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Abstract

Large-scale daily commuting data were combined with detailed geographical information system (GIS) data to analyze the
loss of transport efficiency caused by drivers’ uncoordinated routing in urban road networks. We used Price of Anarchy
(POA) to quantify the loss of transport efficiency and found that both volume and distribution of human mobility demand
determine the POA. In order to reduce POA, a small number of highways require considerable decreases in traffic, and their
neighboring arterial roads need to attract more traffic. The magnitude of the adjustment in traffic flow can be estimated
using the fundamental measure traffic flow only, which is widely available and easy to collect. Surprisingly, the most
congested roads or the roads with largest traffic flow were not those requiring the most reduction of traffic. This study can
offer guidance for the optimal control of urban traffic and facilitate improvements in the efficiency of transport networks.
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Introduction

In this era of unprecedented global urbanization, the fast

growth of human mobility has put immense pressure on urban

roads [1–3], which has manifested in the form of severe traffic

congestion and traffic-related air pollution [4–7]. Improving the

efficiency of transport networks has become an urgent problem to

solve and it has recently attracted widespread attention from

scientific and engineering fields [8–14]. The transport efficiency of

a road network is primarily determined by its network topology

[15–21], by the volume and distribution of travel demand [9,18–

20], and by drivers’ routing behavior (the manner in which the

road network is used) [11–14]. Studies have shown that increasing

the capacity of the important backbone of transportation networks

[10] or removing specific segments [11] can make these networks

more efficient. It has also been discovered that traffic congestion

can be mitigated efficiently by intelligently reducing a small

fraction of travel demand [9].

Despite the intensive investigations on the effects of network

topology and travel demand on the efficiency of transport

networks, the effect of agents’ routing behavior has only been

studied on theoretical networks or simplified road networks,

without considering actual travel demand [11–15]. Using three

urban road networks, one type of transport networks, as an

example, we show a comprehensive image of the loss of transport

efficiency caused by agents’ (drivers’) uncoordinated routing.

Furthermore, we explored the way that can lead a road network to

its optimal state. We also believe our findings can shed light on

improving other types of transport networks experiencing a lack of

coordination among agents, such as the Internet [22].

Data and Methods

The road networks in San Francisco, Santa Clara, and Alameda

were extracted from the Bay Area road network (Figure 1), which

was provided by NAVTEQ, a commercial provider of geograph-

ical information systems data [23]. The road networks are

composed of highways and arterial roads. There are 2,816 road

segments in San Francisco, 7,269 in Santa Clara, and 5,805 in

Alameda. There are 1,144 intersections in San Francisco, 3,420 in

Santa Clara, and 2,744 in Alameda. More detailed information

regarding the three road networks was provided in Table S1 and

Figure S1.

In the following, the Bay Area commuting OD (origin-

destination matrix) was first estimated, and consequently the

commuting OD was calculated for each county. The Bay Area

daily home-work commuting data were provided by the U.S.

census bureau [24]. The numbers of trips from residents’ home

locations to work locations at a street-block level were recorded.

The street blocks were grouped into census tracts where they were

located (1,398 in total) for generating the census tract based OD.

People use various modes of transportation in their daily

commutes, these include cars (driving alone), carpooling, public

transportation, bicycling, and walking. Based on the mode split
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data, the vehicle use rate was calculated for each census tract [25]:

VUR(i)~Pdriver(i)zPcarpool(i)=S ð1Þ

Here, Pdriver(i) and Pcarpool(i) are the fractions of residents in

census tract i who drive alone or share a car. The average carpool

size in California (S~2:25) was used for these calculations [26].

Next, a mode of transportation (vehicle or non-vehicle) was

randomly assigned to each of the residents of each census tract

according to the estimated vehicle usage rate VUR (Figure S2).

Then the trips not completed by vehicles were filtered out,

generating the vehicle-based commuting OD.

The average number of daily trips per person is about 4 in the

U.S., this generates about 22 million trips in the Bay Area [27].

Based on the daily distribution of traffic volume, average hourly

trip production W during the morning commute (6:00 a.m.–10:00

a.m.) was estimated [28]. The vehicle-based daily commuting OD

was rescaled using W to estimate the morning peak hourly

commuting OD.

To assign trips to the road networks, the census tract based OD

was mapped to the intersection-based OD. For each trip in the

census tract based OD, the road intersections within the origin

census tract and destination census tract were identified (Figure

S3). One intersection in the origin census tract and one

intersection in the destination census tract were randomly selected

as the origin and destination of the trip in the intersection-based

OD.

Finally, the commuting ODs for the three road networks were

extracted. Using San Francisco as an example, trips start and end

within the county formalize the internal-internal OD, trips that

start within the county and end outside it and trips start outside the

county and end within it formalize the internal-external OD and

the external-internal OD. Trips that start and end outside the

county formalize the external-external OD. The origins and

destinations of each internal-external trip, external-internal trip,

and external-external trip were mapped to the San Francisco road

network (Figure 2a). For each internal-external trip, the Dijsktra

algorithm was used to find the shortest path (measured in travel

time) within the Bay Area road network [29]. The destination of

the trip was replaced with the last road intersection that the driver

passed before leaving San Francisco. For each external-internal

trip, the origin of the trip was mapped to the first road intersection

Figure 1. Bay Area road network and locations of three counties.
doi:10.1371/journal.pone.0111088.g001
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that the driver passed upon entering San Francisco. For each

external-external trip, the new origin and destination were

mapped to the first road intersection that the driver passed upon

entering San Francisco and the last intersection passed before

leaving San Francisco. The four types of ODs were also generated

for Santa Clara and Alameda.

Due to different geographic locations and patterns of land use,

the four types of ODs showed different combinations in the three

counties (Figure 2b). In San Francisco, there were similar numbers

of internal-internal trips, internal-external trips, and external-

internal trips. There were slightly more external-internal trips than

internal-external trips, indicating that more people enter San

Francisco during the morning peak. In Santa Clara, the majority

of trips (60.5%) were within the county. There were many more

people leaving than entering the county during the morning.

People rarely drove across the county. In Alameda, although the

majority of trips began and ended within the county, the number

of internal-internal trips (35%) was only slightly higher than that of

internal-external trips (24%) and external-internal trips (26.9%).

Alameda had the most cross-county trips.

The number of trips between a pair of origin and destination

N can be approximated by a power-law distribution

P(N)~509:2N{3:32 for all the three counties R2
w0:99, showing

that travel demand between most pairs of locations was small, but

there was high volume between a few origins and destinations

(Figure 3d). The random OD, which had the same number of OD

pairs and the same number of trips as the San Francisco OD, was

generated and used for conducting comparative studies. The trips

in the random OD were randomly assigned to pairs of origins and

destinations.

User Equilibrium and Social Optimum

Based on the ODs generated for the three road networks, traffic

flow along each road segment was estimated under two scenarios.

In the first scenario, all drivers were assumed to know all

information regarding the road network and put their own

interests first. In this scenario, the whole system reached the user

equilibrium (UE) such that no driver could reduce travel time any

further by switching paths. This is also known as the Nash

equilibrium [12]. The second scenario was the social optimum

(SO), the state that was most beneficial overall, meaning that it

minimized the total travel time across the whole system [11,30].

The price of anarchy POA was then defined as the ratio of the

total travel time of the Nash equilibrium and the total travel time

of the social optimum:

POA~TUE=TSO ð2Þ

The price of anarchy POA quantifies the loss of transportation

efficiency caused by drivers’ selfish routing. Given the huge traffic

volume in a big city, a small POA can still mean a big loss of

efficiency. Understanding the method to reduce POA has

important consequences for the optimal design and control of

transportation systems.

To calculate the equilibrium flow fUE under UE scenario,

Wardrop’s principle, as described by the Beckmann model, was

used [31]. In this case, the objective function in Eq. (3) was

minimized:

TUE~
PÐ fij

0 tij(f )df ð3Þ

Here, fij and tij represent the traffic flow and travel time between a

Figure 2. Illustration and statistics of the four types of trips. (a) Four types of trips defined by the locations of the origin and destination.
Purple, green, blue, and red lines represent the path of an internal-internal trip, an internal-external trip, an external-internal trip, and an external-
external trip respectively. (b) The statistics of the four types of trips in San Francisco (SF), Santa Clara (SC) and Alameda (AL) (also see Table S2).
doi:10.1371/journal.pone.0111088.g002
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Figure 3. Statistical analysis of traffic flow and volume over capacity (VOC). (a), (b), (c) Spatial distributions of traffic flow are shown for San
Francisco (SF), Santa Clara (SC), and Alameda (AL). (d) The number of trips between a pair of origin and destination. (e) Traffic flow fUE was estimated
using the actual ODs and the random OD. (f) VOC was estimated using the four ODs.
doi:10.1371/journal.pone.0111088.g003
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pair of road intersections i and j. Travel time tij was estimated

using the Bureau of Public Roads (BPR) function, which is widely

used in civil engineering:

tij(fij)~tf (1za(fij=cij)
b) ð4Þ

Here, cij is the capacity of the road segment from road intersection

i to road intersection j. Commonly used values a~0:15 and b~4
were selected [25]. The equilibrium flows fUE were then

numerically calculated using the Frank-Wolfe algorithm (see

Method S1) toolkit provided by TransCAD 5.0, a transportation

planning software [25,32].

Under the SO scenario, the socially optimal traffic flows fSO

were estimated by minimizing total travel time in Eq. (5):

TSO~
P

fijtij(fij) ð5Þ

To calculate the socially optimal flow fSO, the function of travel

time was converted to the following:

Figure 4. Price of anarchy (POA) versus traffic volume ratio R.
Using actual travel demand distributions, the maximum POA = 1.043
and POA = 1.033 were observed at R = 0.8 for Santa Clara and Alameda.
In San Francisco, the maximum POA estimated using actual travel
demand distributions and random travel demand distributions were
observed at R = 1.0 (POA = 1.041) and R = 1.2 (POA = 1.056) respectively.
doi:10.1371/journal.pone.0111088.g004

Figure 5. Difference between equilibrium flow f UE and socially optimal flow f SO. (a), (b) The difference between equilibrium flow and
socially optimal flow DDf D in the cases of Df w0 and Df v0. (c), (d) The rescaled difference between equilibrium flow and socially optimal flow
DDf D=fUE in the cases of Df w0 and Df v0.
doi:10.1371/journal.pone.0111088.g005
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Figure 6. Illustration of road segments with large DDf D. (a), (b), (c) Road segments with Df §500 (vehicles/hour) and road segments with
Df ƒ{500 (vehicles/hour) in San Francisco, Santa Clara, and Alameda. (d), (e), (f) Speed limits of road segments with Df §500 (vehicles/hour) and
Df ƒ{500 (vehicles/hour) in San Francisco, Santa Clara, and Alameda.
doi:10.1371/journal.pone.0111088.g006
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Figure 7. Volume over capacity (VOC) of road segments with large DDf D. (a) VOC of road segments with Df ƒ{500 (vehicles/hour) can be

approximated by Gaussian distributions P(VOC)~ae{((VOC{b)=c)2

with a = 1.24 (0.96, 1.29), b = 1.22 (1.22, 1.35), c = 0.44 (0.59, 0.38), and R2~0:80
(0.92, 0.89) for San Francisco (Santa Clara, Alameda). (b) VOC of road segments with Df §500 (vehicles/hour) can be approximated by Gaussian

distributions P(VOC)~ae{((VOC{b)=c)2

with a = 2.37 (1.72, 1.86), b = 0.16 (0.27, 20.04), c = 0.28 (0.39, 0.62), and R2~0:95 (0.97, 0.95) for San Francisco
(Santa Clara, Alameda).
doi:10.1371/journal.pone.0111088.g007

Figure 8. The magnitude of traffic flow adjustment for reducing POA. (a), (b) When increasing traffic flow of a road segment to reduce POA
(Df w0), DDf D=fUE can be approximated by two power-law functions DDf D=fUE~8:18|104fUE

{1:81 (R2
w0:99) or DDf D=fUE~0:09VOC{1:34 (R2

w0:99).
(c), (d) When decreasing traffic flow of a road segment to reduce POA (Df v0), DDf D=fUE can be approximated by DDf D=fUE~{1:03|10{5fUEz0:20

(R2~0:83) and DDf D=fUE~{0:06VOCz0:23 (R2~0:80). Error bar here represents a 95% confidence interval.
doi:10.1371/journal.pone.0111088.g008
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~ttij(fij)~tij(fij)zfij

dtij(fij)

dfij

ð6Þ

Computing the integral of ~ttij(fij), the following was determined:

ðfij

0

~ttij(v)dv~

ðfij

0

½tij(v)zv
dtij(v)

dv
�dv

~

ðfij

0

d½tij(v)v�~fij tij(fij)

ð7Þ

TSO~
Xðfij

0

~ttij(f )df ð8Þ

In this way, equation (7) possesses the same form as equation (3).

Traffic flow fSO can also be numerically calculated using the

Frank-Wolfe algorithm toolkit with the travel time function ~ttij(fij)

(Eq. (6)).

Results

Experimental tests show that humans find paths within networks

in the perspective of minimizing their own travel costs [33,34]. For

this reason, the equilibrium flow fUE was used to analyze road

usage patterns (Figure 3a–c). As Figure 3e shows that the

equilibrium flow fUE can be well approximated by a power-law

distribution P(fUE)~10:5fUE
{1:59 for San Francisco, Santa Clara,

and Alameda, indicating that road usages are similar and

heterogeneous in the three counties (R2~0:99). Traffic flow for

more than 80% of the road segments was below 2,000 (vehicles/
hour), and there were 1.0%, 3.4%, and 5.6% of the road segments

in San Francisco, Santa Clara, and Alameda having their

fUEw10,000 (vehicles/hour). The equilibrium flow fUE was also

measured using the random OD of San Francisco and observed to

follow an exponential distribution P(fUE)*e{fUE=1,162:8 (Fig-

ure 3e). This indicates a much faster decay.

The volume over capacity VOC~fUE=C was also measured (C is

the capacity of a road segment). As shown in Figure 3f, VOC

Figure 9. The distribution and volume of travel demand determines the adjustment of traffic flow. (a), (b) Df estimated using the San
Francisco random OD and actual OD show different correlations with fUE and VOC. Statistical fits DDf D~0:15fUE{7:9 (R2

w0:99),

DDf D~923e{((fUE{9805)=5683)2

(R2~0:91), DDf D~214:3VOCz23:0 (R2~0:87) and DDf D~630:7e{((VOC{1:7)=0:8)2

(R2~0:94) were plotted to guide the
eyes. (c), (d) DDf D estimated using the re-scaled (R = 0.5) San Francisco actual OD. Statistical fits DDf D~0:16fUE{49:6 (R2~0:89) and
DDf D~655:2VOC{93:4 (R2~0:91) were plotted to guide the eyes. Error bar here represents a 95% confidence interval.
doi:10.1371/journal.pone.0111088.g009
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estimated using either the actual ODs or the random OD can be

approximated using an exponential distribution P(VOC)~

2:04e{2:04VOC (R2~0:98), showing traffic flow in most road

segments to be well within the roads’ capacities, but there was a

small number of congested road segments.

To determine how varying traffic volumes (total number of

trips) affect POA, traffic volume ratio R was defined as the

potential traffic volume over the current traffic volume. Traffic

volumes of the actual ODs and the random OD were scaled up or

down using parameter R, at the same time the original

distributions of travel demands were kept. As shown in Figure 4,

the maximum POA = 1.043 and POA = 1.033 were both observed

at R = 0.8 in Santa Clara and Alameda, and the maximum POA

estimated using actual distribution of travel demand was 1.041 in

San Francisco when R = 1.0 (Table S3). All of the POA first

increased with R and then decreased with R, suggesting that the

traffic flow patterns are similar under UE and SO scenarios when

Figure 10. The magnitude of traffic flow adjustment for reducing POA in the three counties. (a) DDf D=fUE versus fUE when Df w0. (b) DDf D
versus fUE when Df v0. (c) DDf D=fUE versus fUE when Df v0. (d) DDf D=fUE versus VOC when Df w0. (e) DDf D versus VOC when Df v0. (f) DDf D=fUE

versus VOC when Df v0.
doi:10.1371/journal.pone.0111088.g010
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traffic volume is very small or very large. This validates the

generality of the findings obtained in [11]. Because when

employing more-detailed travel demand information and road

network information, similar pattern of POA versus traffic volume

was still observed.

In Figure 4, the random OD of San Francisco was used to show

how distribution of travel demand determines the POA. Unlike

the maximum POA, which was predicted using the actual OD, a

larger maximum POA = 1.056 was observed at a larger traffic

volume ratio R = 1.2. POA was estimated using the actual OD and

the random OD, which were 1.021 and 1.015, respectively, for

small values of R, such as R = 0.5. They were 1.01 and 1.023,

respectively, for large values of R, such as R = 2.0. The different

patterns observed for POA versus R in these three counties also

confirm that the distribution of travel demand needs to be

considered in estimating the price of anarchy.

Given the huge traffic volumes in urban areas, a small POA can

still mean a big loss of transport efficiency. Taking San Francisco

as an example (POA = 1.041), drivers’ selfish routing produced

1073.3 hours more travel time during only one hour of the

morning rush. To offer guidance to reduce POA in urban road

networks, the differences in equilibrium flow and socially optimal

flow Df ~fSO{fUE were measured for each road segment. Results

showed DDf D to be heterogeneously distributed in the road

networks (DDf D =Df when Df w0 and DDf D = {Df when Df v0).

Most road segments have a small DDf D and a few road segments,

the targets of urban traffic controls, have DDf D values as large as

3,000 (vehicles/hour). In the three counties, distributions of DDf D
can be approximated by an exponential distribution

P(DDf D)*e{DDf D=179:9 (R2~0:88) when Df w0 and by a power-

law distribution P(DDf D)*DDf D{1:95 (R2~0:98) when Df v0
(Figure 5a and b). The rescaled traffic flow difference DDf D=fUE,

which quantifies the relative difference between fSO and fUE, can

be approximated by a power-law distribution

P(DDf D=fUE)*(DDf D=fUE){3:49 (R2
w0:99) when Df w0 and by

an exponential distribution P(DDf D=fUE)*e{(DDf D=fUE)=0:17

(R2~0:88) when Df v0 (Figure 5c and d).

The heterogeneously distributed Df suggests that traffic flow in

only a small number of roads requires considerable adjustment.

We found only 5.3% of the road segments in San Francisco, 9.3%

of those in Santa Clara, and 9.8% of those in Alameda had

Df §500 (vehicles/hour) or Df ƒ{500 (vehicles/hour) (Figure 6a–

c, Table S3). In San Francisco, Santa Clara, and Alameda, 94.7%,

88.2%, and 85.3% of the road segments with Df §500 (vehicles/
hour) are arterial roads, and 68.7%, 90.8%, and 86.5% of the road

segments with Df ƒ{500 (vehicles/hour) are highways (Fig-

ure 6d–f). Targeted highways can noticeably reduce travel time,

so they attracted large amounts of traffic and were overly used

(most of them had VOCw1:0) (Figure 7a). Targeted arterial roads

near the targeted highways may be suitable as alternative paths,

but they do not see as much use as they could (most of them had

VOCv1:0) (Figure 7b). The present findings held true for all the

three counties, indicating a general explanation for the price of

anarchy in road networks. These results can provide insight that

can be used to identify roads in need of traffic control in practical

situations.

We next explored the magnitude of traffic flow adjustment to

reduce POA. Taking San Francisco as an example, when

increasing traffic flow of a road segment (Df w0), the rescaled

difference of traffic flows DDf D=fUE can be approximated by power-

law functions DDf D=fUE*fUE
{1:81 and DDf D=fUE*VOC{1:34. This

offers a guidance for increasing traffic flow in the targeted road

segments when their fUE or VOC is known (Figure 8a and b). The

increase of traffic flow in congested roads or roads with large traffic

would be very tiny. Obvious increases in traffic flow were only

observed in roads with low fUE and VOC. This law also holds for

the case of the random OD.

When decreasing traffic flow of a road segment to reduce POA

(Df v0), the rescaled difference of traffic flows DDf D=fUE can be

approximated by linear functions DDf D=fUE~{1:03|10{5fUEz

0:20 (R2~0:83) and DDf D=fUE~{0:06VOCz0:23 (R2~0:80)

(Figure 8c and d). However, for the case of the random OD, different

functional relationship was found, DDf D=fUE was observed to increase

linearly with fUE and VOC (Figure 8c and d).

To understand the observed different relationships between

DDf D=fUE and fUE (VOC), we analyzed the traffic flow difference

DDf D for the case of the random OD and the case of the actual OD.

We found that DDf D estimated using the random OD increased

linearly with fUE and VOC. However, counter intuitively, DDf D
estimated using the actual OD first increased and then decreased

with fUE and VOC. The roads with the largest flow or VOC were

not those requiring the highest reduction of traffic. The highest

reduction of traffic flow was observed at intermediate values of

fUE*9,805 (vehicles/h) and VOC*1:7 (Figure 9a and b).

The counter intuitive result could be resulted from the different

distributions of traffic flow estimated by the random OD and the

actual OD. Comparing with the case of the random OD, traffic

flow estimated using the actual OD was more heterogeneously

distributed. There are much more road segments with large traffic

flow (Figure 3e), preventing drivers from selfishly switching routes.

This phenomenon is similar to that when traffic volume is very

large, traffic flow patterns under UE scenario and SO scenario are

similar (POA,1.0). To further test this explanation, the actual

ODs were scaled down using parameter R = 0.5, the observed

maximum traffic flow is largely reduced. As Figure 9c and d

shows, the difference in traffic flow DDf D shows similar pattern with

the case of the random OD rather than the case of the actual OD.

We further analyzed the magnitude of traffic flow adjustment

for reducing POA for Santa Clara and Alameda. Similar

functional relationships between DDf D=fUE and fUE, VOC were

observed (Figure 10). The significance of these findings is that it

offered useful guidance that could reduce POA for urban road

networks, using traffic flow fUE only. This was widely available and

recorded by many devices.

Conclusions

To conclude, we generate morning-peak commute ODs for

three Bay Area counties and study the price of anarchy using

actual travel demand in large-scale road networks. The different

patterns observed for POA versus R in the three counties showed

that both volume and distribution of travel demand determine the

POA in a road network. The difference of equilibrium flow and

socially optimal flow DDf D was measured for each road segment. It

was found that DDf D for most roads is tiny. For this reason,

adjusting traffic flow of a small number of roads can push a system

toward its social optimum. Here, roads with large DDf D were found

to be only a few highways that saw excessive use due to their high

speed limits and the neighboring arterial roads, which can offer

alternative paths. The rescaled traffic flow difference DDf D=fUE was

found to have power-law functional relationships with fUE and

VOC when Df w0 and have linear functional relationships with

fUE and VOC when Df v0. Surprisingly, the roads with the

largest traffic flow and VOC did not have the largest adjustment of

traffic flow.

The present work can inform specific intervention strategies on

reducing the loss of efficiency caused by agents’ selfish routing in
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urban road networks, a crucial infrastructure that billions of

people use every day. The present work uses real-world travel

demand data to explore the way to reduce POA. The elucidation

of these findings may draw more attention to the use of actual

transport demand information in the optimal control of a broad

set of networks experiencing a lack of coordination among agents.
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