

Figure 1. Metabolite profiling distinguishes between genetically distinct wheat classes with 100% accuracy. Multivariate discriminant
analysis of the high-quality ion list, consisting of 935 ions in 45 wheat lines, was used to distinguish between wheat classes of differing ploidy levels:
tetraploid durum wheat (DW) vs. hexaploid bread wheat, which comprises hard (HBW) and soft (SBW) bread wheat. Each point represents a single
observation (e.g. each wheat line). (Panel 1A) To visualize inherent clustering patterns, the scatter plot represents unsupervised analysis through the
PCA 3-class model. Separation of DW lines from HBW and SBW lines is observed. Model fit: R2X(cum) = 68.6%, with 7 components, and
Q2(cum) = 38.9%. (Panel 1B) To determine contributing sources of variation, the scatter plot represents supervised analysis of the 3-class OPLS-DA
model, which rotates the model plane to maximize separation due to class assignment. Near-complete separation of the 3 classes was observed.
Model fit: R2Y(cum) = 93.2%, Q2Y(cum) = 71.0%. (Panel 1C-Inset) The misclassification table for the 3-class OPLS-DA model indicates that 100% of
wheat lines (45 of 45 lines) were correctly classified, with low probability (p = 3.10E217) of random table generation as assessed by Fisher’s Exact
Probability. (Panel 1C) To visualize the misclassification rate, the dendrogram depicts hierarchical clustering patterns among major wheat classes
using single linkage and size. Two main clusters comprise 1) DW lines and 2) all BW lines, with cluster 2 branching into 2A, comprising SBW lines, and
2B, comprising HBW lines. Node height of cluster 1 from 0 confirms the high degree of chemical distinctness seen within the DW lines evaluated in
this study compared to node height of cluster 2.
doi:10.1371/journal.pone.0044179.g001
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their physical separation from the main body from regions

described by Wiklund due to both high reliability and high

magnitude [19]. Use of both parameters favors identification of

influential ions with concomitantly high magnitude (covariance)

and high reliability (correlation) [18,19]; ions found in the upper

right and lower left corners were overexpressed or underexpressed,

respectively, in DW compared to BW. The performance of the

model parameterized in this way was excellent, with

R2Y(cum) = 95.4% and QY(cum) = 82.1%.

As indicated in Figure 4A, 36 ions (enlarged icons) were selected

for high discriminatory capacity. Figure 4B shows the 95%

confidence intervals for covariance of the 36 discriminatory ions in

the first principal component sorted in ascending order, which

relegates ions with elevated expression in DW compared to BW to

the distal end of the x-axis. These jack-knifed confidence intervals

(JKCI) identified ions with high reliability (green bars) versus low

reliability (red bar). Ions with low reliability, based on error bars

crossing 0, were excluded from further analysis. Together,

Figures 4A and 4B revealed a total of 35 statistically significant

ions responsible for separation of tetraploid DW from hexaploid

BW.

These 35 ions were submitted to batch analysis using the

METLIN: Metabolite and Tandem MS Database from the

Scripps Institute using 10 ppm error and correcting for positive

ionization adducts [24]. ‘‘Best-choice’’ tentative identities for each

ion were chosen based on smallest accurate mass error (AME); in

the event of an AME tie, adducts with equal AME but different

empirical formulas were reported. Tentative identities, retention

time, adduct, and tentative empirical formula for discriminatory

ions in the separation of DW from BW are reported in Table 2. As

most ions had multiple isomers and derivatives within a single

empirical formula and exact mass as provided by METLIN, in the

interest of simplicity, only general tentative identities and classes

Figure 2. Metabolite profiling distinguishes between HBW subclasses with .62% accuracy. Multivariate discriminant analysis of the high-
quality ion list, consisting of 935 ions in 27 wheat lines, was used to distinguish between subclasses of hard bread wheat (HBW) comprising hard
white winter (HWW), hard white spring (HWS), hard red winter (HRW), and hard red spring (HRS). (Panel 2A) To visualize inherent clustering patterns,
the scatter plot depicts unsupervised analysis through the PCA model. Model fit: R2X(cum) = 40.3%, with 3 components, and Q2(cum) = 10.8%.
(Panel 2B) To determine contributing sources of variation, the scatter plot represents supervised analysis of the OPLS-DA model. Near-complete
separation of subclasses was observed. Model fit: R2Y(cum) = 36.6%, Q2Y(cum) = 17.3%. (Panel 2C-Inset) The misclassification table for the OPLS-DA
model indicates that approximately 63% of wheat lines (17 out of 27 lines) were correctly classified, with low probability (p = 1.40E205) of random
table generation as assessed by Fisher’s Exact Probability. (Panel 2C) To visualize the misclassification rate, the dendrogram was constructed using
single linkage hierarchical clustering and sorted by size. Two main clusters comprise 1) HRS and 2) the other 3 subclasses, which do not cluster by
subclass, indicating a high degree of chemical homogeneity and therefore resistance to clustering by hierarchical methods between HBW subclasses.
doi:10.1371/journal.pone.0044179.g002
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for each ion are reported in Table 2; all stereoisomers and

tentative adducts of the 35 ions are provided in Table S2.

For the comparison of tetraploid DW to hexaploid BW lines, 31

of 35 ions were assigned tentative identities and classified

according to the Lipid Classification System employed by the

Lipid Maps Lipidomics Gateway which utilizes 8 categories: 1)

fatty acyls (FA), 2) glycerolipids (GL), 3) glycerophospholipids (GP),

4) sphingolipids (SP), 5) sterol lipids (ST), 6) prenol lipids (PR), 7)

saccharolipids (SL), 8) polyketides (PK) [26,27], or a final class,

NC, applied to the 4 ions for which no tentative identity or class

could be assigned. Assignment of each ion to the appropriate

category was achieved by consulting the Lipidomics Gateway and

related publications [26–28] and is reported in Table 2. Of the 35

influential ions, 16 ions were overexpressed in BW compared to

DW; as depicted in Figure 4C and described in detail in Table 2,

10 (62.5%) of these elevated ions were tentatively identified as

polar GL, including derivatives of monoacylglycerol (MG)

(retention time (RT): 6.58, 7.43; m/z: 377.3415, 339.2898),

diacylglycerol (DG) (RT: 2.34, 7.07, 7.41; m/z: 353.2280,

617.5147, 595.5318), and triacylglycerol (TG) (RT: 6.14, 7.42;

m/z: 349.3104, 937.6763); and derivatives of phosphatidic acid

(PA) (RT: 8.50, 8.50; m/z: 719.4624, 741.4486), and phosphati-

dylcholine/phosphatidyl-ethanolamine (RT: 7.07; m/z:

782.5360).

Conversely, 19 ions were overexpressed in DW compared to

BW; as described in detail in Table 2, 14 (74%) of these were

tentatively identified as nonpolar ST and FA, including vitamin

D3 derivatives (RT: 2.21, 6.28, 6.96; m/z: 417.2756, 427.3589,

413.3784) and very long chain fatty acid derivatives (RT: 2.08,

2.38, 2.46, 3.75; m/z: 393.2754, 381.3093, 381.3096, 494.3259).

The elevated content of putative polar lipids in BW, compared to

the elevated content of putative nonpolar lipids in DW, suggests

Figure 3. Metabolite profiling distinguishes between SBW subclasses with 100% accuracy. Multivariate discriminant analysis of the high-
quality ion list, consisting of 935 ions in 12 wheat lines, was used to distinguish between subclasses of soft white winter (SWW) comprising soft white
winter (SWW), soft red winter (SRW), and soft white spring (SWS). (Panel 3A) To visualize inherent clustering patterns, the scatter plot represents
unsupervised analysis through the PCA model. Model fit: R2X(cum) = 48.9%, with 2 components, and Q2(cum) = 4.9%. (Panel 3B) To determine
contributing sources of variation, the scatter plot represents supervised analysis of the OPLS-DA model. Subclasses demonstrate complete separation,
and the propensity of wheat lines to localize near lines of similar growth habit, as observed with hard bread wheat lines, was observed in soft bread
wheat lines: the divergence of SRW and SWW from a common parent cluster indicates chemical similarity. Model fit: R2Y(cum) = 99.1%,
Q2Y(cum) = 64.9%. (Panel 3C-Inset) The misclassification table for the OPLS-DA model indicates that 100% of wheat lines (12 out of 12 lines) were
correctly classified, with low probability (p = 7.20E205) of random table generation as assessed by Fisher’s Exact Probability. (Panel 3C) To visualize
the misclassification rate, the dendrogram was constructed using single linkage hierarchical clustering and sorted by size. Two main clusters comprise
1) SWS and 2) the 2 winter habit subclasses, with cluster 2 branching into 2A, comprising SRW lines, and 2B, comprising SWW lines, suggesting that
SBW subclasses have unique chemical profiles.
doi:10.1371/journal.pone.0044179.g003
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that usage of acetyl coenzyme A (CoA), the common synthetic

precursor molecule in synthesis of each class of lipids, may be

differentially regulated in tetraploid durum compared to hexaploid

BW classes.

To highlight metabolite profiles characteristic of classes within

the hexaploid wheat species, a two-class OPLS-DA model

comparing hexaploid HBW to SBW lines was created. Overall

model performance is depicted in Figure S2 and model fit is

reported in Table S1. Based on the excellent model fit observed,

this model was used to generate the S-plot shown in Figure S3A,

where 31 ions (enlarged icons) were selected as features with high

discriminatory capacity. This model performed well, with

R2Y(cum) = 95.0% and QY(cum) = 64.2%. Figure S3B shows

the 95% confidence intervals for covariance of the 31 discrimi-

natory ions in the first principal component sorted in ascending

order, indicating that all 31 ions were statistically significant ions

for separation of HBW from SBW. Tentative identities for these

ions were obtained using METLIN, and ‘‘best-choice’’ tentative

identities, retention time, adduct, and tentative empirical formula

are reported in Table S3, with all stereoisomers and tentative

adduct identities provided in Table S4.

For the comparison of HBW to SBW lines, 26 of 31 ions were

tentatively identified and classified according to the Lipid

Classification System employed by the Lipid Maps Lipidomics

Gateway classification system; due to the polar nature of the

discriminatory ions in this comparison, ions not readily classified

into the Lipid Maps schematic were classified into 2 additional

chemical classes: OS, for organosulfur compounds; ON, for

organonitrogen compounds; or NC for the 5 ions for which

tentative identity or class could not be assigned. Of the 12 ions

identified as overexpressed in HBW, 10 of which were assigned

tentative identities, 3 ions (25%) were tentatively identified as

glycerophospholipids (GP), 3 ions (25%) were tentatively identified

as glycerolipids (GL), and 3 ions were tentatively identified as

organonitrogen compounds (ON) of heterocyclic amine ontology.

Conversely, of the 19 ions overexpressed in SBW, 16 of which

were assigned tentative identities, 6 ions (32%) were tentatively

identified as polyketides (PK- primarily flavonoids) and 6 ions

(32%) were tentatively identified as glycerophospholipids (GP).

Discussion

Figures 1–4 provide evidence that the genetic individuality of

wheat classes and subclasses permitted chemical separation of

commonly grown wheat lines (described in Table 1) without

controlling for environmental effects. Thus, this study constitutes a

proof-in-principle of the ability of metabolite profiling to drive

hypothesis generation through identification of plant metabolites

Figure 4. Discriminatory ions of differential polarity determine
separation of tetraploid DW from hexaploid BW lines. Multivar-
iate analysis was extended to identify influential ions responsible for the
separation between classes. (Panel 4A) The supervised OPLS-DA
model was created to compare all durum lines to all bread wheat lines,
and an S-plot was constructed by plotting modeled correlation in the
first predictive principal component against modeled correlation from
the first predictive component (t1). Upper right and lower left regions of
S-plots contain candidate biomarkers with both high reliability and high
magnitude; discriminatory ions (n = 36) chosen from these regions are
enlarged X3. (Panel 4B) To determine the statistical reliability of the
ions chosen in Panel 4A, jack-knifed confidence intervals (JKCI) were
created on the magnitude of covariance in the first component for the
36 ions and sorted in ascending order based on expression in durum
wheat; ions with JKCI including 0 were excluded from further analysis

(indicated by red bars in Panel 4B and red icons in Panel 4A),
resulting in n = 35 ions responsible for the separation of durum wheat
from bread wheat. (Panel 4C) Of the 31 ions to which tentative
compound identities and empirical formulas could be assigned by the
METLIN: Metabolite and Tandem MS Database, the tentative identity
with the smallest accurate mass error was assigned to 1 of 8 lipid classes
according to the Lipid Maps classification system: 1) fatty acyls (FA), 2)
glycerolipids (GL), 3) glycerophospholipids (GP), 4) sphingolipids (SP), 5)
sterol lipids (ST), 6) prenol lipids (PR), 7) saccharolipids (SL), 8)
polyketides (PK), or NC for the 4 ions in which tentative identities
could not be matched to the ion m/z. Of the 19 ions overexpressed in
durum wheat (DW) compared to bread wheat (BW), 62.5% were
tentatively identified as nonpolar lipids, while 74% of the 16 ions
overexpressed in BW were tentatively identified as polar lipids,
suggesting differences in lipid biosynthetic pathways within the two
species.
doi:10.1371/journal.pone.0044179.g004
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and potential pathways of metabolite biosynthesis that distinguish

among wheat classes. These findings support the use of global

high-throughput metabolite profiling as a discovery tool capable of

identifying a specific pattern of ion expression, or ‘profile’,

responsible for traits of interest. In turn, identified profiles can

be used for dedicated analytical procedures and as a routine, cost-

effective screening tool that can rapidly evaluate large numbers of

plant varieties for profiles associated with desirable or undesirable

traits. These implications are discussed in greater detail below.

While two ploidy levels, tetraploid and hexaploid, distinguish

between the major types of wheat consumed by humans, to our

knowledge the application of broad-scale, metabolite profiling has

not been utilized to determine whether these species have

distinguishing chemical profiles, which may have agronomic and

biomedical implications. As shown in Figure 1, metabolite

profiling distinguished between DW and BW with 100% accuracy,

indicating that any given DW line is more chemically similar to

other DW lines than to any BW line. In addition to highlighting

the distinct chemical characteristics of DW versus BW, Figure 1

provides information regarding both chemical diversity and

similarity. The dendrogram depicted in Figure 1C indicates that

DW lines have a highly distinct chemical footprint, as cluster 1

(comprising DW) has low compactness and high distinctness

compared to cluster 2 (comprising BW lines) based on node height.

Dendrograms provide estimates of chemical similarity based on

the hierarchical distance at which wheat lines cluster. The

following example illustrates the value of this information. In

Figure 1C, cluster 2A, HBW lines 1 and 20 were the first to cluster

based on vertical distance from 0, and thus are the most

chemically similar lines within the dataset. If, for example, line

20 was a well-established cultivar with a desirable chemical trait

such as overexpression of a bioactive molecule, the hierarchical

distance suggests that line 1 is chemically similar to line 20 and has

higher likelihood of exhibiting the same chemical traits than a

wheat line at a greater hierarchical distance. This capacity may be

of particular use to plant breeders when choosing elite parents for

developing breeding programs for enhancement of beneficial traits

through heterosis, or hybrid vigor.

Although this is the first report on the chemical uniqueness of

tetraploid DW and hexaploid BW, this finding is not unexpected

given that DW and BW differ by an additional set of

chromosomes–it stands to reason that the addition of an entire

genome would substantially alter the metabolite profile. Indeed,

enzyme multiplicity, due to coding of the same enzyme by multiple

chromosomes, is postulated by Feldman and Levy in 2005 [29] to

be at least partially responsible for the environmental adaptability

of BW, which is conferred largely by the metabolome. Further-

more, the 2-class model, comparing DW to all BW lines, had the

best model fit of all comparisons with R2Y(cum) = 95.4%,

Q = 82.0%, and 0 lines misclassified, indicating that tetraploid

DW lines are, chemically speaking, very different than hexaploid

BW lines.

However, the capacity of metabolite profiling to distinguish

between classes was not restricted to large-scale genetic differences.

As shown in the 3-class model in Figure 1B and the 2-class model

in Figure S2, metabolite profiling was also able to distinguish

between HBW and SBW with 100% accuracy for the lines

evaluated, suggesting that considerable variation in metabolite

expression is conferred by genetic differences between wheat

classes of the same species and ploidy level.

In addition to distinguishing between wheat lines of different

ploidy levels, metabolite profiling also distinguished between

subclasses of the major wheat classes based on minor genetic

differences related to growing season (winter vs. spring) and seed
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coat color (white vs. red). In the HBW model shown in Figure 2,

the metabolite profile distinguished between 27 wheat lines

comprising 4 subclasses with ,63% accuracy; however, the low

R2(cum) indicates a great deal of chemical homogeneity among

HBW lines, making distinguishing between subclasses difficult.

Node height of cluster 2B in Figure 1C confirms the high degree of

compactness in HBW lines.

As seen in Figure 3, the SBW model distinguished between 12

wheat lines comprising 3 subclasses with 100% accuracy,

suggesting that these subclasses have chemical profiles with high

discriminatory capacity. Interestingly, the high proportion of

within-class variation (R2XO1–3 = 40.0%) indicates that other

factors contribute strongly to chemical profiles of SBW; further

investigation and larger sample sizes are needed to understand this

phenomenon. However, despite small sample size, metabolite

profiling was capable of distinguishing between wheat subclasses,

which is consistent with previous studies by Heuberger et al. in rice

[30], where chemical diversity within varieties of the rice species,

Oryza sativa, clustered according to their defined species subclas-

sifications: indica, japonica, and aus.

In addition to characterization of wheat class chemical profiles,

OPLS-DA also provided information regarding discriminatory

ions responsible for the distinction between tetraploid and

hexaploid wheat classes. Thirty-six ions were identified using the

S-plot of Figure 4A and jack-knifed confidence interval of modeled

correlation between X-variables (ions) and Y variables (classes)

identified 35 of these ions as statistically significant for influencing

the separation of DW and BW, which were then assigned tentative

identities and empirical formulas using METLIN: Metabolite and

Tandem MS Database. Information for each ion, including

retention time, m/z of the ion, tentative identity, empirical

formula, lipid class, polarity class, and wheat class in which the ion

is overexpressed (BW versus DW) are reported in Table 2. A total

of 16 ions were overexpressed in BW, of which 10 (62.5%) were

tentatively identified as polar lipids; in contrast 19 ions were

overexpressed in DW, of which 14 (74%) were tentatively

identified as nonpolar lipids according to the Lipid Maps

Lipidomics Gateway classification system as described by Fahy et

al. [26–28] and as polar versus nonpolar according to Chung et al.

in 2009 [31].

These distinct patterns of nonpolar versus polar lipid expression

indicate that lipid class profiles are responsible for the separation of

clusters 1 and 2 in Figure 1C, which illustrate the discrete chemical

profile of tetraploid DW compared to hexaploid BW. To illustrate

the capacity of metabolite profiling for hypothesis generation, the

prevalence of class-discriminating phospholipids, including glycer-

olipids and glycerophospholipids, in BW at the apparent expense

of nonpolar lipids may suggest that the DD genome confers a

preferential shunting of cellular carbon into the fatty acyl synthetic

pathway in the plant plastid, in which acetyl CoA molecules are

cyclically condensed with malonyl CoA for carbon chain

elongation at the expense of the mevalonate pathway, which

provides isoprenoid precursor molecules for NP steroid biosyn-

thesis [28,32]. The fatty acyl synthetic pathway is the starting point

for synthesis of polar glycerolipid and glycerophospholipids, in

which fatty acids are transported from the plastid to the

endoplasmic reticulum for conjugation to a glycerol backbone by

acyl Coa:sn-glycerol-3-phosphate acyltransferase, the rate limiting

enzyme for formation of both glycerolipid and glyceropho-

spholipid [33]. Thus, while future studies are required to validate

this hypothesis, metabolite profiling serves as a way to establish

potential links between plant chemicals and observed biological

phenomena.

To further highlight the utility of metabolite profiling,

discriminatory ions in the separation of HBW and SBW are

reported in Tables S3 and S4. In contrast to the differential

polarity of metabolites that separate DW from BW, nearly all

discriminatory ions in the separation of BW classes were

tentatively identified as polar compounds. However, the biosyn-

thetic origin of the major class of discriminatory polar compounds

varies; of the 12 ions identified as overexpressed in HBW, 10 of

which were assigned tentative identities, 3 ions (25%) were

tentatively identified as glycerophospholipids, 3 ions (25%) were

tentatively identified as glycerolipids, and 3 ions were tentatively

identified as organonitrogen compounds of heterocyclic amine

ontology. Conversely, of the 19 ions overexpressed in SBW, 16 of

which were assigned tentative identities, 6 ions (32%) were

tentatively identified as polyketides [34] (primarily flavonoids),

suggesting that the utilization of glycolytic intermediates, e.g.

phosphoenolpyruvate, into phenolic or alkaloid biosynthesis via

the shikimate pathway, as reviewed in [34] vs. synthesis of acetyl

CoA for glycerolipid/glycerophospholipid biosynthesis may be

differentially regulated between HBW and SBW.

Though the exploratory nature of metabolite identification

through profiling techniques must be emphasized, the differential

expression of polar and nonpolar lipids in major wheat classes is

supported by Armanino et al. [35], whose work demonstrated that

lipid profiling was a way to reliably distinguish between DW and

BW, and by Chung et al., whose summary of several published

articles indicated that the ratio of polar to nonpolar lipids is generally

higher in BW vs. DW [31]. Additionally, though relative lipid

abundance in wheat seed is minor (3.5% seed mass), lipid polarity

impacts the location of lipid synthesis and aggregation within the

plant cell [36,37], which has implications for bread dough properties

such as viscosity, pasting, and foaming [31], and in loaf quality

properties such as gas bubble formation, leavening capacity, and

final loaf volume (reviewed in [31]), making the distinct chemical

profiles described herein of value to breeders concerned with traits of

bread quality. Thus, the differential expression of lipid classes

highlights the utility of metabolite profiling for hypothesis genera-

tion. Finally, the agreement of our experimental findings, in which

environment and growing year were not controlled, with the general

conclusions obtained by the work of Armanino et al. [35], that polar

lipids distinguish between ploidy levels, and which employed very

stringent environmental control, provides evidence that metabolite

profiling can ultimately serve as a quick, relatively inexpensive

method of determining which compounds are heavily influential in

the chemical distinction between genotypes.

Limitations

Plants synthesize small molecules to aid in reproduction, assist

communication within and among plant species [38], and as a

means of dealing with biotic (other plants, pests, animals) and

abiotic (temperature, drought, soil quality) stressors [39,40].

Indeed, secondary metabolites under the Poaceae family, to which

all wheat species belong, have been reported to vary in

concentration based on abiotic, environmental stressors including

water availability, light intensity, and temperature [41,42].

Environmental effects on gene expression are likely to account,

at least in part, for the orthogonal sources of variation observed in

the OPLS -DA modeling. This is consistent with the ability of

metabolite profiling not only to provide valuable information

about traits based on genetic differences, but potentially to

elucidate how gene-by-environment interactions affect chemical

profiles associated with traits of interest. Nonetheless, as environ-

ment was not controlled in seed selection for these analyses, it is
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not possible to determine whether the variation due to environ-

ment was accounted for in the systematic variation in metabolite

concentration orthogonal to that associated with wheat class, or in

the variation currently identified as noise. The small sample size,

particularly in the subclass models, is reflected in the low

predictive reliability (Q2Y(cum)) of the models, which ranged

from 82.1% in the DW vs. BW model to 17.3% in the HBW

subclasses model. These will be important factors to consider in

the design of future experiments to investigate the effect of gene-

by-environment interactions on traits of interest.

Concluding Comments
This is the first comprehensive study of the systemic metabolic

state of wheat, utilizing high-throughput, semi-quantitative chro-

matographic (UPLC-TOF-MS) techniques, in order to character-

ize the impact of genetic differences between wheat classes on

metabolite expression profiles with the goal of determining which

ions, and classes of ions, distinguish between major wheat classes.

In accomplishing this objective, this work sets the stage for the

second objective of metabolite profiling as described by Kopka

et al., i.e. to characterize the regulatory mechanisms responsible for

the discriminatory metabolic states that were identified [12]. This

report also provides a foundation for future applications of

metabolite profiling for the improvement of wheat for enhanced

agronomic and human health traits.

Supporting Information

Figure S1 Metabolite profiling workflow for analysis of
3 major classes of wheat. UPLC-TOF-MS = ultraperfor-

mance liquid chromatography with time-of-flight mass spectrom-

eter; C18 = carbon chain length on stationary phase; PCA = prin-

cipal components analysis; OPLS-DA = orthogonal projections to

latent structures discriminant analysis; DW = durum wheat;

BW = bread wheat, including hard (HBW) and soft (SBW) bread

wheat classes; JKCI = jack-knifed 95% confidence interval of

modeled covariance in the first predictive principal component;

ppm = parts per million of accurate mass error.

(TIF)

Figure S2 Metabolite profiling distinguishes between
hexaploid hard and soft bread wheat classes with 100%
accuracy. Multivariate discriminant analysis of the high-quality

ion list, consisting of 935 ions in 39 wheat lines, was used to

distinguish between hexaploid hard (HBW) and soft (SBW) bread

wheat classes. Each point represents a single observation (e.g. each

wheat line). (Panel 1A) To visualize inherent clustering patterns,

the scatter plot represents unsupervised analysis through the PCA

model comparing HBW to SBW lines. Separation of HBW and

SBW lines is observed. Model fit: R2X(cum) = 64.8%, with 7

components, and Q2(cum) = 27.6%. (Panel 1B) To determine

contributing sources of variation, the scatter plot represents

supervised analysis of the 2-class OPLS-DA model, which rotates

the model plane to maximize separation due to class assignment.

Complete separation of HBW and SBW was observed. Model fit:

R2Y(cum) = 95.0%, Q2Y(cum) = 64.2%. (Panel 1C-Inset) The

misclassification table for the 3-class OPLS-DA model indicates

that 100% of wheat lines were correctly classified, with low

probability (p = 2.60E210) of random table generation as assessed

by Fisher’s Exact Probability. (Panel 1C) To visualize the

misclassification rate, the dendrogram depicts hierarchical clus-

tering patterns among major wheat classes using single linkage and

size. Two main clusters completely separate 1) HBW lines and 2)

SBW lines, indicating chemical distinctness between these classes.

(TIF)

Figure S3 Discriminatory ions determine separation of
hexaploid HBW from SBW lines. Multivariate analysis was

extended to identify influential ions responsible for the separation

between classes. (Panel 4A) The supervised OPLS-DA model was

created to compare all HBW lines to all SBW lines, and an S-plot

was constructed by plotting modeled correlation against modeled

covariation from the first predictive component. Upper right and

lower left regions of S-plots contain candidate biomarkers with

both high reliability and high magnitude; discriminatory ions

(n = 31) chosen from these regions are enlarged X3. (Panel 4B)
To determine the statistical reliability of the ions chosen in Panel
4A, jack-knifed confidence intervals (JKCI) were created on the

magnitude of covariance in the first component for the 31 ions and

sorted in ascending order based on expression in durum wheat; all

ions were statistically significant at this level, resulting in n = 31

ions responsible for the separation of HBW from SBW lines.

Tentative identities for these discriminatory ions are provided in

Table S3.

(TIF)

Table S1 Model fit summaries of unsupervised and
supervised analyses. Table columns: Model = wheat lines used

to construct OPLS-DA model; R2Xp = variation in X variables

(ions) explained by predictive principal components; R2Xo = var-

iation in X variables explained by orthogonal principal compo-

nents; R2X(cum) = total amount of explained variation in X

(R2Xp + R2Xo); R2Y(cum) = total amount of variation explained

in Y; Q2Y(cum) = total amount of predicted variability in Y,

estimated by 7-fold cross validation; Wheat Lines Misclassified = -

number of wheat lines misclassified by the model.

(DOCX)

Table S2 All tentative identities for discriminatory ions
in the DW vs. BW OPLS-DA model. The METLIN:

Metabolite and Tandem MS Database was used to assign

tentative compound identities and empirical formulas to the 35

influential ions with maximal m/z error set at 10 ppm under

positive ionization adduct scan modes. Table columns: Ion

Identifier; Ion RT = ion retention time in minutes; Ion m/

z = ion mass-to-charge ratio in daltons; Adduct = positive ioniza-

tion adduct; Adduct Mass = mass of ion + adduct; Dppm = change

(D, or d) in ppm from Ion m/z; Tentative Identity = identifier from

METLIN; Empirical Formula = derived from Adduct Mass and

Dppm. NC = not classified; no tentative compound identity hits

within limits of METLIN search.

(DOCX)

Table S3 Best-choice tentative identities of discrimina-
tory ions in the hexaploid HBW vs. SBW OPLS-DA
model. The METLIN: Metabolite and Tandem MS Database

was used to assign tentative compound identities and empirical

formulas to the 31 influential ions with maximal m/z error set at

10 ppm under positive ionization adduct scan modes. Table

columns: Ion Identifier (used in Figure S3, Panel A); Ion RT = ion

retention time in minutes; Ion m/z = ion mass-to-charge ratio in

daltons; Adduct = positive ionization adduct; Adduct Mass = mass

of ion + adduct; Dppm = change (D, or d) in ppm from Ion m/z;

Tentative Identity = identifier from METLIN; Empirical Formu-

la = derived from Adduct Mass and Dppm; Class = class assigna-

tion according to the Lipid Maps Lipidomics Gateway as: 1) fatty

acyls (FA), 2) glycerolipids (GL), 3) glycerophospholipids (GP), 4)

sphingolipids (SP), 5) sterol lipids (ST), 6) prenol lipids (PR), 7)

saccharolipids (SL), 8) polyketides (PK), additional classes ON

(organonitrogen) and OS (organosulfur compounds), with NC

classification if tentative identities could not be matched to the ion
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m/z; Overexpressed in: = ion spectral intensity higher in hard

bread wheat (HBW) or soft bread wheat (SBW) as indicated.

(DOCX)

Table S4 Characteristics and all possible tentative
identities for discriminatory ions in the hexaploid
HBW vs. SBW OPLS-DA model. The METLIN: Metabolite

and Tandem MS Database was used to assign tentative compound

identities and empirical formulas to the 31 influential ions with

maximal m/z error set at 10 ppm under positive ionization adduct

scan modes. Table columns: Ion Identifier; Ion RT = ion retention

time in minutes; Ion m/z = ion mass-to-charge ratio in daltons;

Adduct = positive ionization adduct; Adduct Mass = mass of ion +
adduct; Dppm = change (D, or d) in ppm from Ion m/z; Tentative

Identity = identifier from METLIN; Empirical Formula = derived

from Adduct Mass and Dppm. NC = not classified; no tentative

compound identity hits within limits of METLIN search.

(DOCX)
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