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Abstract

The use of RNA-sequencing has garnered much attention in recent years for characterizing

and understanding various biological systems. However, it remains a major challenge to

gain insights from a large number of RNA-seq experiments collectively, due to the normali-

zation problem. Normalization has been challenging due to an inherent circularity, requiring

that RNA-seq data be normalized before any pattern of differential (or non-differential)

expression can be ascertained; meanwhile, the prior knowledge of non-differential tran-

scripts is crucial to the normalization process. Some methods have successfully overcome

this problem by the assumption that most transcripts are not differentially expressed. How-

ever, when RNA-seq profiles become more abundant and heterogeneous, this assumption

fails to hold, leading to erroneous normalization. We present a normalization procedure that

does not rely on this assumption, nor prior knowledge about the reference transcripts. This

algorithm is based on a graph constructed from intrinsic correlations among RNA-seq tran-

scripts and seeks to identify a set of densely connected vertices as references. Application

of this algorithm on our synthesized validation data showed that it could recover the refer-

ence transcripts with high precision, thus resulting in high-quality normalization. On a realis-

tic data set from the ENCODE project, this algorithm gave good results and could finish in a

reasonable time. These preliminary results imply that we may be able to break the long per-

sisting circularity problem in RNA-seq normalization.

Introduction

RNA-sequencing (RNA-seq) has become a critical tool to study biological systems [1]. The

technique starts with extracting the RNA fraction of interest and preparing them for high-

throughput sequencing. Sequencers typically output short reads that are then assembled or

aligned to a pre-assembled genome or transcriptome, resulting in a quantity called read count
for each transcript. Due to variations in sequencing depth (i.e. library size, the total number of

read count per sample) and in relative contribution of each transcript under different condi-

tions, these read counts need to be normalized such that the changes in their measurements,

usually indicated by fold-change, accurately reflect the differences between conditions. This is
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often named the between-sample normalization problem, which has attracted much efforts in

solving it. One universal aim of the methods proposed in this arena is to derive sample-specific

scaling factors, either by a data-driven or knowledge-based approach. Data-driven methods to

estimate normalization factors have evolved from simple total count (TC) to more sophisti-

cated statistics [2–4], to iterative approaches [5–8] that are built on top of simpler estimators.

The most primitive estimator, usually referred to as total count (TC) normalization, simply

uses the sum of all counts in each sample to normalize every gene. This operation is in fact a

within-sample normalization. First-generation methods of between-sample normalization

involve a closed-form evaluation of one scaling factor per sample. In the upper quartile (UQ)

method [2], each samples are scaled by the total counts of genes in the upper quartile after

removing zero counts. Adjustments based on more sophisticated statistics such as median of

the ratio of a gene and its geometric mean across samples [4] or Trimmed Mean of M-values

(TMM) [3] worked on the assumption that most genes are not differentially expressed across

conditions. Second-generation methods usually follow an iterative scheme in which read

counts are first normalized under the hypothesis that (almost) no genes are differentially

expressed (DE), the set of non-DE genes are then refined based on some gene-based measures,

and the procedure repeats until convergence. PoissonSeq [5] starts with total count as initial

estimate of scaling factor, equivalently the result of fitting a Poisson log linear model under the

null hypothesis (no gene is DE), then calculates the goodness-of-fit for each genes, marking

those within a chosen quantile to be non-DE, and fits the model again under new hypothesis

(selected genes are non-DE). TbT [6] and its generalized form DEGES (DE-Gene Elimination

Strategy) [7] calculate normalization factors with a first-generation method (UQ, TMM,

DESeq), tests for differential expression by a DE detection routine (edgeR, DESeq, baySeq),

removes the DE genes and re-calculates normalization factors. In a similar fashion, a more

recent method by Zhuo et al. [8] starts with the DESeq normalization (sometimes referred to

as the relative log expression (RLE) method, to distinguish the scaling step from the DE detec-

tion step of DESeq), fitting a Poisson log linear model for each gene, calculating the total vari-

ance of each genes under this model, selecting a subset with least variance as the references,

updating the normalization factors and repeats if necessary. Knowledge-based methods rely

on sources of information beyond the RNA-seq measurements to determine possibly invariant

transcripts and pivot on them to normalize the raw counts. Following the common practices

in quantitative PCR, housekeeping genes, believed to be expressed at similar levels across con-

ditions, have been used as endogenous references [9]. However, many common housekeeping

references turned out to vary significantly (see Huggett et al. [10] for an extensive list of such

examples), leading to the favor of exogenous controls, i.e spike-in RNAs [11, 12]. The addition

of external spike RNAs significantly increases the cost, complicates experimental processes,

and is inapplicable for integrating the large number of data from different experiments and

laboratories which used different spikes, or most of the times, no spike at all. At the intersec-

tion between data-driven and knowledge-based approaches, a hybrid method proposed by

Chen et al. [13] uses functional annotations to calculate the relevance of a genes with respect to

the target experimental conditions and automatically suggest most functionally distant set of

genes as references.

Among data-driven methods, early benchmark studies have shown that some first-genera-

tion methods can perform very well in differential expression (DE) analyses [14, 15]. A major

caveat is the core assumption that most genes are not differentially expressed across conditions

of interest [16]. This assumption fails to hold when one needs to analyze multitude and vari-

able conditions. Second-generation, iterative procedures consciously operate under a circular

dependence wherein the pruning of DE genes depends on a good normalization [8]. They are,

in turn, dependent on the same assumption as that of the first-generation methods and tend to
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exaggerate the errors when the proportion of DE genes are high [16]. Knowledge-based meth-

ods suffer from a different type of circularity, implicitly requiring that new findings align with

previously documented gene functions. Although useful, they may become problematic when

experimental conditions are vastly different from established ones.

We propose a new method of normalization that can break this circularity, without relying

on assumption of biological similarity between the conditions, nor a priori knowledge about

the controls, internal or external. We first show that there exist intrinsic correlations among ref-

erence transcripts that could be exploited to distinguish them from differential ones, and then

introduce an algorithm to discover these references. This algorithm works by modeling each

transcript as a vertex, and correlations between them as edges in a graph. Under this model, a

set of references manifest themselves as a complete subgraph and therefore can be identified by

solving a clique problem. With a few practical adjustments, the algorithm can be finished in rea-

sonable time and give good results on both the validation data and a real data set.

Formulation of graph-based normalization

Definitions and notations

An RNA-seq measurement on one biological sample results in a vector of abundance values of

n genes/transcripts. A collection of measurements onm samples results inm such vectors can

then be represented by anm × nmatrix.

Let A denote the abundance matrix in which the element aij is the true abundance of tran-

script j in sample i, C the read count matrix in which the element cij represents the read count

of transcript j in sample i. The total read counts of row Ci is the sequencing depth (or library

size) of sample i,Mi = ∑j cij. Let Arel denote the relative abundance matrix, of which the element

arelij is the relative abundance of transcript j in sample i

arelij ¼
aij
P

jaij
;
X

j

arelij ¼ 1

A is the underlying expression profile dictating the measurement in C. Since the exact

recovery of A is difficult, it usually suffices to normalize C to a manifest abundance matrix A�

of which a�ij ¼ const� aij, const is an unknown, yet absolute constant. Such A� is considered a

desirable normalization.

Differential genes/transcripts are differentially expressed due to distinct biological regula-

tion of the conditions being studied, thus are of biological interest. The term conditionmay

represent different states of a cell population (normal vs tumor, control vs drug-administered,

etc.), or different histological origins (cerebellum vs frontal cortex, lung, liver, muscle, etc.).

Although differential is usually encountered in the comparison of two conditions, we will use

the term with a broader sense, for multi-condition assays to indicate genes/transcripts that

vary with the conditions.

Reference genes/transcripts are expressed at equivalent levels across conditions. From the

biological standpoint, reference genes/transcripts should be constitutive, or at the least, are not

under the biological regulations that distinguish the conditions. It should be noted that, for the

purpose of normalizing read counts, reference genes/transcripts are numerically stable across

conditions, and are not necessarily related to housekeeping genes/transcripts.

In this text, it is often more appropriate to use the term feature in place of gene/transcript

to indicate the target entity of quantification, which can be mRNA, non-coding RNA or spike-

in RNA. These features can be quantified at the transcript level or the gene level which aggre-

gates the abundance of multiple isoforms if necessary.
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Normalization by references

Normalization by references has been a standard practice since the early expression profiling

experiments where a few transcripts are measured individually by quantitative PCR [17]. This

idea has been carried over to normalizing RNA-seq expression profiles. Here we show how it

works in this new setting (Theorem 1), and how the inclusion of differential features or exclu-

sion of reference ones affect the normalization (Proposition 1 and 2).

In the following, ∑j2ref means summation over features in the reference set, and ∑j2all means

summation over all features.

For simplicity, feature abundance is treated as condition-specific constant, that is, assuming

biological and technical variance across replicates of the same condition is zero. The opera-

tions remain the same when abundance levels and read counts are treated as random variables,

by replacing the relevant constants (aij, cij) by the expectations of their random-variable coun-

terparts (E½aij�;E½cij�).
Theorem 1. Let N = [N1, N2, . . ., Nm]T be the reference-based normalizing vector, i.e. the scal-

ing factor Ni is the sum of read counts of all the reference features in that sample.

Ni ¼
X

j2ref

cij

The manifest abundance A� resulted from normalizing C against N is the desirable manifest
abundance. In other words, if a�ij ¼ cij=Ni then a�ij ¼ const � aij, const is a quantity that does not
depend on the row/column.

Proof.

a�ij ¼
cij
Ni

ð1Þ

¼
Mi � arelij
Ni

ðshare of read count is proportional to relative abundanceÞ ð2Þ

¼
Mi � arelij
P

k2ref cik
ðby definition of reference � based normalizing factorsÞ ð3Þ

¼
Mi

Mi

P
k2ref arelik

� arelij ðby assumption about read distributionÞ ð4Þ

¼
arelij

P
k2ref arelik

ð5Þ

¼
aij

P
k2ref aik

ð6Þ

Since references are constant across samples, their sum is also constant.

a1j ¼ a2j ¼ � � � ¼ aj
X

j2ref

aij ¼
X

j2ref

aj ¼ A
ref
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Thus, the Eq (6) implies that the manifest abundance is simply a multiple of the true

abundance.

Note that in the proof above, we have used a simplified assumption about the distribution

of read counts, cij ¼ arelij �Mi. This assumption has abstracted away length bias in which a

longer transcript takes a larger share of reads. To account for length more explicitly, one can

define a quantity called length-adjusted relative abundance, brelij ¼
aij‘jP
g2all

aig‘g
, in which ℓj is the

length correction factor for feature j. The model of read counts is now equivalent to that used

by Robinson & Oshlack [3], i.e.

cij ¼
aij‘jMi
P

g2allaig‘g
¼ brelij �Mi

The relative abundance arelij can then be replaced by brelij , resulting in a proof identical to the

above.

A subset of references is sufficient for normalization. Proposition 1 and 2 demonstrate

the effect of mistaking differential features in the reference set, or missing some reference fea-

tures during normalization.

Proposition 1. Inclusion of any differential feature in the normalizing factors leads to an
invalid normalization.

Proof. Let a0ij ¼
cij

Niþcid
in which cid is the count of a differential feature, in similar operations

as the above, we can arrive at a0ij ¼
aijPref

j
aijþaid

. Since d is differential gene, the denominator is

not constant, thus A0 6¼ const × A.

Proposition 2. Any non-empty subset of the reference set leads to a valid normalization.

Proof. Identical to that of Proposition 1.

Intuitively, a larger reference set is more favorable than a smaller one, due to the

noisy nature of experimental measurements. In practice, a larger set of references can

be identified with more confidence than a smaller one, as elaborated later in Practical con-
siderations.

Manifest correlation of transcripts in RNA-seq

In the following sections we use c for read count and a for the true abundance, hence c is a

function of a, i.e. c = f(a). The subscript i, j indicates different conditions, and u, v different

features.

u and v are both references. By definition, reference features are constant across condi-

tions, i.e.

au;i ¼ au;j ¼ au 8i; j such that i 6¼ j

av;i ¼ av;j ¼ av 8i; j such that i 6¼ j

(

ð7Þ

Since read counts depends on true abundance a, sequencing depth M, and transcript

length ℓ,

cu;i / au �Mi � ‘u

cv;i / av �Mi � ‘v
)
cu;i
cv;i
¼
au � ‘u
av � ‘v

(

ð8Þ
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Similarly with condition j;
cu;j
cv;j
¼
au � ‘u
av � ‘v

ð9Þ

From Eqs (8) and (9), it is true that

cu;i
cv;i
¼
cu;j
cv;j
¼
cu
cv
¼ const

Observation 1. If u and v are both reference features, their read counts are linearly
correlated.

u is differential, v is reference (or vice versa). Equivalently,

au;i ¼ au;j ¼ au 8i; j such that i 6¼ j

av;i 6¼ av;j

(

With similar operation, the observed relation between u and v in each condition are

cu;i
cv;i
¼
au � ‘u
av;i � ‘v

cu;j
cv;j
¼
au � ‘u
av;j � ‘v

Observation 2. If u is a differential feature and v is a reference one (or vice versa), their read
counts are not linearly correlated.

u and v are both differential. Equivalently,

( au;i 6¼ au;j

av;i 6¼ av;j

Linear correlation in this case requires that
cu;i
cv;i
¼
cu;j
cv;j
,
au;i
av;i
¼
au;j
av;j

Observation 3. If u and v are both differential features, the two will exhibit linear correlation
if and only if they vary at similar proportion (i.e. same fold change) across different conditions.

Graph-based normalization algorithm

It follows from the earlier remarks (Observations 1, 2, 3) that all the references in an RNA-seq

data set are linearly correlated with one another. Although the derivation was based on a sim-

plistic treatment of expression levels as condition-specific constants, the effect was in fact

observed in real data. In the ENCODE data set where ERCC spike-in RNAs were added at con-

stant concentrations across samples, the read counts of these spike-ins are highly correlated

(Fig 1).

On this premise, using a graph that models features as vertices, and positive correlation

between them as edges, it is apparent that reference features will manifest themselves as a com-

plete subgraph. However, there might exist other complete subgraphs composed of strongly

co-expressed differential features (Observation 3). A couple of criteria can be employed to

further distinguish the reference subgraph and the differential ones. First, differential sub-

graphs represent tightly regulated and co-expressed features in biological systems throughout

all conditions. Consequently, larger differential subgraph is less likely to exists. By setting the

A graph-based algorithm for RNA-seq data normalization
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minimum size of the target subgraph, or favoring larger size subgraphs, one can reduce

the chance of picking up differential ones. Second, all reference features are correlated with

one another, resulting in a close-to-rank-1 read count matrix. By favoring the subset having

smaller rank-1-residuals, one can choose a better set of references. Rank-1-residuals of the ref-

erence features R, more precisely of their read count matrix CR, is the normalized sum of the

singular values except the first one.

CR ¼ UΣVT ðsingular value decomposition of CRÞ

Rank-1-residualsðCRÞ �
1

ksk2

Xd

i¼2

s2

i ; ½s1; s2; � � � ; sd� are the singular values of CR

Altogether, these observations imply that by finding all maximal_cliques() and select

the best() one, i.e. the lowest rank-1-residuals with a large enough size, one can identify the

set of references (Algorithm 1) to be used in normalizing the read counts (Algorithm 2).

Algorithm 1 Graph-based reference identification
function IDENTIFY_REFERENCES(C)
for i from 1 to (n − 1) do
for j from (i + 1) to n do
if cor(i, j) � t) then Eij  1

Build graph: G = (V,E)
candidates = maximal_cliques(G)
return best(candidates)

Algorithm 2 Graph-based normalization
function GBNORM(C)

Stage 1. Identify references: R  identify_references(C)
Stage 2. Normalize C against R:

for every sample i do
calculate scale factor si  ∑j2R C[i, j]
A½i; j�  C½i;j�

si

return A

Practical considerations. The idea outlined in Algorithm 1 is in fact not efficient enough

for realistic data. The first major cost is incurred by the construction of graph G(V, E) which

requires O(|V|2) both in time and space for calculating and storing the correlation matrix, with

Fig 1. Correlation of references in experimental data. Read counts of ERCC spike RNAs in ENCODE mouse tissue samples are

plotted on parallel coordinates. Each polyline represents a sample, spike-in RNAs are sorted by their nominal concentration which is

specific for each spike, but constant per spike across all samples. The parallel polylines indicate a positive correlation between these

spikes.

https://doi.org/10.1371/journal.pone.0227760.g001
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|V| being the number of vertices. A typical transcriptome with 70000 features takes up 18GB,

far exceeding the average computer memory of 8GB at the time of this writing. In practice, the

number of vertices can be significantly reduced by retaining only features that have non-zero

(or high enough to be considered reliably detected) read counts across all samples. The cumu-

lative distribution of minimum read count across samples of the real data set revealed that 85%

of the vertices can be eliminated with a non-zero filter (S1 Supporting Methods). The vertices

can be pruned even further with a low-expression filter, for example, to retain only transcripts

that are persistently expressed above the lower quartile. Since RNA-seq measures are most

reliable in the moderate expression levels, such trimming practice, in addition to reducing

complexity of the graph problem, will also improve reliability of the input and have been a

common practice in earlier normalization strategies [2, 3]. The second bottleneck happens at

the clique problem. The enumeration of all maximal cliques takes exponential time, for which

the most efficient algorithm available runs in time O(d|V|3d/3), that is, exponential in graph

degeneracy d which measures a graph sparsity, making it efficient only on sparse graphs where

d is small enough [18]. Since a feature cannot be both reference and differential at the same

time, it is sufficient to find non-overlapping subgraph. This allows us to avoid the prohibitive

cost of enumerating all maximal cliques replacing this problem with finding densely connected

subgraphs, i.e. graph communities (Algorithm 3). Because we are only concerned with one

outstanding community in the graph, an accurate and complete graph partitioning may not be

necessary. Furthermore, as a subset of references is sufficient for good normalization (Theo-

rem 2), it is tolerable to miss a few members in the target community. For those reasons, many

good graph partitioning methods can be used in this step. Among the available methods, affin-

ity propagation [19] conveniently takes a similarity matrix as an input, thus can be run on cor-

relation matrix without transformation.

For a proof-of-concept implementation, we used the R package apcluster [20] for affin-

ity propagation algorithm. Parametric choices were elaborated further in the S1 Supporting

Methods.

Algorithm 3 Graph-based reference identification, with practical considerations
function IDENTIFY_REFERENCES(C)

remove features with zero/low counts, m features remain
for i from 1 to (m − 1) do
for j from (i + 1) to m do
if cor(i, j) � t) then Eij  t

Build graph with weighted edges: G = (V,E)
candidates = community(G)
remove candidates with minimum cor < t
return arg min

b2candidates
rank_1_residuals(b)

Methods

Normalization performance is measured against a collection of mini validation data sets and a

full-size data set, where a ground truth can be computed using ERCC spike-ins. The effect of

normalization in the presence of batches was observed on a batch-confounded data set.

Performance measure

Performance of normalization procedure was measured in two terms, by precision in detecting

the references, and by condition-number-based deviation (cdev) from the ground-truth nor-

malization. Both measures are only computable when a ground-truth is known. In the case of

precision, constant-concentration spike-in RNAs are the ground-truth references. In the case
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of cdev, the expression matrix resulted from normalizing against these spike-ins serves as the

ground-truth normalization.

Condition-number-based deviation (cdev). Let A be the true abundance matrix. Since A
cannot be measured directly, in the setting of performance measure, a ground-truth normali-

zation serves as a surrogate for A, i.e, A� normalize(C, R), with R being the set of all true

references.

By definition, an ideal normalization is one that can be transformed into A by multiplying

with a constant factor, i.e., A� is ideal normalization if A� × constI = A, with I being the identity

matrix.

Let AX� normalize(C, X) be result of normalizing C against the set X, BX the matrix that

transforms AX to the ground-truth normalization A.

AX � BX ¼ A

ATXAXBX ¼ ATXA

BX ¼ ðATXAXÞ
� 1
� ðATXAÞ

Since any constant multiplication of the ground-truth A is a valid normalization (see Defi-

nitions and Notations), AX is considered valid if BX = const × I. Hence the quality of the refer-

ence set X can be measured by how much B deviates from the identity form, quantified by the

condition number of B.

kðBXÞ ¼ kBXk � kB� 1
X k

In another word, X is a better reference set and AX is closer to the ground truth if the condi-

tion-number-based deviation of AX from A, denoted cdev(AX, A)�κ(BX) is closer to 1. For

brevity, cdev in the following text is implicitly measured against the ground truth normaliza-

tion A.

Data sets

Validation data sets. Transcriptomic profiling data were downloaded from the ENCODE

project [21], including 71 samples covering various mouse tissues (Table 1). All of the raw

output have been pre-processed according to the ENCODE Uniform Processing Pipeline, i.e.

aligned to the mouse genomemm10, and quantified by RSEM [22] to result in expected read

counts, using the gene/transcript annotation GENCODE M4. These results were then consoli-

dated into a read count matrix of 71 samples × 69691 features. This matrix is the Full data set.

Among these samples, only a subset of 41 were spiked with ERCC synthetic RNAs (at concen-

trations established in the NIST Pool 14), composing the Full Spiked set. Together, these two

sets help to evaluate the performance of reference identification in a realistic situation. The

Full set is typical for what is usually subjected to RNA-seq normalization algorithms: covering

the complete transcriptome with a number of internal references. Since this set includes some

samples that were not spiked with external RNAs, the spike RNAs are differential, thus should

not be selected by reference identification procedure. As internal references are constant

across all samples in the Full set, they are also constant in the Full Spiked set, thus remain the

references in this subset. The Full Spiked set, as its name implies, has additional references

thanks to the spiked RNAs. As stated by Proposition 2, both reference sets should result in

equally valid normalization. Since external references are known, normalization by them is

chosen to be the ground truth. A reference set is better if it can normalize the read counts

closer to the ground truth.
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A subset of 41 samples that were spiked with ERCC synthetic RNAs (NIST Pool 14 concen-

trations) and 1433 genes plus spike RNAs were used to construct the validation data set as

illustrated in Fig 2B. In these data, the ERCC spike RNAs serve as reference features, while the

differential features are emulated by genes known to participate in signal transduction path-

ways (REACTOME accession R-MMU-162582 [23]). This choice of differential genes aims to

ensure that the validation data set (1) covers a wide range of expression levels (gene products

in a signaling cascade are expressed at different levels), (2) includes biologically meaningful

correlation, i.e. regulated co-expression, besides artifact correlation of the reference genes and

(3) mimics the variability across tissue types (signaling pathways are generally different across

biological conditions) (see S1 Supporting Methods). From this pool of differential features,

mini validation sets are generated by picking random combinations of signal transduction

pathways (Fig 2B).

Batch-confounded data set. To illustrate the role of normalization in batch-confounded

data, we used a set of 26 samples including 13 pairs of comparable human—mouse tissues.

This data was originally collected as part of the ENCODE project [24], and later re-analyzed by

Gilad and Mizrahi-Man [25]. Re-analysis showed that the data was confounded by batches,

resulting in samples being clustered by species. RNA-seq read counts of these samples and a

Table 1. Number of samples per conditions in the Full and Validation data sets.

Condition (Biosample type) Full set Full Spiked / Reduced / Mini Validation sets a

adrenal gland 2 0

brain 2 2

central nervous system 6 4

cerebellum 2 2

colon 2 2

cortical plate 2 0

erythroblast 2 0

frontal cortex 2 2

G1E 2 0

G1E-ER4 8 0

gonadal fat pad 2 2

heart 2 0

kidney 2 2

large intestine 2 2

limb 2 1

liver 8 4

lung 2 2

megakaryocyte-erythroid progenitor cell 2 0

ovary 3 2

placenta 2 2

small intestine 4 2

spleen 2 2

stomach 2 2

testis 2 2

thymus 2 2

urinary bladder 2 2

Total 71 41

a These sets have the same number of samples

https://doi.org/10.1371/journal.pone.0227760.t001
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table of human-mouse orthologous gene pairs were downloaded at doi:10.5281/zenodo.17606

[26]. From these pre-processed counts and gene list, an expression matrix of 26 samples ×
14646 genes was compiled.

Batch effects were corrected using ComBat [27] (implemented in the R package sva [28])

to adjust for five sequencing batches identified by Gilad and Mizrahi-Man [25, 26]. ComBat
was run either on the raw counts or that normalized by various methods, including gbnorm,

resulting in different corrected versions of the expression matrix. Genes with levels in the low-

est 30% quantile were then removed, and samples were clustered based on distances calculated

from the remaining genes. Various clustering methods (hierarchical, spectral, k-means) on dif-

ferent distance metrics were attempted. The result of hierarchical clustering on Euclidean dis-

tance with UPGMA agglomeration scheme is reported in the main text, while the rest of this

analysis and source code are available in S2 R Notebook.

Results

Normalization of validation data

The validation data sets include 200 mini expression matrices created as described in Fig 2.

The performance of gbnorm is compared with random subset of references and with some

existing normalization methods including UQ [2], TMM [3], DESeq [4] and PoissonSeq [5].

Two parameters of the graph construction step were explored: correlation method (Pearson

and Spearman) and transformation on the read count (identity, log2 and log10). References

were identified with high precision (>0.8) on the mini validation sets, regardless of the graph-

construction parameters, resulting in significantly better normalization results compared to

random selection of the reference sets. Log-transformation and Pearson Correlation Coeffi-

cient (PCC) tend to result in slightly better reference sets, with higher precision (>0.9) and

consistently lower cdev (Fig 3).

In comparison with earlier normalization methods, gbnorm on validation sets always

resulted in normalized counts closer to the ground-truth obtained by normalizing against the

external spikes (Fig 4).

Fig 2. Diagram of validation data set construction. (A) The largest—Full dataset—includes 71 samples (rows) and 69691 features

(columns). A subset of these samples were spiked with ERCC spike-ins, making up the Full Spiked data set (41 samples × 69691

features). Among these features (i.e. genes), only those those involving the signal transduction pathways were selected to create the

Reduced set from which mini validation sets were sampled from. (B) Method of generating mini validation sets from experimental

mRNA-seq data. The Reduced set includes 1433 genes from signal transduction pathways, plus all ERCC spike-ins. From this pool,

200 mini validation sets were created by random selection of 08 out of 16 pathways.

https://doi.org/10.1371/journal.pone.0227760.g002
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Normalization of real data

Graph-based normalization may have difficulty detecting references in a real data set where

there are only internal references (genes that are naturally expressed at the same level across

conditions) but no external ones (exotic RNAs added at constant concentration to all samples).

To test its applicability in such realistic situation, we performed reference identification on the

Full set, and measured the quality of its output on the Full Spiked where it is possible to calcu-

late a ground-truth normalization.

gbnorm was run in two stages, (1) reference identification and (2) scaling. Such split-up of

the algorithm was to test its ability to detect references in practice when there is no artificially

constant RNAs, while retaining our ability to measure normalization quality against a ground-

truth dictated by external spikes. The first step was run on both the Full set and the Full Spiked,

with one of the best graph-construction parameters as determined on the validation data sets,

i.e. edges were formed by Pearson correlation on the log-transformation of read counts. The

later used output from the first to normalize the Full Spiked set. Other normalization methods

were run in one single step to normalize the Full Spiked set. As shown in Table 2, gbnorm was

able to identify internal references where there were no spikes, resulting in a better (smaller

cdev) normalization compared to other methods. While earlier methods can be done within

seconds, graph-based normalization is inherently expensive, taking from a few to 30 minutes

depending on the input on the current data set. This running time is still reasonably accessible

for one-time operations. On the Full Spiked set, gbnorm based on affinity propagation cluster-

ing had trouble converging to a good solution, resulting in a long running time and worse

Fig 3. Performance of graph-based normalization on the validation data measured by precision in reference identification

(left) and by deviation from the ground-truth normalization, cdev(AX, A�) (right). cdev(Arandom, A�) resulted from normalization

by random set of references are plotted for comparison. Three types of transformation (identity, log2, log10) and two correlation

measures (Spearman, Pearson) were tested, resulted in six different configurations of input to the reference identification procedure.

https://doi.org/10.1371/journal.pone.0227760.g003
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normalization. It remains to be studied whether other clustering methods can improve on this

data set, and how sensitive they are with respect to different properties of the input data such

as the correlation distribution and the community structure.

Normalization on batch-confounded data set

Given the widespread presence of batch effects [29, 30] in high-throughput data, RNA-seq

analytic workflows typically include a batch correction step following normalization [31]. To

test the ability of gbnorm to facilitate batch effect removal, we observed the clustering pattern

of samples in a human—mouse tissue data set. This data set was originally published by Lin

Fig 4. Comparison of graph-based normalization and existing global-scaling methods. Distribution of deviation

from the ground-truth, measured by cdev, when normalizing the validation sets by UQ, TMM, DESeq, PoissonSeq,

gbnorm and by random sets of features. Ground-truth is obtained by normalizing against ERCC spike-ins with at least

100 counts).

https://doi.org/10.1371/journal.pone.0227760.g004

Table 2. Comparison of gbnorm and existing normalization methods.

Method Reference Identification set Scaled set Running time (seconds) cdev from ground-truth

raw NA Full Spiked 0.006 17.416850

UQ NA Full Spiked 0.519 7.189026

TMM NA Full Spiked 1.085 7.952690

DESeq NA Full Spiked 0.454 8.439418

PoissonSeq NA Full Spiked 0.174 8.007819

gbnorm Full Full Spiked 121.565 6.058230

gbnorm Full Spiked Full Spiked 1329.980† 8.943961

† Long running-time due to affinity propagation not converging

https://doi.org/10.1371/journal.pone.0227760.t002
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et al. [24] and later demonstrated to be confounded by sequencing batches such that uncor-

rected data resulted in samples being clustered mostly by species [25]. Here we performed

clustering on four different versions of the expression matrix: uncorrected raw counts,

uncorrected normalized counts, batch-corrected raw counts and batch-corrected normalized

counts. Without batch effect removal, expression profiles of the tissue samples were barely

distinguishable, with some outliers standing out from the rest of samples (Fig 5). In con-

trasts, batch effect removal using ComBat [27] resulted in distinct groups of samples, with

grouping pattern varies depending on how the inputs were processed. Correcting for batch

effects on raw counts resulted in the clustering of samples mostly by species, while on

Fig 5. Batch effect removal performed on raw vs normalized counts resulted in different clustering pattern of the samples. No

processing (raw) or normalization alone (gbnorm) did not create clear groups of samples, batch effect correction alone (raw

+ combat) resulted in samples clustered mostly by species, while the combination of normalization and batch effect correction

(gbnorm + combat) resulted in samples clustered mostly by tissues. Samples were clustered by hierarchical clustering, with UPGMA

agglomeration method, on Euclidean distance calculated from genes above the 30% quantile.

https://doi.org/10.1371/journal.pone.0227760.g005
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normalized counts resulted in clustering mostly by tissues (Fig 5). This shift of clustering

pattern was observed for all normalization methods (S2 R Notebook), suggesting that nor-

malization, in general, is helpful for batch effect removal, and that most scaling methods

examined here (UQ, TMM, DESeq, PoissonSeq, and gbnorm) are equivalent in this role.

While different normalization methods resulted in only slightly different clusters, depending

on the choice of clustering algorithms and distance metric, batch-corrected raw counts con-

sistently failed to group samples by tissues.

Discussion

Using a simplistic treatment of RNA-seq read counts, we showed that artificial correlations are

theoretically expected, and experimentally observed in RNA-seq data. This observation leads

to a new way to identify reference features, and consequently, to normalize RNA-seq read

counts. Unlike existing methods, this algorithm helps identify a set of references, based on

their correlation in read counts, thus eliminating the need for prior knowledge about stably

expressed genes and assumptions about similar expression profiles between experimental con-

ditions. It’s worth noticing that this method requires a large number of samples and a quality

feature count method for reliable correlation measure.

Upon the finding on artifactual correlations among reference features, the challenge of

performance measure is renewed. Quality of RNA-seq normalization has been traditionally

judged on the accuracy of DEG detection which requires simulated data sets where DE and

non-DE genes can be specified. As conventional simulation procedures do not capture the

correlations in the real data, we constructed validation data sets from real measurements,

eliminating the need to simulate sequencing reads while preserving the intrinsic correlation

required for graph-based normalization. Although this construction aims to measure the per-

formance of graph-based normalization (hereafter denoted as gbnorm), it was crafted to intro-

duce more adversities rather than advantage for the method. This construction also allows us

to use a new performance measure based on comparison against the ground-truth instead of

relying on the result of DEG detection, effectively uncoupling the normalization step from

its downstream analyses. Even though such uncoupling prevents us from positing further on

the performance of gbnorm in these analyses, we believe it is a necessary restriction, for those

assessments requires careful selection of data sets and performance measures specific to the

biological insights being pursued. More sophisticated simulation protocols to re-produce the

real data in target properties while retaining correlation structure may be necessary to study

such downstream effects of normalization.

To avoid confusion, a discussion on the broad meaning of normalization in the gene

expression literature has been delayed until now. Although normalization in this article has

been formally defined, and so far exclusively meant, to be a global scaling operation in which a

single scaling factor is used per sample, the term may also indicate other distinctive transfor-

mations of read count matrix. In particular, factor analysis such as RUV [32] allows for both

sample- and gene-specific scaling factors, and quantile normalization [33, 34] enforces identi-

cal distribution of read counts between all conditions, via complete replacement of numerical

counts by rank-equivalent counts. These processes generate highly different normalized results

which would be meaningless to compare directly. It is most likely that specific requirements

of downstream analyses will dictate which approach is appropriate, and in case they all are, in

which terms they can be compared. That said, these approaches are not always mutually exclu-

sive. For instance, the RUVg variant of RUV method relies on a set of references, either known

or determined empirically, to factor out unwanted variations. The empirical determination

of these references relies on other processes, such as DE tests with built-in global scaling
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normalization, or graph-based reference identification. This way, RUV and global scaling

methods are complementary steps in a normalization protocol.

Another important aspect of gene expression profiling analysis is batch effect removal.

Batch effects can arise from various technical discrepancies in the whole experimental process,

ranging from instruments, reagents, protocols to handlers and time, producing non-biological

sources of variations [29, 30]. The use of ERCC spike-ins to establish the ground truth may

lead to an expectation that this ground truth is free from all batch effects. This expectation

would be reasonable if spike-ins are used to derive a standard curve from which absolute RNA

concentrations can be inferred, a use originally intended for these synthetic sequences [11].

Other than building standard curve, spike-ins can also be used in global scaling and factor

analysis, to derive sample-specific and sample-gene-specific scaling factors, respectively [35].

Since batch effects can be complicated, e.g. affecting different genes in different ways [29], it is

apparent that sample-specific scaling factors will not be able to eliminate all the unwanted vari-

ations. That realization does not negate the need of global scaling normalization. As indicated

by our analysis on a batch-confounded data set, such normalization prior to batch effect cor-

rection can critically improve the outcome. Still, the complete remedy of batch effects is a com-

plicated matter which calls for scrupulous planning as early as experimental design, as well as

deliberations on batch effect removal algorithms [30].

A peripheral, yet important implication of this work is the fact that artifactual correlations

do arise from RNA sequencing process. Because correlations have been routinely used to

measure co-expression and to derive biological meanings [36, 37], this finding suggests that

researchers exercise more caution when interpreting correlations on RNA-seq read counts.

As a result of Observation 1, correlation does not always indicate the existence of biological

regulation.

Graph-based normalization promises to deliver a better result, evidently at the cost of

higher computational demand. In many conventional use cases such as DE detection in com-

parable conditions, it may still be preferable to use conventional methods such as TMM [3]

and DESeq [4, 38], which performed well in previous benchmark studies [14]. As the need

arises for analyzing more expression profiles of higher heterogeneity, methods without

assumption about condition similarity such as gbnorm should be considered. The ability to

work on abundant and heterogeneous profiles make it more versatile, applicable to a wide

range of settings such as mRNA-seq from different organs, tissue types, developmental stages,

cell types, or even 16S-RNA-seq from diverse microbiomes. Analytic methods that specifically

required normalized expression levels as their input [39, 40] will benefit from cross-sample,

application-independent normalization methods such as gbnorm. Although presented here as

a normalization method, at the core of gbnorm is a reference identification procedure. These

references can be applied in different ways. In many count-based DE tests, it is critical that the

input count matrix remain integer, and normalization factors introduced as offsets. Users of

these workflows should be highly aware of how scaling factors are defined and used in each

case [41, 42].

Gbnorm relies on a community detection algorithm which has plenty of options from previ-

ous research, provided that the chosen algorithm does not require the number of communities

as an input. Unfortunately, this wealth of choices implies that the performance can vary

significantly depending on specific community detection approach and its corresponding

parameters, as is the case with many graph-based problems. Our current choice, the affinity

propagation algorithm, conveniently takes similarity matrix as an input, avoiding the need to

transform similarity into distance measure. Whether other algorithms provide better perfor-

mance remained to be explored, although they may introduce a varying set of parameters.

Beyond algorithmic parameters, it is also important to understand how the method perform in
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various practical settings, specifically gene-level vs transcript-level read counts, the degree of

heterogeneity among conditions, and the proportion of differential features. Such knowledge

will guide the development of a more versatile and faster normalization tool.

In summary, as a proof-of-concept, it is an encouraging result that we may be able to break

the circular dependency problem in RNA-seq data. Further studies in the directions outlined

above are needed toward more practical implementations.
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