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ABSTRACT: Physicochemical properties of compounds have been instrumental in
selecting lead compounds with increased drug-likeness. However, the relationship between
physicochemical properties of constituent drugs and the tendency to exhibit drug
interaction has not been systematically studied. We assembled physicochemical descriptors
for a set of antifungal compounds (“drugs”) previously examined for interaction. Analyzing
the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond
acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we
found that combinations of two lipophilic drugs had a greater tendency to show drug
synergy. We developed a more refined decision tree model that successfully predicted drug
synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our
predictions achieved a precision of 63% and allowed successful prediction for 58% of
synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a
substantial fraction of synergistic drug interactions. We also generated and analyzed a
large-scale synergistic human toxicity network, in which we observed that combinations of
lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular
descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having
many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the
positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms.

■ INTRODUCTION

Some drug pairs elicit a phenotype that is significantly greater
than expected, a phenomenon called drug synergy.1 Synergistic
drug combinations are of high medical interest, because they
allow increased efficacy at lower dosage.2 As the number of
possible drug combinations is astronomical, prediction methods
can help expedite the search for synergistic drug combinations.
Several studies have been successful in predicting drug synergy;
however, these methods often require costly (chemogenomic
profiling,3 microarray analysis,4 binding assays5), subjective

(drug targets,6 drug indications,7 drug side effects7), or
incomplete (genetic interactions,6,8 protein interactions9)
input data sets.
There have been many studies aimed at predicting biological

activities of chemicals10,11 often via application of quantitative
structure−activity relationship modeling.12,13 Toward this goal,
Lipinski’s “Rule of Five” is perhaps the most well-known guide
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to identifying chemicals with desirable pharmacokinetic proper-
ties.14 According to this rule, drug-like molecules have
characteristic physicochemical properties: molecular weight
less than 500 Da, octanol-partition coefficient (LogP) less than
5, H-bond donors less than 5, and H-bond acceptors less than
10.15 Since its inception in the 1990s, the application of this
rule and its extensions have been widely used to narrow
investigational focus on compounds.16,17

A particularly attractive feature of the Lipinski’s rule is that
the relevant physicochemical properties are simple and readily
obtained. The molecular structure information on a drug
readily yields its molecular weight, H-bond donor and H-bond
acceptor values. The determination of the LogP of a compound
requires only simple experimental measurement of the relative
solubility of a compound in octanol versus water.18 A high
LogP indicates a preference toward hydrophobic interactions,
which is interpreted as lipophilicity.19 Moreover, LogP may be
accurately estimated by many established methods.20 For
example, the structure-derived estimate termed XLogP3 is
almost perfectly correlated with experimentally determined
LogP values.21 XLogP3 values for compounds are publicly
available in the PubChem database.22

While the relationship between physicochemical properties
and drug-likeness has been extensively studied, it has not yet
been explored to predict drug interactions. Here, we examined
the relationship between drug physicochemical properties and
pairwise drug interactions. We analyzed two drug interaction
networks, one experimentally generated for yeast (31 nodes,
165 edges) and one literature-curated for humans (428 nodes,
919 edges). We observed that in both yeast and human,
combinations of lipophilic compounds frequently result in
synergistic drug interactions. These results uncover a novel
phenomenon that may explain a large proportion of synergistic
drug interactions.

■ RESULTS

Drug Lipophilicity and Antifungal Drug Synergy Are
Related. We analyzed experimental data measuring synergy of
antifungal (antimycotic) compounds for 175 drug pairs

(Supplementary Table 1) among 33 drugs (Supplementary
Table 2).6 The drugs and pairs in this screen were selected on
the basis of antifungal activity, having known targets, and in
some cases based on the presence of genetic interactions
among drug targets. They were not selected on the basis of
physicochemical properties. For each of these drugs, we
extracted the four physicochemical properties associated with
Lipinski’s Rule of Five from PubChem. These properties were
(1) molecular weight (MW), (2) lipophilicity (XLogP3),21 (3)
H-bond donor (H-don), and (4) H-bond acceptor (H-acc).
Lithium and cisplatin did not have reported XLogP3 scores and
were not considered further, bringing the total number of
tested drug pairs to 165. Among the remaining 31 drugs, we
observed a large range for each of these properties: MW ranged
from 42−1101 Da; XLogP3 from −6.6−8.5; H-don from 0−
14; and H-acc from 1−18.
As there are (31/2) = 465 possible pairings of 31 drugs, 165

tests represent 35% of the drug pair space. Some drugs were
more heavily tested. For example, 45% of the entire data set
involved 6 drugs that had each been tested against more than
20 drugs. Of these 165 tested pairs, 48 were reported as
synergistic6 (see Methods). For each of the 31 drugs, we
computed “synergicity” defined by the fraction of tested
partners exhibiting synergy. Drug synergicities covered a
wide-range between 0 and 60%, in accordance with previous
observations that some drugs are more likely to exhibit drug
synergy.6,23

Next, we compared the synergicity of drugs with their MW,
XLogP3, H-don, and H-acc values (Supplementary Figure 1).
We found a significant correlation between synergicity and
XLogP3 (Spearman r = 0.51, p = 3.6 × 10−3; Figure 1 left).
This relationship is strengthened among drugs that are tested
against more than five partners (Spearman r = 0.68, p = 3.7 ×
10−4). This observation suggested that drugs that have a higher
lipophilicity are more likely to show synergy. In contrast, MW,
H-don, and H-acc did not show any significant correlation with
synergicity for either the entire drug set or among drugs that
are tested against more than five partners.

Figure 1. Drug lipophilicity and drug synergy are related in yeast. (left) Each circle represents one drug and the size of each circle corresponds to the
number of drug synergy tests. The x-axis corresponds to the ratio of synergies the drug exhibited among all drugs it was tested against (synergicity).
The y-axis corresponds to the lipophilicity (XLogP3) of each drug. There is a significant positive correlation between synergicity and lipophilicity
(Spearman r = 0.51, p = 0.0036.). (right) Histograms of XLogP3 distribution for nonsynergistic (black histogram) and synergistic (red histogram)
partner drugs of two heavily tested drugs with a high synergicity (Pentamidine and Terbinafine). Both drugs exhibited significantly more synergy
with lipophilic drugs (Pentamidine p = 6.5 × 10−4, Terbinafine p = 9.1 × 10−3, Mann−Whitney U-test).
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Antifungal Drug Synergy Is More Common among
Pairs of Lipophilic Drugs. We more closely examined six
drugs (Benomyl, Latrunculin B, Pentamidine, Staurosporine,
Tacrolimus, Terbinafine) that had been tested against more
than 20 partners for drug synergy. Pentamidine exhibited a
synergistic interaction with 12 drugs among 24 tests, making its
synergicity 50% (Figure 1 left, lower blue disc). We found that
the 12 drugs that exhibit synergy with Pentamidine have
significantly higher XLogP3 values than the 12 drugs that did
not exhibit synergy with Pentamidine (Figure 1 middle) (p =
6.5 × 10−4, Mann−Whitney U-test). When we compared the
XLogP3 values of compounds positive or negative for synergy
with Terbinafine (15 and 11 cases, respectively), the same trend
was observed (Figure 1 right) (p = 9.1 × 10−3, Mann−Whitney
U-test). Latrunculin B and Staurosporine also showed this
trend; however, their p-values (p = 0.03, p = 0.02, respectively)
fell short of significance after Bonferroni correction for six
drugs.
We hypothesized that the relationship between drug

lipophilicity and drug synergicity is not a simple result of one
of the partner drug’s lipophilicity, but depends on the
lipophilicity of both drugs in a drug pair. We generated a
“yeast antifungal synergy network” to visualize both synergy
and the lipophilicity of each drug (Figure 2). This network
showed clearly that synergistic edges are more common among
pairs of lipophilic drugs.

To explore this trend in greater detail, we binned drug pairs
in two dimensions according to the XLogP3 of each drug and
calculated the prevalence of synergy within each bin. The
resulting two-variable probability mass function (pmf), shown
in Figure 3 top, shows clearly that synergistic drug pairs are
almost exclusively among lipophilic (XLogP3 > 0) drugs. An
equivalent pmf was generated for the prevalence of nonsynergy
(Figure 3, middle), showing that lack of synergy is more widely
distributed among drugs with both low and high lipophilicity.

Examining the difference between the synergy and no-
synergy pmf’s (Figure 2 bottom), we observed a clear pattern
that when two drugs each have XLogP3 values higher than 1,
they are more likely to be synergistic. In fact, a simple rule that
“if two drugs have XLogP3 > 1, they will be synergistic” results
in a statistically significant enrichment (p = 5.7 × 10−9, Fisher’s
Exact Test) and fails to capture only six of 48 synergistic drug
pairs. Moreover, we found that a generalized simple rule that
states: “if two drugs both have lipophilicity higher than a
threshold XLogP3, they will be synergistic” results in a
classification accuracy with area under the ROC curve (AU-
ROC) value of 0.74 and area under the Precision-Recall curve
(AU-PR) value of 0.54 (Supplementary Figure 2). These
observations strongly suggest that combinations of lipophilic
antifungal compounds frequently exhibit synergistic toxicity to
yeast. We note that there are many examples of lipophilic drug
combinations that do not exhibit synergy. In other words,
although the predictions are highly sensitive, they are not
perfectly specific.

Lipophilicity of Drugs Is a Predictor of Antifungal
Drug Synergy. Next, we carried out 5-fold cross validation (5-
fold CV) to assess generalization performance of synergy
predictions based on lipophilicity (see Methods). In terms of a
graph representation, drug synergy is a commutative edge
property, while drug pair lipophilicity is a noncommutative
property of two nodes. Because lipophilicity is not a

Figure 2. Antifungal drug interaction network. Each node represents
one of 31 tested chemicals with antifungal effect on S. cerevisiae
growth. Nodes are colored, labeled, and ordered according to their
XLogP3. The 48 red edges represent synergistic interactions and 117
black edges represent tested drug interactions with no synergy. Visual
inspection of the network suggests a greater tendency for pairs of
lipophilic compounds to have synergistic interactions.

Figure 3. Combinations of lipophilic antifungals are likely to be
synergistic. (top and middle) The probability mass functions of
synergistic or nonsynergistic edges are shown as a function of the
XLogP3 of the drugs in a pair. Visual analysis suggests that synergistic
interactions are mostly among antifungals with XLogP3 > 1, while
nonsynergistic interactions are more distributed. (bottom) The
difference of the top and middle probability mass functions is
shown. Red or black-shaded regions represent the drug XLogP3 pairs
with proportion of synergy or nonsynergy, respectively. The difference
matrix suggests that antifungal pairs where both drugs have XLogP3 >
1 are more likely to be synergistic.
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commutative feature, we considered all 330 ordered drug pairs.
We then explored whether a decision tree model that uses only
drug lipophilicity information could predict synergy in a 5-fold
CV setting. We fit a decision tree using 80% of the data
(training set) and predicted synergy for the remaining 20%
(test set). We ensured that the two instances of the same drug
pair are in the same fold to avoid a setting where the same drug
pair appears both in training and test set. We repeated this 5-
fold CV analysis 10 times and calculated average performance
statistics. We found a striking performance with AU-ROC of
0.80 and AU-PR of 0.63. These values are both better than the
predictive performance of the “generalized simple rule” that we
investigated in the above analysis.
To assess the predictive performance of the decision tree

model, we repeated our analysis with randomized drug synergy
networks. We randomized the network in two ways: (i)
permute the synergy/no synergy labels of the drug pairs (edge
randomization); (ii) permute the XLogP3 values of the drugs
(node randomization) (see Figure 4 top). The latter random-

ization preserves the network topology whereas the former
does not. Since some drugs have high synergicity, we expected
that the decision tree model trained with node randomized data
will still have some predictive value, since the model is likely to
learn that if a certain drug is frequently found in synergistic
interactions in 80% of the data set, it will probably show
synergy in the remaining 20% as well. We created 1000 random

networks for each type of randomization and performed 5-fold
CV analysis 10 times for each network.
Finally, we compared the performance of the model learned

from the real network to the performance of the models
learned from random networks. Figure 4 bottom shows the
distribution of the performance values. Expectedly, models
trained with edge-randomized networks had poor predictive
value for synergy, while models trained with node-randomized
networks performed better. We found that the predictive
performance of the original model (both AU-ROC and AU-
PR) is higher than the predictive performance of all the models
learned from 1000 random networks. Therefore, the predictive
performance of decision trees is significantly better when the
real network is used as opposed to node-shuffled networks (p-
value < 0.001). Because the only difference between node-
shuffled networks and the real network is the lipophilicity of
drugs, we conclude that lipophilicity of drugs is a predictor of
antifungal drug synergy.

Human Toxicity of Drug Combinations Is Related to
Lipophilicity. We next studied the relationship between
lipophilicity and synergistic toxicity in humans. Hence we
searched DrugBank for adverse drug interactions that are
reported to increase toxicity in humans (see Methods), yielding
1038 “synergistic human toxicity drug pairs” (Supplementary
Table 3). We were able to extract the XLogP3 value for both
members of 919 synergistic human toxicity drug pairs, involving
a total of 428 drugs (Supplementary Table 4). We visualized a
“synergistic human toxicity network” combining drug lip-
ophilicity and synergistic toxicity (Supplementary Figure 3).
One important limitation of this network is that it only contains
synergistic edges, in contrast to the yeast antifungal synergy
network, which harbored both synergistic and nonsynergistic
edges. By necessity, we defined unobserved edges in the human
synergistic toxicity network as nonsynergistic. However,
because we were unable to define a simple “synergicity” for
drugs and compare with lipophilicity, we compared the
lipophilicity of each node with its degree (number of synergistic
partners). We observed a small, but significant correlation
(Spearman r = 0.22, p = 3.5 × 10−6). Although it is formally
possible that this correlation is the result of investigational bias
(e.g., if lipophilic compounds have been more extensively
studied for toxic interactions), we know of no such bias. Thus,
we interpret the correlation between lipophilicity and adverse
toxic interactions as support for the idea that drug lipophilicity
can predict synergistic toxicity in humans.
Three drugs in the synergistic human toxicity network

(Trospium, Trimethobenzamide, Triprolidine) have increased
toxicity in combination with more than 60 drugs. For each of
these drugs, we compared the XLogP3 values of drugs that
result in increased toxicity with the rest of the drugs, similar to
the analysis presented in Figure 2 (Figure 5). We found that all
three drugs show increased toxicity with lipophilic drugs
(Trospium p = 2.3 × 10−8, Trimethobenzamide p = 2.9 × 10−7,
Triprolidine p = 1.2 × 10−6, Mann−Whitney U-test). Next, we
compared the XLogP3 probability distributions for drug pairs
with increased toxicity with the negative set (Figure 6),
analogous to the analysis presented in Figure 3. We observed a
striking similarity with the pattern we observed for yeast:
Combinations of drugs with XLogP3 higher than 1 had a
tendency to show increased toxicity (Fisher’s Exact Test, p =
5.2 × 10−34).
As a final check for the correspondence between drug

lipophilicity and synergistic toxicity of a drug combination, we

Figure 4. Antifungal drug synergy can be predicted using only drug
lipophilicity. (top) Representations for the drug interaction network
randomizations we used. Each node represents one drug; red or black
edges represent synergistic or nonsynergistic interactions, respectively.
In the edge-shuffled network, known edges are shuffled, which can
lead to swapping of synergistic/nonsynergistic edges, hence disrupting
network topology. In the node-shuffled network, nodes are swapped;
this leads to loss of lipophilicity information for drugs, but preserves
the network topology. (bottom) Area under the ROC curve (AU-
ROC) and area under the Precision-Recall curve (AU-PR) for a 5-fold
cross validation for a decision tree model that used real network is
given as black bars. Distribution of the AU-ROC and AU-PR curves in
a 5-fold CV for 1000 edge-shuffled (blue) or node-shuffled (green)
networks. While the node-shuffled networks have predictive power
better than edge-shuffled networks, predictive power of the real
network is higher than node-shuffled networks in all 1000 random-
izations.
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performed 5-fold cross-validation using decision tree models
based on only drug lipophilicity. In the synergistic human

toxicity network, only 1% of the possible edges have reported
increased toxicity in combination, with remaining 99% being
unobserved. Using all the unobserved edges as the negative set
would result in an extremely unbalanced data, which in turn
would complicate the learning by the decision tree model.
Instead, for each positive edge in our data set, we sampled three
edges (similar to the ratio of positive/negative edges in the
yeast antifungal synergy network) from the unobserved edges
and defined these edges as negative. Fitting the decision tree
model with this data, we were able to achieve an AU-ROC of
0.72 and AU-PR of 0.48. Similar to the analysis for the yeast
network, we constructed 1000 random interaction networks by
shuffling edges or nodes and conducted 5-fold cross-validation.
We observed that edge-shuffled networks have no predictive
value as AU-ROC values were approximately 0.5, but node
shuffled networks had some predictive value, which is expected
since some drugs are reported to show increased toxicity more
frequently. However, the decision tree model that used the real
data had a higher AU-ROC in all 1000 randomizations (p <
0.001) and higher AU-PR value in all but 6 randomizations (p =
0.006) (Supplementary Figure 4). Since the only difference
between node-shuffled networks and the real network is the
lipophilicity of drugs, we conclude that drug lipophilicity is a
predictor of synergistic human toxicity of a drug combination.

■ DISCUSSION
Here we showed that combinations of lipophilic drugs often
result in an increased phenotypic effect, as observed for
antifungal synergy against yeast and reported adverse toxic drug
interactions in humans. Knowledge of the lipophilicity of any
compound is readily available, so that this phenomenon
represents a powerful and cost-free method to prioritize
potentially synergistic compound pairs. This property sets our
methodology apart from previous synergy prediction methods,
which require various costly data types often not available for
most compounds.3,5,7

It has been previously established that lipophilic drugs are
promiscuous, with many cellular targets.24 It has also been
suggested that lipophilic drugs generally enter the cell via
passive diffusion across the cell membrane rather than through
protein transporters.25 Given these properties, it is important to
consider the enhanced efficacy we observe between lipophilic
drug combinations in the context of previously proposed drug
synergy models.26−28 According to the Parallel Pathway
Inhibition Model for drug synergy, two drugs will be synergistic
for a phenotype if they inhibit two parallel pathways that are
required for that phenotype (e.g., growth).29,30 This model uses
the relationship between the cellular effects of individual
drugs3,4,8,31 to predict drug synergy. As lipophilic drugs are
more likely to have multiple targets (polypharmacology), they
are likely to alter many pathways to varying degrees. As the
number of inhibited pathways increases, the probability to
inhibit a parallel pathway would be expected to increase,
correspondingly increasing the synergicity of lipophilic
compounds.
According to the Bioavailability Model for drug synergy, two

drugs will be synergistic if one of the drugs increases the other’s
availability to its cellular targets.26,27 Bioavailability can be
enhanced by the alteration of drug transporters, modification of
drug metabolism, or via permeabilization of the cell membrane.
It has been previously observed that compounds that disrupt
membrane integrity32 are often promiscuously synergistic.23 In
accordance with the Bioavailability Model, the presence of a

Figure 5. Drug lipophilicity and increased toxicity of drug
combinations in human are related. Histograms are shown for three
drugs that were reported to result in increased toxicity when combined
pairwise with more than 60 drugs. XLogP3 distribution of drugs that
are reported or not to increase pairwise toxicity are shown as magenta
or black histograms, respectively. Trospium, Trimethobenzamide, and
Triprolidine are reported to exhibit pairwise toxicity significantly more
with lipophilic drugs (Trospium p = 2.3 × 10−8, Trimethobenzamide p
= 2.9 × 10−7, Triprolidine p = 1.2 × 10−6, Mann−Whitney U-test).

Figure 6. Combinations of lipophilic drugs are more likely to be
reported as increased toxic interactions in human. (top and middle)
The probability mass function of increased or unknown toxicity edges
are shown as a function of drug XLogP3. (bottom) The difference of
the top and middle probability mass functions is shown. Magenta or
black-shaded regions represent the drug pair XLogP3 regions with
increased toxicity or not, respectively. The difference matrix suggests
that drug pairs where both drugs have XLogP3 > 1 are more likely to
have increased toxicity.
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lipophilic compound may disrupt the integrity of the cell
membrane, hence enhancing the access of the other drug to its
targets (“synergistic membrane diffusion”). Another possible
hypothesis is a “synergistic detergent effect” of drugs, whereby
two drugs disrupt the integrity of the membrane more
effectively in combination. While outside the scope of this
study, these hypotheses can be evaluated by molecular
dynamics studies and experiments with artificial membranes.
Comparison of drug pairs differing in synergy, but similar in
lipophilicity may provide starting points for future mechanistic
analyses.
Better understanding of the mechanism of the relationship

between lipophilicity and drug synergy could inform the
treatment of diseases that require administration of multiple
drugs, such as HIV and cancer. For example, highly lipophilic
adjuvants are known to increase drug potency as with the
chemotherapeutic cisplatin.33 However, our finding that
combinations of lipophilic compounds often result in antifungal
synergy may have immediate medical implications for treatment
of infectious disease. For example, Pentamidine is one of the
few treatment options for sulfa-resistant Pneumocystis jirovecii,
an opportunistic yeast infection. In our analysis, we found that
Pentamidine has a tendency to show antifungal synergy with
lipophilic compounds, which suggests that lipophilic drugs
should be prioritized for clinical trials of combinations involving
Pentamidine. In clinical scenarios where treatment side effects
may outweigh therapeutic benefits, the potential for enhanced
toxicity in the patient should be carefully considered when
combining lipophilic compounds.

■ METHODS

Yeast Antifungal Synergy Network. This data set is
comprised of an experimental screen of 165 drug pairs, of
which 48 were found to be synergistic6 (Supplementary Table
1). Experimental variability was estimated by 25 experiments
testing the “combination” of a drug with itself. S. cerevisiae cells
were grown for 24 h in an 8 × 8 grid of drug combinations,
where the concentration of each drug was linearly increased
along each axis. The lowest concentration for each drug was set
at 0 and the highest concentration was chosen to be close to the
minimum inhibitory concentration. Thus, for each drug pair,
cell growth was measured under 64 different conditions: 49
different concentration combinations of the two drugs, 7 single-
drug concentrations for each drug, and 1 condition with no
drug. For each condition, a detailed time course of growth was
obtained, with time points every 15 min for 24 h. Using this
growth data, significant synergy was assessed according to the
Loewe additivity model, where combinations of synergistic drug
pairs are significantly more efficacious than the combination of
a drug with itself. To assess confidence of growth measure-
ments under individual drugs and drug combinations, 25 “self−
self combinations” (combinations of a drug with itself) were
examined. The replicates had a very high correlation, indicating
the reproducibility of growth measurements (r = 0.98, p <
10−10).
Synergistic Human Toxicity Network. This data set

comprises of 1038 drug pairs that are reported in DrugBank.ca
to have increased toxicity when combined (Supplementary
Table 3). Of these 1038, 919 pairs among 428 compounds
involved 2 drugs with known molecular weight and XLogP3. All
drug interaction section data derived from Drugbank was
manually identified as toxicity-related or not, in duplicate by

independent curators, until a consensus was reached. Network
visualization was achieved with Cytoscape.34

Decision Tree Construction and Cross-Validation. We
used Matlab’s ClassificationTree method to train decision trees,
using default parameters: minimum node size of 10 and Gini’s
diversity index criterion when choosing a split. We tried
pruning the tree within the 5-fold CV framework by
determining the optimal pruning level by nested cross
validation. For each training set (i.e., defined by 5-fold CV),
we used Matlab’s cvLoss method (with parameters subtrees =
all, treesize = min) that considers 10-fold cross-validation
performance to determine the optimal pruning level for the
fitted decision tree, and predicted the held out interaction after
pruning the tree. However, predictions of pruned tree resulted
in decreased performance for both yeast and human data. Thus,
we decided to keep the full tree when predicting drug synergy.
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(12) Gonzaĺez-Díaz, H.; Prado-Prado, F. J. Unified QSAR and
Network-Based Computational Chemistry Approach to Antimicro-
bials, Part 1: Multispecies Activity Models for Antifungals. J. Comput.
Chem. 2008, 29, 656−667.
(13) Zou, X.-J.; Lai, L.-H.; Jin, G.-Y.; Zhang, Z.-X. Synthesis,
Fungicidal Activity, and 3D-QSAR of Pyridazinone-Substituted 1,3,4-
Oxadiazoles and 1,3,4-Thiadiazoles. J. Agric. Food Chem. 2002, 50,
3757−3760.
(14) Walters, W. P.; Ajay; Murcko, M. A. Recognizing Molecules
with Drug-Like Properties. Curr. Opin Chem. Biol. 1999, 3, 384−387.
(15) Lipinski, C. A. Lead-and Drug-Like Compounds: the Rule-of-
Five Revolution. Drug Discovery Today: Technol. 2004, 1, 337−341.
(16) Mitchell, T.; Showell, G. A. Design Strategies for Building Drug-
Like Chemical Libraries. Curr. Opin Drug Discov Devel 2001, 4, 314−
318.
(17) Matter, H.; Baringhaus, K. H.; Naumann, T.; Klabunde, T.;
Pirard, B. Computational Approaches Towards the Rational Design of
Drug-Like Compound Libraries. Comb. Chem. High Throughput Screen.
2001, 4, 453−475.
(18) Leo, A.; Hansch, C.; Elkins, D. Partition Coefficients and Their
Uses. Chem. Rev. 1971, 71, 525−616.
(19) Hansch, C.; Clayton, J. M. Lipophilic Character and Biological
Activity of Drugs. II. the Parabolic Case. J. Pharm. Sci. 1973, 62, 1−21.
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