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SUMMARY

Despite advances in single-cell and molecular techniques, it is still unclear how to
best quantify phenotypic heterogeneity in cancer cells that evolved beyond
normal, known classifications. We present an approach to phenotypically charac-
terize cells based on their activities rather than static classifications.We validated
the detectability of specific activities (epithelial-mesenchymal transition, glycol-
ysis) in single cells, using targeted RT-qPCR analyses and in vitro inductions. We
analyzed 50 established activity signatures as a basis for phenotypic description
in public data and computed cell-cell distances in 28,513 cells from 85 patients
and 8 public datasets. Despite not relying on any classification, our measure
correlated with standard diversity indices in populations of known structure.
We identified bottlenecks as phenotypic diversity reduced upon colorectal can-
cer initiation. This suggests that focusing on what cancer cells do rather than
what they are can quantify phenotypic diversity in universal fashion, to better un-
derstand and predict intra-tumor heterogeneity dynamics.

INTRODUCTION

Somatic evolution naturally occurs in all multicellular organisms, as cells accumulate genetic alterations

upon replication and exposure to mutagenic environments (Gatenby and Brown, 2017). This can eventually

select for highly adapted cells breaking free of the constraints imposed by homeostatic regulation on pro-

liferation and motility, leading to cancer (Greaves and Maley, 2012; Trigos et al., 2018). This evolutionary

nature implies that cancer cells originating from a common ancestor can display extensive diversity at

both the genetic and phenotypic levels (Gerlinger et al., 2012). This diversity, known as intra-tumor hetero-

geneity (ITH) (McGranahan and Swanton, 2015), can foster resistance and facilitate adaptation upon the

environmental changes induced by therapeutic regimens (Nowell, 1976). To limit the risk of resistant pop-

ulations emerging upon treatment and predict cancer evolution, it is thus necessary to better understand

the dynamics of ITH (Lässig et al., 2017; Maley et al., 2006).

Being able to follow the evolution of ITH first implies that one should be able to reliably quantify it.

Although there exist multiple methods for genetic ITH thanks to alteration frequencies in the population

(Nik-Zainal et al., 2012; Andor et al., 2014; Fischer et al., 2014; Martinez et al., 2017; Williams et al.,

2018), phenotypic ITH is more challenging. Many studies have relied on the identification of static classifi-

cations (Frazer et al., 2007; Patel et al., 2014; Zhang et al., 2019), often based on lineage markers (Almendro

et al., 2014; Nguyen et al., 2018), allowing the calculation of standard diversity metrics such as the Shannon

(Bertucci et al., 2019), Simpson (Martinez et al., 2016), or GINI (Ferrall-Fairbanks et al., 2019) indices.

Although these classifications make perfect sense in the context of normal tissue homeostasis, they may

not be relevant in cancer cells bypassing the host’s regulatory mechanisms through abnormal transcrip-

tional programs. Cancer cells drift away from well-characterized normal phenotypes according to evolu-

tionary trajectories specific to each tumor. They, however, display strong convergence at the phenotypic

level, with key pathways and cellular activities recurrently dysregulated across both patients and tumor

types (Hanahan and Weinberg, 2000, 2011). Aside from static subtype classifications, other methods

have focused on expression variation among specific gene sets (Davis-Marcisak et al., 2019) and uneven

repartition of expressed transcripts per gene (Hinohara et al., 2018). Yet, there is no golden standard

approach to quantify phenotypic diversity in cancer.
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Here we investigated the feasibility of predicting the activities that a single cell partakes in and the rele-

vance of considering them as traits to describe the cell’s overall phenotypic profile.We performed targeted

single-cell experiments on three cellular activities induced in vitro (epithelial-mesenchymal transition, DNA

repair, glycolysis), which suggested that targeted panels can reliably identify the presence of a given

activity from single cell RNA expression data. To expand on this limited data, we then analyzed 50 hallmark

activity signatures from the Molecular Signature database (MSigDB) in eight publicly available single-cell

tumor datasets. We used leave-one-out procedures to avoid overfitting, along with Principal Component

and clustering analyses to account for the redundancy among the 50 activities. By using activity-based

phenotypic profiles to quantify cell-cell divergence and sample-wise phenotypic diversity, we report that

such an approach is relevant in pan-cancer fashion. It could furthermore recapitulate diversity indices

based on known population structures, independently of tissue and cell types. Finally, such a method al-

lowed a glimpse into the evolutionary dynamics of phenotypic diversity, hinting at the existence of evolu-

tionary bottlenecks reducing phenotypic diversity upon colorectal cancer initiation. Although more work is

necessary to provide specific and accurate quantitative tools and software, our results suggest that

focusing on cell activities to measure phenotypic ITH can provide a more relevant angle than standard clas-

sification and marker-based methods.

RESULTS

Detecting Hallmark Signatures in Single Cells

We assessed the relevance of three MSigDB hallmark gene signatures in single cells via in vitro inductions:

epithelial-mesenchymal transition (EMT), DNA repair, and glycolysis. We aimed to take advantage of the

higher accuracy of single-cell RT-qPCR compared with whole transcriptome scRNA-seq (Mojtahedi

et al., 2016) and designed reduced panels of 9–13 marker genes to detect each activity in single cells

(see Methods). To do so, we first analyzed gene expression in 1,036 cell lines samples from the Cancer

Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) for marker gene discovery and 10,885 pan-cancer

samples from The Cancer Genome Atlas (TCGA) (Chang et al., 2013) for cross-validation. The activity-spe-

cific markers, respectively, achieved areas under the curve (AUCs) of 0.96, 086, and 0.79 in teasing out the

top and bottom scoring TCGA samples for EMT, DNA repair, and glycolysis, respectively (Table S3).This

suggested that these reduced gene panels satisfactorily recapitulated the signal from whole-gene set

enrichment analyses, implying that analyzing the expression of few marker genes could help quantify

the presence of activity-based phenotypic traits in single cells.

We analyzed the expression of 48 selected marker genes in 48 single epithelial mammary cells (MCF10A), in

which each activity had been induced or not (12 EMT-induced, 12 DNA-repair-induced, 12 glycolysis-induced,

12 control cells with no induction, Figure 1A). Significantly differentially expressed genes could be identified in

all experiments (Figure 1B). We inferred Beta-Poisson expression distributions for each gene in active/inactive

conditions, which we used to calculate the likelihood that expression values frommarker genes corresponded

to cells in which the related activity was induced (Figure 1C). Differentially expressed genes, generalized linear

models, and leave-one-out procedures were used to predict cells undergoing each activity induction (see

Transparent Methods). We could achieve AUCs of 0.99, 0.72, and 0.86 for, respectively, the EMT, DNA repair,

and glycolysis activities (Figures 1D, S2, S3, and Table S4). The absence of expression patterns clearly sepa-

rating DNA repair cells from the other three types, for most DNA repair genes, impaired prediction for this

activity (Figure S3). This targeted experiment, however, suggests that the expression of adequate marker

genes can be used to identify whether an activity is present in a given cell with satisfying accuracy.

Whole Transcriptome Cell Activity Scores

Following these targeted in vitro results supporting the feasibility of predicting the activities of single

cells, we investigated the relevance of an activity-centered approach to quantify phenotypic diversity

in high-throughput patient datasets. In the absence of single-cell inference methods tailored to each

of the 50 hallmark cell activities, we used standard tools to investigate the behavior of the related signa-

tures in patient data. We used the AUCell (Aibar et al., 2017) software to score the enrichment of all

MSigDB hallmark gene sets in all cells from eight datasets (Fan et al. 2018; Filbin et al. 2018; Li et al.

2017; Neftel et al. 2019; Patel et al. 2014; Tirosh, Izar et al. 2016; Tirosh, Venteicher et al. 2016; Venteicher

et al. 2017). We normalized these data per set and merged them into a meta-dataset of 50 activity scores

per cell in 28,513 cells from different cancer types (see Methods). No major batch effect could be

observed as samples did not specifically cluster according to their sets of origin, whereas similar cell

types appear to cluster together (Figure 2). However, the most common cell types (T cells, macrophages,
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and malignant cells) segregated into more than one cluster each. This suggests that cells with similar

identity tend to behave similarly across batches and tissues but that different subset of activity profiles

could also be observed among cells of identical classification.

A

B

C D

Figure 1. Detection of Selected Activities Induced In Vitro Using Single-Cell Expression of Targeted Genes

(A) Overall scheme. EMT (blue), DNA repair (green), and glycolysis (red) activities are induced in vitro in MCF10A cells,

prior to single-cell analysis and RNA quantification. Targeted marker genes expression is used to assess the likelihood

that an activity, considered as a phenotypic trait, is present in a cell. All quantified traits are used to create cell-specific

phenotypic profiles and serve as a basis to calculate pairwise cell-cell divergence and overall phenotypic diversity.

(B) Row-normalized single-cell expression for the marker genes of EMT (left), DNA repair (center), and glycolysis (right).

Blue: lower expression; red: higher expression. Cells in which the activity was induced are on the left and indicated by

colored bars below. Control cells having undergone no induction are on the right and indicated by a gray bar. Significantly

differentially expressed genes in bold (p < 0.05, BPglm function).

(C) PFKM marker gene expression in glycolysis and control conditions. Blue curve: number of transcripts in cells in which

glycolysis cells was induced; gray curve: control conditions. Confidence intervals around the observed values are used to

calculate the probability that a value comes from glycolytic (pglyco, blue) and control (pctrl, gray) conditions. The pglyco/

(pglyco + pctrl) ratio gives the likelihood that the observed value comes from a cell in which glycolysis was induced.

(D) Glycolysis prediction in single cells from all four populations: glycolysis (red), EMT (blue), and DNA repair (green)

inductions and control (gray). Black and white bar underneath indicates the reported probability of each cell to be

glycolytic (log10 scale). Black: missing values.
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Our analysis, however, revealed extensive redundancy among the 50 activities scored (Figure 3A), suggest-

ing that the signal from the hallmark signatures likely corresponded to fewer than 50 distinct activity-based

phenotypic traits. We furthermore assigned cell-cycle phases (G1/S/G2M) to cells using the cyclone soft-

ware (Scialdone et al., 2015). The cell-cycle phase in which a cell is influences its transcriptome, which

can in turn bias cell-type assignment. However, because our approach is cancer oriented and based on

cellular activities rather than identities, we considered this information as part of the phenotypic state of

a cell and purposely did not correct for it. Cell-cycle phase assignment was found to correlate with the

G2M Checkpoint, E2F Targets, andMitotic Spindle signatures, highlighting that such cycle phase informa-

tion was indeed taken into account in our phenotypic profiling of cells (Figure S4).

Figure 2. Normalized Activity Scores in the Meta-Dataset

Heatmap of activity scores in the meta-dataset, normalized per activity per set. Dendrograms highlight relationships between activities (left) and cells (top).

The dataset of origin of each cell is reported by the bottom color bar. The top row below the score heatmap indicates the dataset of origin of each cell,

whereas the bottom one indicates its reported type.
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Redundancy Reduction to Obtain Phenotypic Profiles

We designed two methods to tackle redundancy, based on Principal Component (PC) and clustering analyses

(seeMethods). The first three PCs of the entire meta-dataset, respectively, explained 25.9%, 12.8%, and 7.7% of

the variance in the data, whereas 11 PCs explained more than 2% of the variance (Figure 3B). For the clustering

analyses, we investigated the relevance of splitting the data into 2–15 clusters. Using the consensus indices from

bootstrapping experiments, we defined an optimal range between 6 and 10 clusters, after which increasing the

number of clusters would not improve consensus (Figures 3C and 3D).

We defined phenotypic profiles for each cell based on either the PC scores or the average activity scores

per cluster. We analyzed the six sets that providedmetadata describing the predicted (sub)type of each cell

A

C D

B

Figure 3. Principal Component and Clustering Analyses to Circumvent Hallmark Activity Redundancy

(A) Correlation heatmap between all 50 MSigDB hallmark activities on a meta-dataset comprising 28,513 cells from 8

different datasets.

(B) Importance of the 15 Principal Components (PC) for each activity (squared cosine, indicated by increasing circle size

and blueness). Below, the proportion of total variance in the dataset explained by each PC.

(C) Relative increase in measure of clustering consensus as the number of clusters is increased. CDF, cumulative

distribution function.

(D) Cluster assignment of all 50 activities, for a number of 2–15 clusters.
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(see Methods), using leave-one-out procedures to prevent overfitting. In line with our observations that

cells clustered according to their type rather than set of origin, defining PC weights and optimal cluster

compositions on all sets but the one analyzed still allowed one to identify patterns differentiating cell types

(Figures S5–S10).

Cell-Cell Divergence across Tissue and Cancer Types

Pairwise Euclidean distances between phenotypic profiles then served to measure the phenotypic diver-

gence between cells. We used different thresholds to calculate PCA- and cluster-based divergence,

respectively, based on the minimum percentage of variance for a PC to be included in phenotypic profiles

(0%, 1%, 2%, 3%, and 5%) and on the numbers of clusters to summarize all 50 activities (6–10 clusters).

Phenotypic heterogeneity measures were highly correlated regardless of the thresholds in both methods

(all Spearman’s rho R 0.72, all p < 0.001, Table S5), suggesting they are nearly equivalent. However, we

observed less redundancy between PC scores than between cluster scores, independently of the number

of clusters (Figure S10). We therefore use PCA-based phenotypic heterogeneity measures hereafter, with a

2% minimum threshold on explained variance for PC inclusion.

We investigated the pan-cancer relevance of our activity-based phenotypic divergence measure, using the

six datasets for which cell type metadata were available. We report differences in cell-cell divergence dis-

tributions, according to whether two cells are of the same type or not and what that cell type is (Figures 4

and S11). In agreement with our pan-cancer observations that cells clustered by typemore than dataset, the

divergence between cells of different cell types was always the highest distribution (compared with same-

type distributions) in all six datasets. This suggests that our metric will assign smaller divergence scores to

cells from the same cell type. Using bootstrapped clustering analyses, we also investigated if different

recurrent activity profiles could be observed among cancer cells only, in each set (Figures S12–S16, see

Methods). Clusters related to proliferation and immune response could be observed in most analyses,

whereas the most discriminant activities, and PC scores derived from them, varied between datasets. In

the Venteicher astrocytoma dataset, a discernible sub-population tied to immune activities can be distin-

guished on the left, with marked differences in interferon alpha and gamma signatures (Figure 5). A sepa-

rate sub-population with strong proliferation signaling can be observed in the center, whereas cells on the

right side do not display particularly strong proliferation or immune-related signal. This suggests that ac-

tivity-based distances can separate distinct subpopulations of malignant cells presenting different pheno-

typic characteristics.

Phenotypic Diversity Quantification

We further analyzed the relevance of activity-based approaches on two subsets with extended character-

ization in a large number of patients: 7 non-malignant cell types (T cell, B cell, Macrophage, Endothelial,

Fibroblast, NK, Undefined) in 19 patients from the Tirosh melanoma dataset; 6 malignant subtypes

(AC-like, OPC-like, MES1-like, MES2-like, NPC1-like, NPC2-like) in 28 patients from the Neftel glioma

dataset. The average divergence in a group of cells was used as a surrogate for the group’s phenotypic

heterogeneity. We observed differences across the average profiles calculated for the distinct cell types,

suggesting they are each characterized by specific activity patterns. The differences between the most

divergent cells in each category, however, exemplify that individual cells can strongly deviate from these

overall profiles (Figures 6A, 6B, and S17). Such variability, possibly due to the stochastic nature of gene

expression, would be absent from standard classifying methods.

We proceeded to reclassify all cells according to the smallest Euclidean distance between their PCA-based

profiles and the average profiles of each classification in both datasets. We observed a stronger concordance

(p = 0.022, Wilcoxon test) when reclassifying cells from established normal cell types in melanoma samples

according to their activities (Figure 6C, 82% G 14 correctly reclassified samples), compared with subtypes

of malignant glioma cells (Figure 6D, 54% G 23). This confirmed that cells of similar type tend to partake in

similar activities. However, in the glioma samples we analyzed, the differences between marker-based malig-

nant subtypes were not as closely reflected by activity profiles as was observed in normal cell types.

We then computed the standard Simpson diversity index on a per-patient basis, according to the reparti-

tion of all cells from a patient into the relevant categories in both subsets. We found that it correlated very

significantly with our divergence-based phenotypic heterogeneity score in both non-malignant cells from

melanoma samples and malignant glioma cells (Figures 6E and 6F, Spearman’s rho = 0.73 and rho = 0.49;
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p = 0.001 and p = 0.009, respectively). This suggests that this approach, although not relying on cell clas-

sification, can accurately capture the diversity of populations whose structure is known, both for malignant

and normal cells from different tissues. Similar observations were reported using cluster-based distances

(Figure S18).

Using the average activity-based divergence between malignant cells, we quantified intra-tumor pheno-

typic heterogeneity in all samples from the six datasets with metadata and compared them (Figure 7A).

The mean phenotypic divergence of colorectal cancers (Li et al.) was significantly higher than other data-

sets, whereas melanoma heterogeneity was significantly lower (Wilcoxon test, Benjamini-Hochberg (BH)

correction, p < 0.001 and p = 0.004, respectively). We furthermore report that between-samples variation

in phenotypic diversity was the highest in melanoma (i.e., most heterogeneous in heterogeneity levels) and

the lowest in oligodendroglioma (Figures 7B and 7C).

Phenotypic Diversity Evolution

We finally took advantage of cancer samples paired with normal tissue in the colorectal dataset to inves-

tigate the evolution of phenotypic diversity. In the five patients with colorectal cancer from Li et al. for which

we could find paired tumor-normal data, diversity stayed at similar levels in three cases (CRC04, CRC06,

Figure 4. Pan-Cancer Phenotypic Cell-Cell Divergence

Pairwise cell-cell divergence distributions per cell type in each of the six datasets with curated metadata. Inter: inter-type divergence (between cells of

different subtypes). All other distributions are between cells of the reported type. Dashed horizontal line: total average; broad horizontal lines: individual

distribution averages.
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CRC10), whereas it decreased very significantly in the tumor material in two cases (Figure 7D, CRC05,

CRC08, p < 0.001, Wilcoxon test). Such decrease in diversity was not observed in other cell types in these

patients (Figure S19). This fits a scenario in which cells go through a phenotypic bottleneck at tumor initi-

ation, followed by the expansion of few selected clones.

DISCUSSION

Better understanding the dynamics of intra-tumor heterogeneity will help tailor better therapeutics to con-

trol and funnel cancer evolution. During malignant somatic evolution, cells drift away from their well-char-

acterized normal ancestors by following trajectories unique to each patient (Tokutomi et al., 2019), whereas

there is convergence across patients to (de)activate the necessary cellular activities (Hanahan and Wein-

berg, 2000, 2011). Consequently, we investigated the relevance of focusing on what cancer cells do, rather

than what they are, to measure phenotypic diversity in the cancer context. We considered cellular activities

Figure 5. Isolated Activity Profiles of Significant Clusters of Malignant Cells in the Venteicher et al. Astrocytoma

Dataset

Top: distinct significant clusters are identified by alternating black and gray color bars. Cells are ordered left to right

according to the overall cluster data including all cells, although only significant clusters of five cells or more are

displayed. Middle: Heatmap of PCA-based activity scores. All principal components were used for clustering analyses,

but only those explaining >3% of total variance are displayed. PCA scores are ordered top to bottom according to

complete hierarchical clustering based on Euclidean distances. Bottom: Heatmap of normalized activity scores, ordered

top to bottom according to complete hierarchical clustering based on Euclidean distances.
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B

Figure 6. Phenotypic Diversity in Populations of Known Structure

(A and B) PCA-based phenotypic profiles of (A) seven non-malignant cell types from the Tirosh et al. melanoma dataset

and (B) six glioma subtypes from the Neftel et al. H3K27M-glioma dataset. Average profiles on top were obtained by

averaging all cells from a given subtype across all patients. The outlier profiles at the bottom were obtained from the

same-type cell pairs displaying the highest activity-based divergence for each cell type. Only the first five principal

components are shown.

(C) Barplots showing the breakdown of how non-malignant cells frommelanoma samples would be re-categorized, based

on the average activity profiles of each category in the Tirosh melanoma dataset.
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as traits describing the phenotypic state of cells and used pairwise distances to quantify cell-cell diver-

gence and overall diversity. Unlike many existing methods (Almendro et al., 2014; Ferrall-Fairbanks

et al., 2019; Zhang et al., 2019), such an approach does not rely on classifying cells into putative, static iden-

tities that cancer cells drift away from in patient-specific fashion. It furthermore encompasses the temporal

variability inherent to populations of cells replicating asynchronously and exhibiting stochastic differences

in gene expression, which can itself foster resistance (Shaffer et al., 2017). In addition, such a method is not

tissue-type specific and was relevant in all investigated datasets.

We first performed in vitro analyses, which revealed that it was possible to reliably predict in which cells a given

activity had been induced, using targeted panels based on the MSigDB hallmark gene sets and the literature.

This was done using single-cell RT-qPCR technology, which is more precise than RNA-seq on specific genes

of interest (Mojtahedi et al., 2016). Our analysis, however, revealed that some of the best markers for activity

detection were absent from the hallmark gene sets. Although this is likely to be attenuated when using entire

gene sets rather than targeted panels, it exemplifies the need for more reliable gene signatures, particularly

ones taking into account single-cell level specificities (Hwang et al., 2018; Larsson et al., 2019).

We then scored 50 hallmark activity signatures in 28,513 cells from eight publicly available datasets using

the AUCell software. AUCell is based on a ranking procedure, which efficiently deals with normalization and

is not affected by the dissimilarity in using either FPKM or TPM units across the datasets (Aibar et al., 2017).

This was illustrated by cells not clustering according to their dataset of origin in the meta-dataset. ‘‘Drop-

outs’’ occurring when transcripts are not captured before sequencing can, however, affect ranking in low-

expressed genes (Davis-Marcisak et al., 2019). Gene set enrichment analyses, in which multiple genes can

contribute to the overall enrichment signal for an activity in each cell, are, however, less affected by drop-

outs than gene-specific differential expression analyses.

We reported high redundancy among the 50 activities scored, which we addressed by using PC and clus-

tering analyses. We found that both methods were by and large equivalent. Importantly, hallmark activities

do not focus on lineage-specific markers. Using their output, which summarizes multiple genes, is thus less

likely to separate cells according to the expression of few highly discriminating lineagemarkers, such as can

occur when focusing on the entire transcriptome. This is particularly relevant for cancer cells that broke free

of homeostatic control and differentiation hierarchies, in which lineage markers inherited from ancestors

may no longer correlate with phenotype and behavior.

We applied such an activity-based approach to investigate the divergence between and among cell types

in six datasets with available metadata. We found that cells of the same type were less divergent than cells

of different types. This can be explained by the fact that most reported cell types are non-malignant, with

cells from the same type thus likely to partake in similar activities. We also observed that activity profiles

recapitulated normal cell types better than malignant subtypes, although with very limited data (n = 1 in

both cases). Furthermore, we could identify distinct clusters of malignant cells showing marked differences

in their activity profiles in all datasets. Therefore, although same cell identity often implied similar activities,

it was not always the case, especially in cancer cells for which our activity-based approach was aimed. This

also indicated that this approach could reflect the divergence between cells similarly consideredmalignant

using a blanket classification, but which appeared to engage in different activities.

Interestingly, the divergence between malignant cells was not recurrently higher or lower than that be-

tween normal subtypes, and patterns varied according to tumor type. In the two datasets with high

numbers of both patients and cell type sub-classifications, the mean cell-cell divergence correlated signif-

icantly with standard diversity indices based on the repartition of individuals into subpopulations. These

results suggest that avoiding the use of known lineage markers did not hamper the relevance of this

approach across the investigated tissue types. Although we used a leave-one-out design to avoid

Figure 6. Continued

(D) Barplots showing the breakdown of howmalignant glioblastoma cells would be re-categorized, based on the average

activity profiles of each category in the Neftel dataset.

(E) Relationship between mean phenotypic divergence between non-malignant cells in the melanoma dataset and the

Simpson diversity index calculated on the repartition of cells into the seven non-malignant classes.

(F) Relationship between mean phenotypic divergence between malignant cells in the glioma dataset and the Simpson

diversity index calculated on the classification of cells into the six glioma subtypes. Black lines: linear models.
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overfitting, it is, however, worth noticing that brain cell and tumor data are likely overrepresented in this

study. Finally, using this approach on five patients with paired tumor-normal data suggested the existence

of evolutionary bottlenecks on phenotypic diversity at tumor initiation. This would be in agreement with the

genetic diversity decrease observed at this stage in orthogonal studies (Cross et al., 2020).

A

B

D

C

Figure 7. Differences and Dynamics of Phenotypic Diversity

(A) Distribution of phenotypic divergence between malignant cells in each sample across six datasets. Samples ordered

by sample-wise phenotypic diversity (average divergence). ***: p < 0.001; *: p < 0.05 (Wilcoxon test, BH correction). Boxes

represent the middle quartiles; black horizontal bars represent the median of each distribution; whiskers extend up to 1.5

times the interquartile range (box height) away from the box. Outliers (beyond the whiskers) are not displayed.

(B) Per-sample phenotypic diversity in all six sets.

(C) Coefficient of variation in phenotypic diversity across samples in each set.

(D) Phenotypic divergence distributions in normal and cancerous epithelia in five patients from the Li et al. dataset.

Dashed horizontal line: total average; broad horizontal lines: individual distribution averages.
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In this work, we focused on the quantification of phenotypic diversity according to cancer’s atavistic evolu-

tionary nature, as cells deviate from normal healthy cell types and regress toward ancestral unicellular

growth (Davies and Lineweaver, 2011). We used single-cell expression analyses to quantify activity-based

traits for each cell to create individual phenotypic profiles differing from static subtype classifications. This

provides an alternative to marker-based methods, which can rely on markers not relevant anymore in the

cancer context and that often cannot allow quantification of the differences between cells classified simi-

larly. Not relying on markers furthermore bypasses tissue specificity and provides a universal approach

applicable to all tumor types.

Limitations of the Study

In this study we used pre-defined activity signatures based on bulk data that were not specifically

designed for relevance in cancer studies. More work is therefore needed to provide standardized

tools to reproducibly measure phenotypic ITH from single-cell RNA data. The development of ac-

curate single-cell-specific expression signatures for the most recurrently dysregulated pathways in

cancer would provide enhanced precision to build per-cell phenotypic profiles. This will require

determination of the most relevant activities that contribute to the convergence toward the ‘‘can-

cer hallmarks’’ (Hanahan and Weinberg, 2011) dysregulation common to most cancer types. It will

also be necessary to reliably assess their predictability in single cells, taking into account the spec-

ificity of single cell expression data and design methods accounting for the redundancy among

them. Finally, it will also be critical to understand how intra-tumor heterogeneity at single-cell level

can be extrapolated from bulk samples, how this reflects inter-patient heterogeneity, and how it

ties to genetic and clinical features.

Successful implementations will improve future similar activity-based approaches to quantify phenotypic

diversity in the evolutionary context of cancer. This will in turn allow one to better monitor the evolution

of phenotypic diversity over time and space and facilitate the identification of therapeutic opportunities

to control intra-tumor heterogeneity. This would ultimately help thwart the emergence of resistant popu-

lations and thereby enhance clinical outcomes.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Aibar, S., González-Blas, C.B., Moerman, T.,
Huynh-Thu, V.A., Imrichova, H., Hulselmans, G.,
Rambow, F., Marine, J.C., Geurts, P., Aerts, J.,
et al. (2017). SCENIC: single-cell regulatory
network inference and clustering. Nat. Methods
14, 1083–1086.

Almendro, V., Kim, H.J., Cheng, Y.K., Gönen,
M., Itzkovitz, S., Argani, P., van Oudenaarden,
A., Sukumar, S., Michor, F., Polyak, K., et al.
(2014). Genetic and phenotypic diversity in
breast tumor metastases. Cancer Res. 74,
1338–1348.

Andor, N., Harness, J.V., Müller, S., Mewes,
H.W., and Petritsch, C. (2014). EXPANDS:
expanding ploidy and allele frequency on
nested subpopulations. Bioinformatics 30,
50–60.

Barretina, J., Caponigro, G., Stransky, N.,
Venkatesan, K., Margolin, A.A., Kim, S., Wilson,
C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al.
(2012). The Cancer Cell Line Encyclopedia
enables predictive modelling of anticancer drug
sensitivity. Nature 483, 603–607.

Bertucci, F., Ng, C.K.Y., Patsouris, A., Droin, N.,
Piscuoglio, S., Carbuccia, N., Soria, J.C., Dien,
A.T., Adnani, Y., Kamal, M., et al. (2019). Genomic
characterization of metastatic breast cancers.
Nature 569, 560–564.

Chang, K., Weinstein, J.N., Collisson, E.A., Mills,
G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K.,
Shmulevich, I., Sander, C., and Stuart, J.M. (2013).
The Cancer Genome Atlas pan-cancer analysis
project. Nat. Genet. 45, 1113–1120.

Cross, W., et al. (2020). Stabilising selection
causes grossly altered but stable karyotypes in
metastatic colorectal cancer. bioRxiv, 2020,
https://doi.org/10.1101/2020.03.26.007138.

Davies, P.C.W., and Lineweaver, C.H. (2011).
Cancer tumors as Metazoa 1.0: tapping genes of
ancient ancestors. Phys. Biol. 8, 015001.

Davis-Marcisak, E.F., et al. (2019). Differential
variation analysis enables detection of tumor
heterogeneity using single-cell RNA-sequencing
data. Cancer Res. https://doi.org/10.1158/0008-
5472.can-18-3882.

Fan, J., Lee, H.O., Lee, S., Ryu, D.E., Lee, S., Xue,
C., Kim, S.J., Kim, K., Barkas, N., Park, P.J., Park,
W.Y., and Kharchenko, P.V. (2018). Linking
transcriptional and genetic tumor heterogeneity
through allele analysis of single-cell RNA-seq
data. Genome Res. 28, 1217–1227.

Ferrall-Fairbanks, M.C., Ball, M., Padron, E., and
Altrock, P.M. (2019). Leveraging single-cell RNA
sequencing experiments to model intratumor
heterogeneity, JCO clinical cancer informatics.
Am. Soc. Clin. Oncol. 3, 1–10.

Filbin, M.G., Tirosh, I., Hovestadt, V., Shaw, M.L.,
Escalante, L.E., Mathewson, N.D., Neftel, C.,
Frank, N., Pelton, K., Hebert, C.M., et al. (2018).
Developmental and oncogenic programs in
H3K27M gliomas dissected by single-cell RNA-
seq. Science 360, 331–335.

Fischer, A., Vázquez-Garcı́a, I., Illingworth, C.J.R.,
and Mustonen, V. (2014). High-definition

reconstruction of clonal composition in cancer.
Cell Rep. 7, 1740–1752.

Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds,
D.A., Stuve, L.L., Gibbs, R.A., Belmont, J.W.,
Boudreau, A., Hardenbol, P., Leal, S.M., et al.
(2007). A second generation human haplotype
map of over 3.1 million SNPs. Nature 449,
851–861.

Gatenby, R.A., and Brown, J. (2017).
Mutations, evolution and the central role of a
self-defined fitness function in the initiation
and progression of cancer. Biochim. Biophys.
Acta. https://doi.org/10.1016/j.bbcan.2017.03.
005.

Gerlinger, M., Rowan, A.J., Horswell, S., Math, M.,
Larkin, J., Endesfelder, D., Gronroos, E., Martinez,
P., Matthews, N., Stewart, A., et al. (2012).
Intratumor heterogeneity and branched
evolution revealed by multiregion sequencing.
N. Engl. J. Med. 366, 883–892.

Greaves, M., and Maley, C.C. (2012). Clonal
evolution in cancer. Nature 481, 306–313.

Hanahan, D., and Weinberg, R.A. (2000). The
hallmarks of cancer. Cell 100, 57–70. http://www.
ncbi.nlm.nih.gov/pubmed/10647931.

Hanahan, D., and Weinberg, R.A. (2011).
Hallmarks of cancer: the next generation. Cell
144, 646–674.

Hinohara, K., Wu, H.J., Vigneau, S., McDonald,
T.O., Igarashi, K.J., Yamamoto, K.N., Madsen, T.,
Fassl, A., Egri, S.B., Papanastasiou, M., et al.
(2018). KDM5 histone demethylase activity links
cellular transcriptomic heterogeneity to
therapeutic resistance. Cancer Cell 34, 939–
953.e9.

Hwang, B., Lee, J.H., and Bang, D. (2018). Single-
cell RNA sequencing technologies and
bioinformatics pipelines. Exp. Mol. Med. 50, 96.

Larsson, A.J.M., Johnsson, P., Hagemann-
Jensen, M., Hartmanis, L., Faridani, O.R., Reinius,
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Transparent Methods 
In-vitro activity induction 

MCF10A are mammary epithelial cells that spontaneously immortalised with no external stimulus (Qu 

et al., 2015). We selected them as a model given our previous work demonstrating that adding TGF-β 

in the medium promoted a spontaneous epithelial to mesenchymal transition (EMT) (Morel et al., 

2017). All cell culture replicates were grown in a physiological concentration of glucose (6 mM) with 

daily medium renewal, so that no cell population would heavily rely on glycolysis to produce energy. 

Glycolytic activity was induced through increased glucose concentration (20mM), which was controlled 

for by monitoring pH to validate that the medium became more acid following increased glycolysis and 

subsequent lactate production. DNA damage was induced by irradiating cells at 2 Gy at the Centre 

Léon Bérard radiology facility. EMT was induced by adding TGF-β to the medium and harvesting cells 

after 4 days and monitoring for morphological changes through microscopy (Supplementary Figure 

20). 

Single-cell RT-qPCR gene panel design 

We optimised panels comprising subsets of each MSigDB hallmark gene set (Liberzon et al., 2015) for 

all 3 activities (EMT, DNA repair, glycolysis), by selecting those whose expression was most correlated 

to the activity’s enrichment score reported. We used 1,036 samples from the Cancer Cell Line 

Encyclopedia (Barretina et al., 2012) (CCLE) for discovery and 10,885 samples from The Cancer Genome 

Atlas (TCGA) for validation, with Area Under the Curve and Spearman correlation statistics to optimise 

the panel designs. The sample breakdown among the 32 TCGA sets is reported in Supplementary Table 

6. 

We first identified the top 50% (top hereafter) and bottom 50% samples (bottom hereafter) with 

respectively the lowest and highest enrichment score per activity, using single-sample Gene Set 

Enrichment Analysis on all 50 entire signatures (Subramanian et al., 2005). We investigated the genes 

in each signature, only considering genes that were present in a single hallmark gene set and had a 1-

to-1 orthologue in mouse, in order to focus on essential genes. Samples were bootstrapped 100 times 

by randomly splitting samples into equal-sized validation and discovery sets, each containing half of 

both the top and bottom samples. At every iteration, the 15 most differentially expressed genes were 

defined using the limma R library and were recorded along with the sign of the fold change. After all 

iterations were performed, we selected the 15 genes present most times in the top 15 differentially 

expressed genes for each activity. 

Every combination of 1 to 15 of these genes was then assessed for its ability to correlate with whole-

set signatures using a similar bootstrapping approach. At each bootstrapping iteration, we build a 

matrix containing the expression value of each gene combination in 100 of the top 50% scoring samples 

and 100 of the bottom 50% ones. The expression values are then normalised into Z-scores in this 

bootstrapped matrix. We then attribute a per-sample score to the combination as follows by summing 

the Z-scores multiplied by the sign of the expected fold change of each gene. Based on these per-

sample scores, we compute the AUC in predicting if a sample belongs to the top or bottom sample set 

using the pROC R library. The AUCs and Spearman correlations are recorded for each bootstrapping 

iteration for each combination (Supplementary Figure 21). 

Finally, a cross-validation analysis was performed on the TCGA metadataset for each activity. We 

merged the best 5 genes based on AUC and the best 5 genes based on Spearman’s correlation in the 



CCLE data. We assessed their performance by calculating correlations and AUCs for the top/bottom 

50% scoring samples using whole-set signature in the TCGA dataset. 

We selected 7 EMT genes (NNMT, COL4A1, SNAI2, FBN1, CTGF, FSTL1, FN1), 7 DNA repair genes 

(POLR2F, RFC5, POLR2E, CLP1, SF3A3, POLD1, DUT) and 6 Glycolysis genes (EXT1, AGRN, SLC16A3, 

PYGB, PYGL, IL13RA1). We furthermore included additional genes according to the literature: 6 

additional EMT genes (CDH1, COL5A1, HTRA1, ITGAV, ZEB1, ZEB2), 6 additional DNA repair genes 

(DDB2, FEN1, LIG1, XPC, PMS1, POLQ) and 3 additional Glycolysis genes (HK2, PFKM, LDHA). 4 genes 

from the Myc targets hallmark (BYSL, DCTPP1, GNL3, TCOF1) and 7 stably expressed “housekeeping” 

genes (CIAO1, CNOT4, HNRNPK, RAB1A, TIAL1, UBE2D3, YTHDC1, Supplementary Figure 22) added as 

internal controls, as well as two RNA spikes from the manufacturer (spikes 1 and 4). Primers are 

reported in Supplementary Table 7. 

Inferring cellular activities 

4-parameter Beta-Poisson (BP) distributions and differential expression were estimated using the BPSC 

R package (Vu et al., 2016). Significantly differentially expressed genes were identified comparing the 

activity-specific cells to all other ones (including cells with another activity induction). BP distributions 

were used to calculate the probability that an expression value (in number of transcripts) observed for 

a marker gene came from a cell in which the related activity was induced. For each gene in each cell, 

the likelihood that the observed value originated from a population in which the related activity had 

been induced was calculated. Two BP distributions were first estimated in leave-one-out fashion 

(removing the cell under scrutiny): one using cells in which the related activity had been induced, and 

another one in cells in which this activity had not been induced. We then defined a confidence interval 

surrounding the observed expression value ± sds, where sds corresponds to 1 standard deviation in the 

distribution of spike s expression values. The probability P(x,d) that a given expression value x was from 

a given distribution d was given by the percentage of values falling into this interval out of 10,000 

draws using the rBP function of the BPSC package, given the 4 parameters of the BP distributions.  The 

likelihood that the observed value x came from a cell where the activity had been induced was then 

given by the formula: 

 𝐿(𝑥)  =   
P(x,I)

P(x,I)+P(x,N)
 

Where P(x,I) is the probability of observing value x in the induced cells BP distribution, while P(x,N) is 

the probability of observing value x in the non-induced cells BP distribution. Finally, we used 

generalised linear models (glm) based on these likelihoods, to assess the power of the significantly 

differentially expressed marker genes of each activity, as well as their combinations in predicting 

whether the activity was induced in a cell or not. Only genes reported as significantly differentially 

expressed were included in multi-gene glm analyses. 

 

Single-cell isolation and RT-qPCR data 

96 cells were isolated from 4 populations (control, EMT, DNA repair, Glycolysis) using the Fluidigm C1 

technology. 12 cells from each population were then analysed using a 48.48 chip on the BiomarkHD 

hardware with our designed 48-genes panel, using 18 pre-amplification cycles and maximum 30 

amplification cycles for quantification. Single-cell isolation and RT-qPCR experiments were performed 

by the ProfilExpert platform (Université Claude Bernard Lyon 1, France). We filtered out genes and 

cells for which >30% of the 48 wells involved did not meet the BiomarkHD PASS criterion. For each 

spike (1 and 4), cells corresponding to the most distant outliers Ct values were filtered out (either side), 



until the Ct distribution was deemed normal (p>0.05, Shapiro test). After this pre-filtering, 36 genes 

per 36 cells were left. We normalised Ct values by subtracting, for each cell and each spike, the 

difference between the spike value for the cell with the mean obtained across all cells for this spike 

(two subtractions per cell, one for each spike). We then obtained transcript abundance nt for gene i in 

cell j as follows: 

(1) 𝑛𝑡𝑖𝑗 = 48 × 45 × 230−18−𝐶𝑡𝑖𝑗  

In order to account for possible differences in total RNA per cell, we further normalised this number 

by the cell-specific expression of housekeeping genes. Expression for each housekeeping gene was first 

linearly normalised across all cells, by dividing by the maximum number of transcripts observed for the 

gene across all cells (maximum expression observed across all cells: 1; no expression: 0). Each cell j was 

then attributed a weight Hj corresponding to the mean normalised expression of housekeeping genes 

in cell j. Transcripts for all genes i in cell j were finally normalised as follows: 

(2) 𝑁𝑡𝑖𝑗 =
𝑛𝑡𝑖𝑗

𝐻𝑗
 

Datasets 

We downloaded 8 cancer-related single-cell RNA (sc-RNA) datasets, through the Single Cell Portal 

(https://portals.broadinstitute.org/single_cell) and publications: Fan et al. multiple myeloma (Fan et 

al., 2018) ; Filbin et al. H3 lysine27-to-methionine mutated H3K27M-glioma (Filbin et al., 2018); Li et 

al. colorectal cancer (Li et al., 2017); Neftel et al. glioblastoma (Neftel et al., 2019); Patel et al. 

glioblastoma (Patel et al., 2014); Tirosh et al. melanoma (Tirosh, Izar, et al., 2016) and 

oligodendroglioma (Tirosh, Venteicher, et al., 2016); Venteicher et al. astrocytoma (Venteicher et al., 

2017).  The Li et al. dataset included both a tumour set and a normal set of sc-RNA data. All 8 sets were 

used to create a meta-dataset on which to investigate hallmark activity signatures, although only the 

6 for which we could find cell type information were used for detailed analyses (Filbin, Li, Neftel, Tirosh 

x2 and Venteicher). We solely focused on Smart-Seq2 expression data quantified either using 

fragments per kilobase per million (FPKM, Li et al.) or transcripts per million (TPM, all other sets) 

metrics for consistency. This represented 28,513 cells from 85 patients (Supplementary Table 8). 

Activity scores 

The AUCell software (Aibar et al., 2017) was used to score the enrichment of each MSigDB hallmark 

signatures, considered as activities, in all cells. In addition, the cyclone software (Scialdone et al., 2015) 

was used to predict the cell cycle phase status of all cells (G1/S/G2M). The meta-dataset including all 

cells from the 8 sets was constructed by normalising the scores for each of the 50 activities on a per-

set and per-activity basis. This was achieved by first subtracting the minimal score observed for the 

activity and then dividing by the maximum score for this activity. Thus, the distribution of scores for 

each activity had a minimum of 0 and a maximum of 1 in each of the 8 sets prior to merging. 

Redundancy reduction and phenotypic distances 

We developed two approaches to reduce redundancy among the 50 activities, respectively based on 

Principal Component Analysis (PCA) and clustering. The first approach relied on determining the PCA 

coefficients of each activity so as to transform the 50 activity scores of each cell into PCA coordinates, 

using linear combinations of the scores and coefficients thanks to the FactoMineR R package(Lê, Josse 

and Husson, 2008). We used the ConsensusClusterPlus R package (Wilkerson and Hayes, 2010) to 

identify the optimal number of clusters and their composition, with 100 bootstrapping replicates. The 

https://portals.broadinstitute.org/single_cell


scores of all activities in a given cluster were then averaged to create a score for each cluster in each 

cell. As a result, phenotypic profiles were represented by vectors of PCA component scores or cluster 

scores per cell. To ensure reproducibility, PCA coefficients and cluster composition were calculated 

using a leave-one-out procedure: the cells from each of the 8 sets were removed from the meta-

dataset to calculate coefficients and assign activities to clusters, before using this information to 

calculate the PCA and cluster scores for the cells of the absent set. Phenotypic distances were then 

calculated as the Euclidean distance between the profiles of two cells, with the average distance 

accounting for the phenotypic diversity for a given sample / group of cells. For comparison against 

standard indices, we used the Simpson index rather than the Shannon one, as it is normalised and thus 

more stable when the number of individuals (i.e. cells) vary between populations (i.e. patient samples). 

Recurrent malignant cell clusters 

We used the pvclust (Suzuki and Shimodaira, 2006) software on the PCA-based profiles of malignant 

cells only in the 6 datasets with available metadata, using Euclidean distances, Ward clustering and 

500 bootstrap replicates. The pvpick function was used to identify groups of cells that were significantly 

associated to each other across bootstrap replicates. For display, only these significant clusters were 

selected but their display order in the cluster including all malignant cells was kept. 

Cell reclassification 

We determined the average profiles of non-malignant cell types from the Tirosh (melanoma) dataset 

and malignant subtypes from the Neftel glioblastoma dataset, using the mean of each PC score for all 

cells from each (sub)type. All 50 principal components were included in the calculation, yielding a 

vector of 50 items per (sub)type. Each cell was then re-classified as belonging to the (sub)type whose 

average profile it was less distant to, using Euclidean distances on all PC scores.  
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Supplementary Figures 
 

 

Supplementary Figure 1 - EMT prediction in single-cells from all 4 populations, Related to Figure 1. 
EMT (blue), DNA repair (green) and glycolysis (red) inductions and control (grey). Black and white bar 
underneath indicates the reported probability of each cell to be glycolytic (log10 scale). Black: 
missing values. 

  



 

Supplementary Figure 2 – DNA repair prediction in single-cells from all 4 populations, Related to 
Figure 1. DNA repair (green), EMT (blue) and glycolysis (red) inductions and control (grey). Black and 
white bar underneath indicates the reported probability of each cell to be glycolytic (log10 scale). 
Black: missing values. 

  



 

Supplementary Figure 3 – Correlation between scores for cell cycle phases and hallmark activities, 
Related to Figure 2. The heatmap displays the positive (red) and negative correlation between all 
cyclone cell cycle phase scores and the normalised activity scores across 20,583 cells from the 6 
datasets with metadata. 

  



 

Supplementary Figure 4 – Filbin et al. (H3K27M-glioma) activity scores according to patients and 
tumour types, Related to Figure 2. Heatmap of PCA-based activity scores in the metadataset, 
normalised per activity per set. Dendrogram highlights relationships between activities (left). Bottom 
colour bars report the cell type (top) and patient of origin (bottom) of each cell. Top left colour scale 
corresponds to the normalised activity score for each activity in each cell. Only principal components 
explaining >2% of total variance were included. 



 

Supplementary Figure 5 – Li et al. (colorectal cancer) activity scores according to patients and tumour 
types, Related to Figure 2. Heatmap of PCA-based activity scores in the metadataset, normalised per 
activity per set. Dendrogram highlights relationships between activities (left). Bottom colour bars 
report the cell type (top) and patient of origin (bottom) of each cell. Top left colour scale corresponds 
to the normalised activity score for each activity in each cell. Only principal components explaining 
>2% of total variance were included. 

 

 



 

Supplementary Figure 6 – Neftel et al. (glioblastoma) activity scores according to patients and 
tumour types, Related to Figure 2. Heatmap of PCA-based activity scores in the metadataset, 
normalised per activity per set. Dendrogram highlights relationships between activities (left). Bottom 
colour bars report the cell type (top) and patient of origin (bottom) of each cell. Top left colour scale 
corresponds to the normalised activity score for each activity in each cell. Only principal components 
explaining >2% of total variance were included. 

 



 

Supplementary Figure 7 – Tirosh et al. (melanoma) activity scores according to patients and tumour 
types, Related to Figure 2. Heatmap of PCA-based activity scores in the metadataset, normalised per 
activity per set. Dendrogram highlights relationships between activities (left). Bottom colour bars 
report the cell type (top) and patient of origin (bottom) of each cell. Top left colour scale corresponds 
to the normalised activity score for each activity in each cell. Only principal components explaining 
>2% of total variance were included. 

 

 



 

Supplementary Figure 8 – Tirosh et al. (oligodendroglioma) activity scores according to patients and 
tumour types, Related to Figure 2. Heatmap of PCA-based activity scores in the metadataset, 
normalised per activity per set. Dendrogram highlights relationships between activities (left). Bottom 
colour bars report the cell type (top) and patient of origin (bottom) of each cell. Top left colour scale 
corresponds to the normalised activity score for each activity in each cell. Only principal components 
explaining >2% of total variance were included. 

 

 



 

Supplementary Figure 9 – Venteicher et al. (astrocytoma) activity scores according to patients and 
tumour types, Related to Figure 2. Heatmap of PCA-based activity scores in the metadataset, 
normalised per activity per set. Dendrogram highlights relationships between activities (left). Bottom 
colour bars report the cell type (top) and patient of origin (bottom) of each cell. Top left colour scale 
corresponds to the normalised activity score for each activity in each cell. Only principal components 
explaining >2% of total variance were included. 

 

  



 

Supplementary Figure 10 – Redundancy among principal components and cluster scores, Related 

to Figure 3. Spearman correlations between a) all 50 principal components scores and b-f) cluster 

scores, for 6 to 10 clusters. Scale ranges differ between panels. 

  



 

Supplementary Figure 11 – Cluster-based pan-cancer phenotypic cell-cell divergence, Related to 
Figure 4. Pairwise cell-cell divergence distributions per cell type in each of the 6 datasets with curated 
metadata. Activities were split into 8 clusters. Inter: inter-type divergence, between cells of different 
subtypes. All other distributions are between cells of the reported type. Dashed horizontal line: total 
average; broad horizontal lines: individual distribution averages. 

  



 

Supplementary Figure 12 – Isolated activity profiles of significant clusters of malignant cells in the 
Filbin et al. pediatric glioma dataset, Related to Figure 5. Top: distinct significant clusters are 
identified by alternating black and grey colour bars. Cells are ordered left to right according to the 
overall cluster data including all cells, although only significant clusters of 5 cells or more are displayed. 
Middle: Heatmap of PCA-based activity scores. Only principal components explaining >3% of total 
variance were included. PCA scores are ordered top to bottom according to complete hierarchical 
clustering based on Euclidean distances. Bottom: Heatmap of normalised activity scores, ordered top 
to bottom according to complete hierarchical clustering based on Euclidean distances. 



 

Supplementary Figure 13 – Isolated activity profiles of significant clusters of malignant cells in the Li 
et al. colorectal dataset, Related to Figure 5. Top: distinct significant clusters are identified by 
alternating black and grey colour bars. Cells are ordered left to right according to the overall cluster 
data including all cells, although only significant clusters of 5 cells or more are displayed. Middle: 
Heatmap of PCA-based activity scores. All principal components were used for clustering analyses, but 
only those explaining >3% of total variance are displayed. PCA scores are ordered top to bottom 
according to complete hierarchical clustering based on Euclidean distances. Bottom: Heatmap of 
normalised activity scores, ordered top to bottom according to complete hierarchical clustering based 
on Euclidean distances. 

 



 

Supplementary Figure 14 – Isolated activity profiles of significant clusters of malignant cells in the 
Neftel et al. glioma dataset, Related to Figure 5. Top: distinct significant clusters are identified by 
alternating black and grey colour bars. Cells are ordered left to right according to the overall cluster 
data including all cells, although only significant clusters of 5 cells or more are displayed. Middle: 
Heatmap of PCA-based activity scores. All principal components were used for clustering analyses, but 
only those explaining >3% of total variance are displayed. PCA scores are ordered top to bottom 
according to complete hierarchical clustering based on Euclidean distances. Bottom: Heatmap of 
normalised activity scores, ordered top to bottom according to complete hierarchical clustering based 
on Euclidean distances. 

 



 

Supplementary Figure 15 – Isolated activity profiles of significant clusters of malignant cells in the 
Tirosh et al. melanoma dataset, Related to Figure 5. Top: distinct significant clusters are identified by 
alternating black and grey colour bars. Cells are ordered left to right according to the overall cluster 
data including all cells, although only significant clusters of 5 cells or more are displayed. Middle: 
Heatmap of PCA-based activity scores. All principal components were used for clustering analyses, but 
only those explaining >3% of total variance are displayed. PCA scores are ordered top to bottom 
according to complete hierarchical clustering based on Euclidean distances. Bottom: Heatmap of 
normalised activity scores, ordered top to bottom according to complete hierarchical clustering based 
on Euclidean distances. 

 



 

Supplementary Figure 16 – Isolated activity profiles of significant clusters of malignant cells in the 
Tirosh et al. oligodendroglioma dataset, Related to Figure 5. Top: distinct significant clusters are 
identified by alternating black and grey colour bars. Cells are ordered left to right according to the 
overall cluster data including all cells, although only significant clusters of 5 cells or more are displayed. 
Middle: Heatmap of PCA-based activity scores. All principal components were used for clustering 
analyses, but only those explaining >3% of total variance are displayed. PCA scores are ordered top to 
bottom according to complete hierarchical clustering based on Euclidean distances. Bottom: Heatmap 
of normalised activity scores, ordered top to bottom according to complete hierarchical clustering 
based on Euclidean distances. 

  



 

 

Supplementary Figure 17 – Cluster-based activity-centred phenotypic profiles in populations of 
known structure, Related to Figure 6. Description of 7 non-malignant cell types from the Tirosh et al. 
melanoma dataset and (blue, left) 6 glioma subtypes from the Neftel et al. H3K27M-glioma dataset 
(orange, right). Average profiles on top were obtained by averaging all cells from a given subtype across 
all patients. The outlier profiles at the bottom were obtained from the same-type cell pairs displaying 
the highest activity-based divergence for each cell type. Activities were split into 8 clusters. 



 

Supplementary Figure 18 – Correlation between cluster-based, activity-centred phenotypic diversity 
and Simpson index in populations of known structure, Related to Figure 6. a) Relationship between 
mean phenotypic divergence between non-malignant cells in the Tirosh et al. melanoma dataset and 
the Simpson diversity index calculated on the repartition of cells into 7 non-malignant classes. b) 
Relationship between mean phenotypic divergence between malignant cells in the Neftel et al. 
H3K27M-glioma dataset and the Simpson diversity index calculated on the classification of cells into 6 
malignant subtypes. Black lines: linear models. 

 



 

Supplementary Figure 19 – Divergence in specific cell types between normal and tumour tissue in Li 
et al. colorectal cancer data, Related to Figure 7. Dashed horizontal line: total average; broad 
horizontal lines: individual distribution averages. Patient of occurrence reported atop each plot, cell 
type below. 

  



 

Supplementary Figure 20 – EMT induction by TGF-β addition to the media in MCF10A cells, Related 

to Figure 1. Cell morphology and organisation at days 1 and 4, at 5x and 10x zooms. No TGF-β was 

added to the negative control (red, top). In the positive control (blue, bottom), TGF-β was added 



continuously to the medium from the morning of day 1.

 

Supplementary Figure 21 – AUC and Spearman rho upon reduced gene panel usage, Related to Figure 
1. AUC in predicting the top 50% from the bottom 50% samples from the TCGA using reduced gene 
panels based on CCLE data (red), and correlation between reduced panel scores and whole-signature 
ssGSEA scores (Spearman’s rho, blue), according to the number of genes included to designed reduced 
panels.  

 

 

 

Supplementary Figure 22 – Most and least variable genes across different tissues, Related to Figure 
1. Least (top) and most (bottom) variable 10 genes across multiple tumour types in TCGA data. Based 
on publically available RSEM data, displayed using log2 transformation. 

  



Supplementary Tables 
 

Supplementary Table 1 – Best combinations per activity, Related to Figure 1. Predictive power and 

correlation between the three reduced gene panels and signal from whole signature Gene Set 

Enrichment Analysis. Predictive power was assessed by measuring the ability to tease the bottom 50% 

whole signature GSEA scoring samples from the top 50% ones, using the reduced panels in the Cancer 

Cell Line Encyclopedia (CCLE, discovery) and (TCGA, validation). AUC: Area Under the Curve. rho: 

Spearman’s rho correlation. 

   
CCLE TCGA 

Hallmark n Genes Genes AUC rho AUC rho 

EMT 7 

NNMT, COL4A1, SNAI2, 

FBN1, CTGF, FSTL1, FN1 0.98 0.95 0.96 0.92 

DNA 

repair 7 

POLR2F, RFC5, POLR2E, 

CLP1, SF3A3, POLD1, DUT 0.88 0.78 0.86 0.75 

Glycolysis 6 

EXT1, AGRN, SLC16A3, 

PYGB, PYGL, IL13RA1 0.91 0.83 0.79 0.61 

 

  



Supplementary Table 2 – Activity prediction, Related to Figure 1. * Sensitivity and specificity 

calculated using a 0.1 cut-off on the predicted glm score. Coloured rows indicate the best AUC for each 

activity. 

  Genes AUC Sensitivity* Specificity* 

EM
T

 COL4A1 0.84 0.88 0.96 

ITGAV 0.90 0.88 0.71 

COL4A1, ITGAV 0.99 0.88 0.96 

D
N

A
 

re
p

ai
r SF3A3 0.68 0.90 0.35 

XPC 0.56 0.90 0.35 

SF3A3, XPC 0.72 0.80 0.50 

G
ly

co
ly

si
s 

PYGL 0.63 0.83 0.00 

PYGB 0.48 1.00 0.00 

AGRN 0.66 0.92 0.00 

EXT1 0.74 0.92 0.46 

PFKM 0.67 1.00 0.00 

LDHA 0.80 0.92 0.79 

PYGL, PYGB 0.59 0.83 0.00 

PYGL, AGRN 0.58 0.92 0.04 

PYGL, EXT1 0.76 0.83 0.50 

PYGL, PFKM 0.66 0.83 0.04 

PYGL, LDHA 0.84 0.92 0.79 

PYGB, AGRN 0.53 1.00 0.08 

PYGB, EXT1 0.72 0.92 0.38 

PYGB, PFKM 0.70 0.92 0.17 

PYGB, LDHA 0.82 0.92 0.79 

AGRN, EXT1 0.74 0.92 0.42 

AGRN, PFKM 0.64 0.92 0.04 

AGRN, LDHA 0.81 0.92 0.79 

EXT1, PFKM 0.77 0.92 0.50 

EXT1, LDHA 0.79 0.83 0.71 

PFKM, LDHA 0.86 0.92 0.79 

PYGL, PYGB, AGRN 0.56 0.83 0.04 

PYGL, PYGB, EXT1 0.73 0.83 0.46 

PYGL, PYGB, PFKM 0.67 0.92 0.13 

PYGL, PYGB, LDHA 0.82 0.92 0.79 

PYGL, AGRN, EXT1 0.77 0.83 0.46 

PYGL, AGRN, PFKM 0.61 0.75 0.08 

PYGL, AGRN, LDHA 0.84 0.92 0.75 

PYGL, EXT1, PFKM 0.77 0.92 0.58 

PYGL, EXT1, LDHA 0.80 0.83 0.71 

PYGL, PFKM, LDHA 0.84 0.92 0.79 

PYGB, AGRN, EXT1 0.75 0.92 0.33 

PYGB, AGRN, PFKM 0.69 0.83 0.13 

PYGB, AGRN, LDHA 0.82 0.92 0.75 

PYGB, EXT1, PFKM 0.74 0.92 0.46 

PYGB, EXT1, LDHA 0.82 0.83 0.71 

PYGB, PFKM, LDHA 0.86 0.92 0.67 

AGRN, EXT1, PFKM 0.75 0.83 0.50 

AGRN, EXT1, LDHA 0.78 0.83 0.71 

AGRN, PFKM, LDHA 0.85 0.92 0.79 

EXT1, PFKM, LDHA 0.78 0.83 0.71 



PYGL, PYGB, AGRN, EXT1 0.73 0.83 0.54 

PYGL, PYGB, AGRN, PFKM 0.63 0.83 0.13 

PYGL, PYGB, AGRN, LDHA 0.82 0.92 0.83 

PYGL, PYGB, EXT1, PFKM 0.73 0.75 0.54 

PYGL, PYGB, EXT1, LDHA 0.81 0.83 0.75 

PYGL, PYGB, PFKM, LDHA 0.84 0.92 0.71 

PYGL, AGRN, EXT1, PFKM 0.77 0.83 0.50 

PYGL, AGRN, EXT1, LDHA 0.78 0.83 0.71 

PYGL, AGRN, PFKM, LDHA 0.83 0.92 0.79 

PYGL, EXT1, PFKM, LDHA 0.79 0.83 0.71 

PYGB, AGRN, EXT1, PFKM 0.76 0.83 0.46 

PYGB, AGRN, EXT1, LDHA 0.81 0.83 0.63 

PYGB, AGRN, PFKM, LDHA 0.85 0.92 0.67 

PYGB, EXT1, PFKM, LDHA 0.82 0.83 0.71 

AGRN, EXT1, PFKM, LDHA 0.78 0.83 0.67 

PYGL, PYGB, AGRN, EXT1, PFKM 0.72 0.83 0.50 

PYGL, PYGB, AGRN, EXT1, LDHA 0.80 0.83 0.71 

PYGL, PYGB, AGRN, PFKM, LDHA 0.82 0.92 0.71 

PYGL, PYGB, EXT1, PFKM, LDHA 0.82 0.83 0.71 

PYGL, AGRN, EXT1, PFKM, LDHA 0.78 0.83 0.67 

PYGB, AGRN, EXT1, PFKM, LDHA 0.81 0.83 0.71 

PYGL, PYGB, AGRN, EXT1, PFKM, LDHA 0.80 0.83 0.71 

 

 

  



Supplementary Table 3 – Correlation between PCA-based divergences, Related to Figure 3. 

Correlation between PCA-based phenotypic divergences calculated using different thresholds on the 

minimal percentage of total variance required for inclusion. 

PCA threshold 1 PCA threshold 2 rho p 

0 1 0.97 <0.001 

0 2 0.87 <0.001 

0 3 0.81 <0.001 

0 5 0.81 <0.001 

1 2 0.91 <0.001 

1 3 0.84 <0.001 

1 5 0.84 <0.001 

2 3 0.91 <0.001 

2 5 0.91 <0.001 

3 5 1.00 <0.001 

 

 

Supplementary Table 4 – Correlation between cluster-based divergences, Related to Figure 3. 

Correlation between cluster-based phenotypic divergences calculated using different numbers of 

clusters. 

n clusters 
1 

n clusters 
2 

rho p 

6 7 0.9 <0.001 

6 8 0.85 <0.001 

6 9 0.83 <0.001 

6 10 0.83 <0.001 

7 8 0.94 <0.001 

7 9 0.92 <0.001 

7 10 0.92 <0.001 

8 9 0.95 <0.001 

8 10 0.95 <0.001 

9 10 1 <0.001 

 

  



Supplementary Table 5 – Correlations between PCA-based and cluster based divergences, Related 

to Figure 3. Correlation between phenotypic divergences calculated using different thresholds on the 

minimal percentage of total variance required for inclusion (PCA-based) and different number of 

clusters (cluster-based). 

PCA threshold n clusters rho p 

0 6 0.72 <0.001 

0 7 0.75 <0.001 

0 8 0.78 <0.001 

0 9 0.79 <0.001 

0 10 0.79 <0.001 

1 6 0.75 <0.001 

1 7 0.76 <0.001 

1 8 0.78 <0.001 

1 9 0.79 <0.001 

1 10 0.79 <0.001 

2 6 0.79 <0.001 

2 7 0.76 <0.001 

2 8 0.78 <0.001 

2 9 0.78 <0.001 

2 10 0.78 <0.001 

3 6 0.82 <0.001 

3 7 0.79 <0.001 

3 8 0.81 <0.001 

3 9 0.80 <0.001 

3 10 0.80 <0.001 

5 6 0.82 <0.001 

5 7 0.79 <0.001 

5 8 0.81 <0.001 

5 9 0.80 <0.001 

5 10 0.80 <0.001 

  



Supplementary Table 6 – TCGA samples, Related to Figure 1. Number of samples per TCGA set that 

were used for Hallmark activity gene reduction validation. 

Set Samples 

ACC 78 

BLCA 408 

BRCA 1093 

CESC 304 

CHOL 36 

COADREAD 624 

DLBC 48 

ESCA 184 

GBMLGG 681 

HNSC 521 

KICH 66 

KIRC 533 

KIRP 290 

LAML 173 

LIHC 371 

LUAD 516 

LUSC 501 

MESO 87 

OV 304 

PAAD 178 

PCPG 179 

PRAD 497 

SARC 259 

SKCM 469 

STAD 418 

STES 602 

TGCT 150 

THCA 501 

THYM 120 

UCEC 557 

UCS 57 

UVM 80 

 

  



Supplementary Table 7 – Genes and primers for each activity, Related to Figure 1. 

Activity Gene Forward Primer Reverse Primer 

EMT CDH1 cccgggacaacgtttattac gctggctcaagtcaaagtcc 

EMT COL4A1 ggcatgcctggtattggt aggccccatatcacccttag 

EMT COL5A1 gcccggatgtcgcttacag aaatgcagacgcagggtacag 

EMT CTGF acattagtacacagcaccagaatgt gctatctgatgatactaacctttctgc 

EMT FBN1 gcggaaatcagtgtattgtccc cagtgttgtatggatctggagc 

EMT FN1 gacgcatcacttgcacttct gcaggtttcctcgattatcct 

EMT FSTL1 gccatcaatattacaacgtatcca tcaatgagagcatcaacacaga 

EMT HTRA1 tgatctcaggagcgtatataattga tgacgtcgttttccttgaga 

EMT ITGAV catgtcctccttatacaattttactgg gcagctacagaaaatccgaaa 

EMT NNMT ggcttcacctccaaggacacc cccttcacaccgtctaggca 

EMT SNAI2 tggttgcttcaaggacacat gttgcagtgagggcaagaa 

EMT ZEB1 aactgctgggaggatgacac tcctgcttcatctgcctga 

EMT ZEB2 aagccagggacagatcagc gccacactctgtgcatttga 

DNA repair CLP1 cccccactttgtacgcact gatacgctcatccctacattcc 

DNA repair DDB2 gagacaacgtggggaacg tgcattctgagattccaaagc 

DNA repair DUT ccttctgggtgttatggaagagt gctgtgcaattcgatcaccttt 

DNA repair FEN1 agaagggagagcgagcttag gggccacatcagcaattagt 

DNA repair LIG1 cttcctgctggcctcctac cactgaagccagttccaagc 

DNA repair PMS1 gaatgtagacctcgcaaagtgat atgggtaattgtctggatagacg 

DNA repair POLD1 gcctacatgaagtcggagga tccaggtagtactgcgtgtcaa 

DNA repair POLQ gattgagccagagtctgttgg tccataaatgatcccatagcaa 

DNA repair POLR2E agctagtccctgagcacgtc gctggttctctcggagctta 

DNA repair POLR2F tgtcagacaacgaggacaattt tccaagtcatctagcccttca 

DNA repair RFC5 gcgtagggctctgaacattt tggcaatgtctgacttgagc 

DNA repair SF3A3 tggtcgttatctcgatctccat agaggcttcactctatctgtgt 

DNA repair XPC ggaacgagtttgggaatgtg gtgtagattgggcaggttcag 

Glycolysis AGRN cacacgtactcctgcaaggtt cgctgatcaccaccttgtt 

Glycolysis EXT1 aggcttgggtccttcagatt catccattgctgagcatcac 

Glycolysis HK2 ctcgccggtagccttctt gtccgactgctttgtgctg 

Glycolysis IL13RA1 tgcacagtaatatggacatggaa cgagtttccggagctattttc 

Glycolysis LDHA gcagatttggcagagagtataatg gacatcatcctttattccgtaaaga 

Glycolysis PFKM gggtgtggaagcagtgatggc gttcatgaagctccggcctct 

Glycolysis PYGB gatcgtgaaacagtcggtctt gccattggtcttattctggaac 

Glycolysis PYGL acaccaaccacacagtgctc aggaaacaaggccacaattc 

Glycolysis SLC16A3 catctcctagggcatggtg aggagtttgcctcccgaag 

Other BYSL tgagagccaacttgagatacca tgacctgacacaatagccataga 

Other DCTPP1 cgcctccatgctgagtttg ccaggttccccatcggttttc 

Other GNL3 cagtggcttcagttcacacg ggtcatgcgtttacttgcttt 

Other TCOF1 ggtctccatccaaggtgaagc tccccacagatggcacagat 

Housekeeping CIAO1 ccatgaaaatgaggtcaagtca gctcttatctcggctgcaag 

Housekeeping CNOT4 acctatatccggtcagaagacg ttctgccatctactaccacattg 

Housekeeping HNRNPK gaaaatcatccctaccttggaa tccacagcatcagattcgag 

Housekeeping RAB1A gggaaaacaatcaagcttcaaa ctggaggtgattgttcgaaat 

Housekeeping TIAL1 gggtggatttggtgctca catatccggcttggttagga 

Housekeeping UBE2D3 cggacctttgagcatacacc cgccatagtgtgtgcttgtc 

Housekeeping YTHDC1 aagccactgagctcatctgtta cgcttgtttctttcagatctttg 

 

  



Supplementary Table 8 – Dataset information, Related to Figure 2. 

Dataset Number of patients Number of cells 

Fan (multiple myeloma) 2 172 

Filbin (H3K27M-glioma) 9 4,058 

Li (colorectal cancer) 10 590 (of which 215 normal)  

Neftel (glioblastoma) 28 7,930 

Patel (glioblastoma) 5 430 

Tirosh (melanoma) 15 4,347          

Tirosh (oligodendroglioma) 6 4,645          

Venteicher (astrocytoma) 10 6,341 

Total 85 28,513 
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