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Abstract

The family Arecaceae is distributed throughout tropical and subtropical regions of the world.

Among the five subfamilies, Arecoideae is the most species-rich and still contains some

ambiguous inter-generic relationships, such as those within subtribes Attaleinae and Bactri-

dineae. The hypervariable regions of plastid genomes (plastomes) are interesting tools to

clarify unresolved phylogenetic relationships. We sequenced and characterized the plas-

tome of Bactris gasipaes (Bactridinae) and compared it with eight species from the three

Cocoseae sub-tribes (Attaleinae, Bactridinae, and Elaeidinae) to perform comparative anal-

ysis and to identify hypervariable regions. The Bactris gasipaes plastome has 156,646 bp,

with 113 unique genes. Among them, four genes have an alternative start codon (cemA,

rps19, rpl2, and ndhD). Plastomes are highly conserved within tribe Cocoseae: 97.3% iden-

tity, length variation of ~2 kb, and a single ~4.5 kb inversion in Astrocaryum plastomes. The

LSC/IR and IR/SSC junctions vary among the subtribes: in Bactridinae and Elaeidinae the

rps19 gene is completely contained in the IR region; in the subtribe Attaleinae the rps19

gene is only partially contained in the IRs. The hypervariable regions selected according to

sequence variation (SV%) and frequency of parsimony informative sites (PIS%) revealed

plastome regions with great potential for molecular analysis. The ten regions with greatest

SV% showed higher variation than the plastid molecular markers commonly used for phylo-

genetic analysis in palms. The phylogenetic trees based on the plastomes and the hypervar-

iable regions (SV%) datasets had well-resolved relationships, with consistent topologies

within tribe Cocoseae, and confirm the monophyly of the subtribes Bactridinae and

Attaleinae.

Introduction

The family Arecaceae contains 181 genera and about 2,600 species distributed throughout

tropical and subtropical regions of the world [1]. The most recent taxonomic review in
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Arecaceae, published by Baker and Dransfield [1], recognizes five subfamilies: Arecoideae,

Calamoideae, Ceroxyloideae, Coryphoideae, and Nypoideae. Arecoideae is the largest subfam-

ily, with 14 tribes and 108 genera. Several Arecoideae tribes have been extensively studied, but

some inter-generic relationships remain ambiguous, such as those within subtribes Attaleinae

and Bactridineae [1]. These subtribes are both within tribe Cocoseae, which includes Elaeidi-

nae as its third subtribe.

Plastid genomes (plastomes) are a useful tool for phylogenetic and evolutionary studies [2].

Hypervariable regions in plastomes can provide information to elucidate phylogenetic rela-

tionships that are not yet well resolved [3, 4]. However, these highly variable regions vary

between clades, and their identification may be necessary for each taxonomic level [3]. Angio-

sperms show structural rearrangements, loss of genes, introns, and heterogeneous nucleotide

substitution rates in protein-coding genes among their plastomes [5, 6]. Also, the fact that

palms have a low mutation rate in the plastome [7] makes the identification of clade-specific

hypervariable regions singularly relevant for the group.

In addition to use in phylogenetic analysis, these hypervariable regions may also be power-

ful molecular markers for analysis of population genetic structure, including that among wild

and domesticated populations. The family Arecaceae includes species of great ecological

importance, either by their interaction with pollinators [8] or with frugivorous animals [9, 10].

Also, palms provide several high-value products for industry (e.g., fibers, construction materi-

als, oil, medicinal compounds, heart-of-palm, fruits) and are especially important for tropical

and subtropical indigenous and traditional communities [11, 12]. Among the most useful

palms, the coconut (Cocos nucifera L.), the date palm (Phoenix dactylifera L.), and the oil palm

(Elaeis guineensis Jacq.) stand out by their global economic importance. The peach palm (Bac-
tris gasipaes Kunth) is the only fully domesticated palm in the Neotropics [11]; it was domesti-

cated for its fruit and is becoming important as a source of heart-of-palm [13]. Many Cocoseae

species included in our analysis have interesting domestication histories, such as Bactris gasi-
paes, Elaeis guineensis, Cocos nucifera [11, 14, 15]. Others are from genera with traditional use

by indigenous and traditional communities in South America, such as Butia, Astrocaryum,

Acrocomia, and Syagrus [16–19].

We sequenced and characterized the plastome of Bactris gasipaes and compared it with

eight species from the three sub-tribes (Attaleinae, Bactridinae, and Elaeidinae) of the tribe

Cocoseae to perform comparative structural analysis and phylogenetic inference, and to iden-

tify hypervariable regions.

Material and methods

Taxon sampling

We collected fresh leaves from a wild individual of Bactris gasipaes, i.e., var. chichagui type 1

([20]; accession number F0205/83) in the core collection of Peach palm Active Germplasm

Bank [21] at the National Research Institute for Amazonia (INPA, Manaus, AM, Brazil).

Plastomes and nuclear marker sequences from seven genera of tribe Cocoseae were down-

loaded from GenBank, including individuals from its three subtribes: Attaleinae (3 genera; 3

species), Elaeidinae (1 species), and Bactridinae (3 genera; 4 species). The species names and

the GenBank accession numbers for sequences used in the analysis are in S1 Table.

Bactris gasipaes plastome sequencing

The extraction of plastid-enriched DNA was based on the methodology described by Vieira

et al. [22] and modified by Sakaguchi et al. [23], proportionally adjusting the buffer volumes

for 8 g of fresh leaves. The DNA extraction was performed with CTAB buffer, as described by

PLOS ONE The plastome sequence of Bactris gasipaes and evolutionary analysis in tribe Cocoseae (Arecaceae)

PLOS ONE | https://doi.org/10.1371/journal.pone.0256373 August 24, 2021 2 / 15

Funding: This research was supported by

Conselho Nacional de Desenvolvimento Cientı́fico e

Tecnológico (CNPq - https://www.gov.br/cnpq)

[grant numbers LNV 435200/2018-6, CRC

303477/2018-0]. This research was also partially

supported by The Brazilian Program of National

Institutes of Science and Technology-INCT/

Brazilian Research Council-CNPq/MCT and
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Shi et al. [24]. The DNA was purified with the Genomic DNA Clean & Concentrator™-10 Kit

(Zymo Research, Irvine, CA, USA). The purified DNA was quantified using Qubit™ dsDNA

HS Assay kit (Thermo Fisher Scientific, Carlsbad, CA, USA) in Qubit™ Fluorometer (Thermo

Fisher Scientific). Libraries were prepared with Nextera XT DNA Library Preparation Kit (Illu-

mina, San Diego, CA, USA) and sequenced in Illumina MiSeq1 (Illumina), obtaining 250 bp

paired-end reads.

Plastome assembly was performed using CLC Genomics Workbench v.8.0 (Qiagen, Ger-

mantown, MD, USA) software with de novo strategy. The Acrocomia aculeata plastome was

used as a reference for the ordering of contigs. Plastome annotation was performed using Gen-

eious Prime1 (Biomatters, Auckland, New Zealand). For all genes, manual verification was

performed, adjusting the initial and terminal codons. The final plastome sequence was depos-

ited in GenBank: MW054718.

Plastome structural analysis in tribe Cocoseae

The comparative analysis to identify structural rearrangements in the plastomes of the Coco-

seae species was carried out using eight species (S1 Table), excluding one IR from all plas-

tomes, and using the progressive alignment on Mauve software [25]. The IRScope software

[26] was used to visualize and compare the plastome junctions (IRb/LSC; IRb/SSC, SSC/IRa;

IRa/LSC).

Identification of hypervariable regions

We estimated the variability of the sequences with the formula proposed by Shaw et al. [27],

adapted and used by Zavala-Páez et al. [28]. First, we individually aligned each collinear coding

sequence (CDS), intergenic spacers (IGS), and introns of the plastomes (list of species in S1

Table) using MAFFT v.7 software [29]. Then, the alignments were imported into the software

DNAsp v6.12.03 [30] to obtain the number of invariable sites (monomorphic), parsimony

informative sites (PIS), number of substitutions, and number of InDel events. Sequence vari-

ability (SV) was calculated using the formula: SV% = [(number of substitutions + number of
InDels) / (number of substitutions + number of InDels + invariable sites)] x 100. The frequency

of PIS was calculated using the formula: PIS% = [(number of parsimony informative sites/ num-
ber of substitutions + number of InDels + invariable sites)] x 100.

The ten regions with the highest SV% and PIS% values were selected to carry out the subse-

quent analysis. The plastid markers matK, trnQ-rps16, rps16 intron, trnD-trnT, trnL-trnF [31,

32] and the nuclear markers PRK and RPB2 [32, 33], commonly used for phylogenetic analysis

in Arecaceae, were used for comparative purposes and subjected to the same procedure to

obtain the PIS% and SV% values.

Phylogenetic inferences

Phylogenetic inferences were made including the following species of the tribe Cocoseae: Bac-
tris gasipaes, Acrocomia aculeata, Astrocaryum aculeatum, Astrocarym murumuru, Butia erios-
patha, Cocos nucifera, Elaeis guineensis, Syagrus coronata, and two species as outgroup: Brahea
brandegeei (Purpus) H. E. Moore (subfamily Coryphoideae) and Archontophoenix alexandrae
(F.Muell.) H.Wendl. & Drude (subfamily Arecoideae). Three data sets were used: i) the plas-

tome alignment (one IR excluded); ii) the ten regions with the greatest SV% value; iii) the ten

regions with the greatest PIS% value.

Plastome alignment was performed using progressive alignment on Mauve [25] imple-

mented in Geneious Prime1 v.2020.1.2. The Locally Collinear Blocks (LCBs) identified by

Mauve were individually extracted and concatenated. The alignment of the ten regions with
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the highest SV% and PIS% values was carried out using MAFFT v.7.450 [29] implemented in

Geneious Prime1 v.2020.1.2. Phylogenetic inferences were performed by Maximum Likeli-

hood (ML) using W-IQ-tree [34], with 1,000 bootstrap repetitions. The choice of substitution

models, including FreeRate heterogeneity model, was made according to Bayesian information

criterion (BIC; Table 1). Branch support analysis was performed with 1,000 repetitions of boot-

strap and single branch test SH (-aLTR, 1,000 replicates). The resulting trees were represented

using Geneious Prime1 v.2020.1.2.

Results

Bactris gasipaes plastome

The sequencing of plastid-enriched DNA resulted in 448,600 reads with an average length of

214 bp. Of these, 47,735 were plastome reads (~10%), resulting in an average depth of coverage

of 67.64 (SD = 24.32). The assembled plastome has a 21 bp gap in the IGS trnT-UGU/

trnL-UAA (position 46,800 to 46,820). This gap is in an AT-rich region (sequence 22 bp

upstream to 119 bp downstream is only 7.8% of GC-content) and is, therefore, difficult to

sequence [35]. We calculated this gap length using other species of tribe Cocoseae as reference.

Bactris gasipaes plastome has the quadripartite structure typically found in angiosperms [2],

with a pair of inverted repeat (IRs), a large single-copy region (LSC), and a small single-copy

region (SSC). The IRs are 27,038 bp in length (each), the LSC is 85,118 bp, and the SSC is

17,452 bp, resulting in a plastome with 156,646 bp.

Bactris gasipaes plastome has an average GC-content of 37.5%. When comparing the plas-

tome regions, the SSC has the lowest GC-content, with 31.3%, followed by LSC with 35.5%.

The IRs have the highest value, with 42.6% of GC-content. The rRNA and tRNA show high

GC-content, with 55.3% and 53.4%, respectively. Protein-coding genes have an average GC-

content of 37.9%, intergenic spacers (IGS) of 37.5%, and introns of 37.1%. The plastome GC-

content among species from tribe Cocoseae is similar, ranging from 37.40% (Elaeis guineensis)
to 37.53% (Acrocomia aculeata).

In the Bactris gasipaes plastome, we annotated 113 unique genes, 79 of which are protein-

coding genes, 30 tRNA genes, and 4 rRNA genes (Table 2). Duplicate genes in IRs include 8

Table 1. Substitution models selected for the phylogenetic inferences using Maximum Likelihood (ML).

Region Models for ML

Plastome K3Pu+F+R2

trnC-petN HKY+F

psbC-trnS JC+I

psaC-ndhE F81+F+G4

ccsA-ndhD F81+F+I

petN-psbM TPM2+F+I

accD-psaI F81+F+I

trnS-trnG F81+F+I

rps15-ycf1 HKY+F+I

ndhF-rpl32 F81+F+I

rpl16-intron F81+F+I

petD-rpoA F81+F+I

petA-psbJ F81+F+I

trnG-trnfM F81+F+I

rps8-rpl14 F81+F+I

https://doi.org/10.1371/journal.pone.0256373.t001
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tRNA genes, 4 rRNA genes, and 7 protein-coding genes (Table 2). Among the 113 genes, 15

genes contain one intron (6 tRNA genes and 9 protein-coding genes) and 3 genes contain two

introns (clpP, ycf3, and rps12; Table 2). Among intron-containing genes, 12 are located in LSC

(trnK-UUU, rps16, trnG-UCC, atpF, rpoC1, ycf3, trnL-UAA, trnV-UAC, clpP, petB, petD,

rpl16), 1 in SSC (ndhA), 4 in IRs (rpl2, ndhB, trnI-GAU, trnA-UGC), and rps12 is a trans-splic-

ing gene with the first exon located in the LSC region and the second and third exons in the

IRs.

Surprisingly, the cemA gene exhibited an alternative start codon, as reported in species of

subtribes Attaleinae and Elaeidinae, contrasting with the Bactridinae species sequenced so far

(Astrocaryum aculeatum, Astrocaryum murumuru, and Acrocomia aculeata). Three other

genes have alternative initiation codons, rps19 (GTG), rpl2 (ACG), ndhD (ATC).

Comparative analysis in tribe Cocoseae

Plastomes are highly conserved (97.3% identity) within tribe Cocoseae. Species from subtribes

Bactridinae and Elaeidinae have a plastome ~2 kb larger than the species from subtribe Attalei-

nae. This difference in length between the subtribes is mainly in the IRs and LSC regions

(Table 3). The plastomes from Cocoseae species ranged from 154.048 bp (Butia eriospatha) to

156.937 bp (Elaeis guineenses).
The progressive alignment among species from tribe Cocoseae shows evidence for three

Locally Collinear Blocks (LCBs) (Fig 1). These three LCBs are a result of the 4.5 kb inversion

Table 2. List of genes of Bactris gasipaes plastome organized according to their location.

Plastome region Name of genes

Large Single Copy

(LSC)

psbA, trnK-UUU�, matK, rps16�, trnQ-UUG, psbK, psbI, trnS-GCU, trnG-UCC�, trnR-UCU,

atpA, atpF�, atpH, atpI, rps2, rpoC2, rpoC1�, rpoB, trnC-GCA, petN, psbM, trnD-GUC,

trnY-GUA, trnE-UUC, trnT-GGU, psbD, psbC, trnS-UGA, psbZ, trnG-GCC, trnfM-CAU,

rps14, psaB, psaA, ycf3�, trnS-GGA, rps4, trnT-UGU, trnL-UAA�, trnF-GAA, ndhJ, ndhK,

ndhC, trnV-UAC�, trnM-CAU, atpE, atpB, rbcL, accD, psaI, ycf4, cemA, petA, psbJ, psbL,

psbF, psbE, petL, petG, trnW-CCA, trnP-UGG, psaJ, rpl33, rps18, rpl20, rps12� (exon 1), clpP�,
psbB, psbT, psbN, psbH, petB�, petD�, rpoA, rps11, rpl36, infA, rps8, rpl14, rpl16�, rps3, rpl22

Inverted Repeat (IR) rps19, trnH-GUG, rpl2�, rpl23, trnI-CAU, ycf2, trnL-CAA, ndhB�, rps7, rps12� (exons 2 and

3), trnV-GAC, rrn16, trnI-GAU�, trnA-UGC�, rrn23, rrn4.5, rrn5, trnR-ACG, trnN-GUU
IR / SSC junction ndhF, ycf1
Small Single Copy

(SSC)

rpl32, trnL-UAG, ccsA, ndhD, psaC, ndhE, ndhG, ndhI, ndhA�, ndhH, rps15

� Intron-containing genes.

https://doi.org/10.1371/journal.pone.0256373.t002

Table 3. Plastomes of tribe Cocoseae.

Subtribe Species Plastome (bp) LSC (bp) IR (bp) SSC (bp)

Elaeidinae Elaeis guineensis 156,973 85,192 27,071 17,639

Bactridinae Astrocaryum aculeatum 156,804 85,037 27,081 17,605

Astrocaryum murumuru 156,801 85,017 27,081 17,622

Bactris gasipaes 156,646 85,118 27,038 17,452

Acrocomia aculeata 156,500 84,936 27,092 17,380

Attaleinae Syagrus coronata 155,053 84,535 26,522 17,474

Cocos nucifera 154,731 84,230 26,555 17,391

Butia eriospatha 154,048 83,805 26,437 17,369

LSC: large single copy region; IR: inverted repeat; SSC: small single copy region.

https://doi.org/10.1371/journal.pone.0256373.t003
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present in the plastomes of Astrocaryum murumuru and Astrocaryum aculeatum (Fig 1). The

set of genes that makes up this structural rearrangement is composed of ndhC, ndhK, ndhJ,
trnF-GAA, and trnL-UAA.

In the LSC/IR and IR/SSC junctions of the plastomes, there are differences among the sub-

tribes (Fig 2). In Bactridinae (Acrocomia aculeata, Astrocaryum aculeatum, Astrocaryum mur-
umuru, and Bactris gasipaes) and Elaeidinae (Elaeis guineensis) the rps19 gene is completely

contained in the IR region and, therefore, there are two copies of the complete gene. In con-

trast, in the subtribe Attaleinae (Butia eriospatha, Cocos nucifera, and Syagrus coronata) the

rps19 gene is only partially contained in the IRs, resulting in a complete rps19 and a partial

rps19: the complete rps19 gene starts at IRb and ends at LSC (LSC/IRb); the partial rps19 starts

at IR, but does not contain the final portion of the gene (Fig 2).

Similarly, the ycf1 gene is partially contained in IRs, with a complete ycf1 at IRa/SSC and a

partial (pseudo) ycf1 at IRb. The ndhF gene has both position and length conserved at the IRb/

SSC junction in tribe Cocoseae, with the portion of the gene contained in the IRb overlapping

the ycf1 gene (56 bp) (Fig 2).

Hypervariable regions

We carried out the SV% and PIS% estimates to identify the plastome regions with the greatest

variation within tribe Cocoseae. All ten regions selected according to the highest SV% showed

greater variation than the plastid molecular markers commonly used for phylogenetic analysis

in palms (Fig 3A). As expected, they have SV% lower than the nuclear markers PRK and RPB2

(Fig 3A). Among the ten regions selected according to the highest PIS% values, all showed

greater values than the plastid molecular markers commonly used for phylogenetic analysis in

palms (Fig 3B) and two of them (trnC-petN and psbC-trnS) were more variable than the

Fig 1. Plastome rearrangement analysis within tribe Cocoseae. Locally collinear blocks (LCBs) are identified by colors. The 4.5 kb inversion

in Astrocaryum is in green.

https://doi.org/10.1371/journal.pone.0256373.g001
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nuclear marker PRK (Fig 3B). The nuclear marker RPB2 showed the highest values for both

SV% and PIS% estimates.

We also calculated the frequency of substitutions and frequency of InDel events for each

plastome region. The substitution frequency was ~5x higher than InDels in plastomes

(Table 4). In the coding sequences (CDSs), substitutions are ~80x more common than InDels.

In IGSs and introns, substitutions are ~4x and ~3x more frequent than InDels, respectively

(Table 4). In general, these data show that in all regions of Cocoseae plastomes there is a higher

frequency of substitutions than InDels.

Phylogenomic analysis

The complete LCB matrix of the aligned plastomes consisted of 137,452 columns, of which

134,244 are constant and 815 parsimony-informative. The SV matrix contained a total of 9614

columns, with 133 parsimony-informative and 9144 constant sites, and the PIS matrix 7538

columns, with 129 parsimony-informative and 7200 constant sites. The phylogenomic trees

inferred using Maximum Likelihood (ML) and based on the plastome and the ten selected

regions with greatest SV% datasets showed identical topologies (Fig 4) and high bootstrap

Fig 2. Comparison of plastome junctions (IRb/LSC; IRb/SSC, SSC/IRa; IRa/LSC) among Cocoseae species. The numbers indicate sequence length in base

pairs.

https://doi.org/10.1371/journal.pone.0256373.g002

PLOS ONE The plastome sequence of Bactris gasipaes and evolutionary analysis in tribe Cocoseae (Arecaceae)

PLOS ONE | https://doi.org/10.1371/journal.pone.0256373 August 24, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0256373.g002
https://doi.org/10.1371/journal.pone.0256373


Fig 3. Hypervariable plastome regions compared with commonly used plastid and nuclear markers. A—The ten plastome regions with greatest sequence

variation (SV%); B—The ten plastome regions with greatest frequency of parsimony informative sites (PIS%).

https://doi.org/10.1371/journal.pone.0256373.g003
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Table 4. Frequency of substitutions/mutations and insertions/deletions (InDels) among the plastome sequence.

Plastome CDS IGS Introns

Mutations (%) 1.53 0.80 2.30 1.12

InDels (%) 0.30 0.01 0.58 0.34

Mutation / InDel ratio 5.02 79.90 3.99 3.26

CDS–coding sequence; IGS–intergenic spacer.

https://doi.org/10.1371/journal.pone.0256373.t004

Fig 4. Phylogenetic trees based on maximum likelihood inference. A–Phylogenetic inference using plastome

sequences (one IR removed); B—Phylogenetic inference using the ten plastome regions with greatest sequence

variability (SV%) values. The numbers above the branches are maximum likelihood bootstrap values (1000 replicates).

https://doi.org/10.1371/journal.pone.0256373.g004
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support (> 86). The phylogenetic tree inferred from the alignment of the ten regions with

greatest PIS values showed a similar topology; it differed only by the presence of a polytomy in

the Attaleinae clade, generated by the low bootstrap support in intergeneric relationships (S1

Fig). For the topologies generated by ML in the three datasets, the monophyly of the subtribes

Bactridinae and Attaleinae was confirmed. Also, the subtribe Elaeidinae appears more closely

related to Bactridinae than to Attaleinae. In Bactridinae, Bactris and Astrocaryum are closely

related genera, and in Attaleinae, Cocos nucifera as sister to Syagrus coronata.

Discussion

Bactris gasipaes plastome

The plastome of Bactris gasipaes has the typical quadripartite structure and gene content of

other described Cocoseae species [5, 36–40]. The IRs are identical, which probably occurs due

to mechanisms of replication and repair through recombination-dependent replication

(RDR), as previously reported in plant plastomes [41]. The GC content in the plastomes of

Bactris gasipaes and other species of Cocoseae corroborate the mean value described by Kwon

et al. [42] for angiosperms (37.71; SD 1.10). The tendency for a higher GC content in the IRs

than in the LSC and SSC was previously reported in bryophytes, ferns, lycophytes, and angio-

sperms [42, 43].

The gene content is conserved among species of Bactridinae (e.g., Acrocomia aculeata,

Astrocaryum murumuru, Astrocaryum aculeatum, and Bactris gasipaes) and Elaeidinae (Elaeis
guineensis) [36, 38, 39]. Attaleinae species present one pseudogenized rps19, and thus, one less

CDS [40].

The gene cemA has an unconventional start codon in Bactris gasipaes, what was previously

described in species of subtribes Attaleinae and Elaeidinae, in Podococcus barteri
(NC_027276.1), Phoenix dactylifera ’Khalas’, and other monocots. However, it is still not clear

if this gene, with the unconventional start codon, is translatable to a protein [44]. Although

most of the genes encoding proteins have ATG initiation codons [7], some alternative initia-

tion codons are found in plants [45], such as GTG in the rps19 gene, ACG in rpl2 and ATC in

ndhD, which were reported in Lilium longiflorum, Phoenix dactylifera ’Khalas’ and Amomum
compactum, respectively [44, 46, 47].

Comparative plastome analysis within Cocoseae

Comparative studies using plastomes of species at different taxonomic levels can bring insights

into plastome evolution, phylogenetic relationships, and evolutionary rates [2]. Plastomes of

the three subtribes analyzed (Attaleinae, Bactridinae, and Elaeidinae), represented here by

eight species, provided information to compare sequence variations in tribe Cocoseae. We

identified slight differences in plastome size (~2 kb) and an inversion of 4.5 kp that occurs in

the ndh complex (LSC region) of the Astrocaryum plastome. Similarly, Barrett et al. [48]

reported that Arecaceae plastomes are highly conserved structure, describing only one 1.9 kb

inversion located between the rps16 and trnG-UUC genes in Tahina spectabilis.
Also, the variability among Attaleinae, Bactridinae, and Elaeidinae in the LSC/IR junctions,

mainly involving the rps19 gene, was previously described in Acrocomia aculeata [38] and

Butia eriosphata [40], as well as in Phoenix dactylifera [44, 49]. Similarly, the ndhF gene over-

lapping with ycf1 in ~25 bp is commonly observed in palms [38, 40, 44, 49]. Despite the differ-

ences in the IR junction, the IR structure and gene content is conserved among palms,

corroborating the hypothesis that the IR regions offer an isolation mechanism that stabilizes

the structure of the genome [50].
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Hypervariable regions

Plastomes have several non-coding regions, but not all of them have been explored for phyloge-

netic studies [3, 4, 28]. Among the ten regions with the greatest SV% identified in our study,

only five IGSs (e.g., accD-psaI, ndhF-rpl32, trnS-trnG, psaC-ndhE, rps15-ycf1) and one intron

(rpl16) were previously used and/or highlighted in angiosperm studies [3, 38, 51]. Among the

ten regions with the greatest PIS%, only three IGS (trnS-trnG, petA-psbJ, and psaC-ndhE) were

identified in studies carried out by Shaw et al. [3, 27] and Lopes et al. [38]. Thus, in our study,

we described four new promising regions based on both SV and PIS values (trnC-petN, psbC-
trnS, ccsA-ndhD, petN-psbM) and three new regions based on PIS (petD-rpoA, trnG-trnfM,

rps8-rpl14). Also, Scarcelli et al. [51] reported 100 primers for phylogeny in monocots. However,

four of the hypervariable regions reported in our study were not contemplated (e.g., psaC-ndhE,

petN-psbM, accD-psaI, trnS-trnG). Among them. trnS-trnG and accD-psaI primers designed by

Scarcelli et al. [51] showed no amplification in Arecaceae, and petN-psbM and psaC-ndhE were

not mentioned, probably due to gene rearrangements in monocots plastomes. This reinforces

that the highly variable regions vary between clades, and their identification may be necessary

for distinct taxonomic levels. As expected, the nuclear genes PRK and RPB2 showed greater var-

iation than most plastidial regions. These nuclear markers are very informative and produce

well-resolved topologies [33]. The combined use of the plastidial regions described here and the

nuclear markers PRK and RPB2 have great potential for phylogenetic studies in tribe Cocoseae.

Phylogenomic analysis

The ten regions with the greatest SV% values are suitable for phylogenetic inferences and pro-

duce phylogenetic trees with well-resolved and the expected topologies. In the ML analysis, all

datasets tested (plastome, ten SV regions, and ten PIS regions) result in subtribe Bactridinae as

monophyletic. The monophyly Bactridinae was previouly described by Eiserhardt et al. [32],

as well as the sister relationship between the subtribes Elaeidinae and Bactridinae [33, 38]. Our

results are in contrast with those of Gunn [52], in which the sister relationship between Astro-
caryum and Bactris is weakly supported. In all of our datasets this sister relationship is well-

supported. In addition, the monophyly of subtribe Cocoseae was also verified in a plastid DNA

analysis [53], in the super-tree method [54] and by the combined analysis with the PRK and

RPB2 genes [33]. The sister relationship between Cocos nucifera and Syagrus coronata was also

previously described [55], corroborating our results. Thus, both the plastome and the ten

regions with greatest SV values were able to produce well-resolved phylogenetic trees and with

consistent topologies within tribe Cocoseae.
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28. Zavala-Páez M, Vieira LN, Baura VA, Balsanelli E, Souza EM, Cerna M, et al. Comparative plastid

genomics of neotropical Bulbophyllum (Orchidaceae; Epidendroideae). Front Plant Sci 2020; 11:799.

https://doi.org/10.3389/fpls.2020.00799 PMID: 32719690

29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in per-

formance and usability. Mol Biol Evol 2013; 30:772–780. https://doi.org/10.1093/molbev/mst010 PMID:

23329690

30. Rozas J, Ferrer-Mata A, Sánchez-Delbarrio JC, Guirão-Rico S, Librado P, Ramos-Onsins S, et al.

DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol Biol Evol 2017; 34:3299–

3302. https://doi.org/10.1093/molbev/msx248 PMID: 29029172

31. Asmussen CB, Dransfield J, Deickmann V, Barfod AS, Pintaud JC, Baker WJ. A new subfamily classifi-

cation of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot J Linn Soc 2006;

151:15–38.

PLOS ONE The plastome sequence of Bactris gasipaes and evolutionary analysis in tribe Cocoseae (Arecaceae)

PLOS ONE | https://doi.org/10.1371/journal.pone.0256373 August 24, 2021 13 / 15

https://doi.org/10.1038/s41559-017-0348-7
https://doi.org/10.1038/s41559-017-0348-7
http://www.ncbi.nlm.nih.gov/pubmed/29062122
https://doi.org/10.1007/s00425-016-2558-7
http://www.ncbi.nlm.nih.gov/pubmed/27318823
https://doi.org/10.1371/journal.pone.0235819
https://doi.org/10.1371/journal.pone.0235819
http://www.ncbi.nlm.nih.gov/pubmed/32701950
https://doi.org/10.1371/journal.pone.0084792
https://doi.org/10.1371/journal.pone.0084792
http://www.ncbi.nlm.nih.gov/pubmed/24392157
https://doi.org/10.3732/apps.1700002
http://www.ncbi.nlm.nih.gov/pubmed/28529832
https://doi.org/10.1371/journal.pone.0031468
https://doi.org/10.1371/journal.pone.0031468
http://www.ncbi.nlm.nih.gov/pubmed/22384027
https://doi.org/10.1101/gr.2289704
http://www.ncbi.nlm.nih.gov/pubmed/15231754
https://doi.org/10.1093/bioinformatics/bty220
http://www.ncbi.nlm.nih.gov/pubmed/29659705
https://doi.org/10.3732/ajb.1400398
http://www.ncbi.nlm.nih.gov/pubmed/25366863
https://doi.org/10.3389/fpls.2020.00799
http://www.ncbi.nlm.nih.gov/pubmed/32719690
https://doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
https://doi.org/10.1093/molbev/msx248
http://www.ncbi.nlm.nih.gov/pubmed/29029172
https://doi.org/10.1371/journal.pone.0256373


32. Eiserhardt WL, Pintaud JC, Asmussen-Lange C, Hahn WJ, Bernal R, Balslev H, et al. Phylogeny and

divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences.

Taxon 2011; 60:485–498.

33. Baker WJ, Norup MV, Clarkson JJ, Couvreur TLP, Dowe JL, Lewis CE, et al. Phylogenetic relationships

among arecoid palms (Arecaceae: Arecoideae). AoB Plants 2011; 108:1417–1432.

34. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for

maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–W235. https://doi.org/10.1093/nar/

gkw256 PMID: 27084950

35. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequenc-

ing. Nucleic Acids Res 2012; 40:e72–e72. https://doi.org/10.1093/nar/gks001 PMID: 22323520

36. Uthaipaisanwong P, Chanprasert J, Shearman JR, Sangsrakru D, Yoo- cha T, Jomchai N, et al. Char-

acterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.). Gene 2012;

500:172–180. https://doi.org/10.1016/j.gene.2012.03.061 PMID: 22487870
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