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Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone
receptor superfamily. Their discovery in the 1990s provided insights into the cellular mechanisms involved in the control of energy
homeostasis; the regulation of cell differentiation, proliferation, and apoptosis; and the modulation of important biological and
pathological processes related to inflammation, among others. Since then, PPARs have become an exciting therapeutic target for
several diseases. PPARs are expressed by many tumors including lung carcinoma cells, and their function has been linked to the
process of carcinogenesis in lung. Consequently, intense research is being conducted in this area with the hope of discovering new
PPAR-related therapeutic targets for the treatment of lung cancer. This review summarizes the research being conducted in this
area and focuses on the mechanisms by which PPARs are believed to affect lung tumor cell biology.
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1. INTRODUCTION

Lung cancer is the leading cause of cancer death in the world
for both men and women [1]. Primary malignant cancers of
the lung are classified into small cell lung cancer (SCLC) and
nonsmall cell lung cancer (NSCLC) [2]. NSCLC accounts for
75% and SCLC constitutes the remainder. Based on the cellu-
lar phenotype, NSCLC is further subdivided into squamous
cell carcinoma, adenocarcinoma, and large cell carcinomas
[2]. Despite advances in understanding the mechanisms in-
volved in carcinogenesis, the development of new surgical
procedures, and the use of new radio and chemotherapeu-
tic protocols, the 5-year survival rate for lung cancer patients
is poor and remains less than 15% [1]. This underscores the
desperate need for novel strategies for early detection, pre-
vention, and treatment of this disease.

Peroxisome proliferator-activated receptors (PPARs)
have recently emerged as potential targets for the develop-
ment of safe and effective therapies for lung cancer [3].
PPARs are ligand-activated transcription factors belonging
to the nuclear hormone receptor superfamily [4]. They were
initially found to be involved in the control of energy home-
ostasis and cell differentiation, proliferation, apoptosis, and

inflammation. This suggested a role for PPARs in several dis-
orders such as diabetes, metabolic syndrome, and atheroscle-
rosis [5]. Early research also linked PPARs to carcinogenesis
and, to date, PPARs have been implicated in solid organ can-
cers like breast, ovary, prostate, bladder, gastric, and colon as
well as in leukemias [3]. Similarly, several studies have identi-
fied PPARs in lung cancer cells. Few tantalizing studies in an-
imal models of lung cancer showed that modulation of spe-
cific PPARs results in decreased tumor burden. Hence, many
studies are underway to test the impact of targeting these re-
ceptors for therapeutic purposes.

2. PPARS ARE MEMBERS OF THE NUCLEAR
RECEPTOR SUPERFAMILY

Nuclear receptors (NRs) are a superfamily of phylogenet-
ically related proteins that are ligand-dependent transcrip-
tional regulators. A total of 48 NR genes have been identified
in the human genome [4]. They regulate a diverse range of
normal physiological functions such as homeostasis, repro-
duction, development, differentiation, and metabolism [5].
In addition, ligand-independent actions of several members
of the NR superfamily have also been reported, which may
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Figure 1: Structural organization of the functional domains of nu-
clear receptors.

explain their complex range of effects [5]. The NR super-
family includes receptors for classical steroid hormones (es-
trogens, androgens, progesterone, glucocorticoids, mineralo-
corticoids, and vitamin D3), bile acids, retinoic acids, and
thyroid hormones. In addition, a large number of receptors
have been identified through sequence similarity to known
receptors, but lacking identified natural ligands. The latter
are referred to as nuclear orphan receptors and PPARs fall
into this latter category.

Sequence alignment and phylogenetic tree construction
resulted in in the classification of the NR family into six
evolutionary groups of unequal size with PPARs in group 1
(NR1) along with thyroid and retinoic acid receptors [6]. All
nuclear receptors share a common structural organization
with multiple distinct functional domains (Figure 1). The N-
terminal A/B domain contains at least one constitutively ac-
tive transactivation region (AF-1) and several autonomous
transactivation domains. The C domain is the most con-
served region, responsible for DNA-binding specificity and
essential for both homo- and heterodimerization of recep-
tors. The D domain is a less conserved flexible hinge region
between DNA-binding and the C-terminal ligand-binding
domain E. The D domain contains the nuclear localization
signal and also serves as docking site for cofactors. The E
domain is a moderately conserved domain with a ligand-
dependent transactivation function called AF-2. Some mem-
bers also have a c-terminal F domain, whose sequence is
extremely variable, and its structure and function are not
known.

NR family members also share a common mode of ac-
tion to regulate target gene expression. Ligand binding in-
duces a conformational change in the receptor that permits
homo- or heterodimerization, dissociation of corepressors,
and concomitant association of coactivators. The homo- or
heterodimer-coactivator complex binds to specific response
elements in the promoter regions of target genes to regu-
late their transcription. Given the wide range of functions
they regulate, it is not surprising that several members of the
NR superfamily are implicated in various pathological con-
ditions including the regulation of tumorigenesis. The effects
of individual members are either beneficial or detrimental
to tumorigenesis depending on the processes regulated by a
given receptor and the tissue(s) in which it is expressed.

PPARs represent one of the intensively studied and well-
characterized groups of NRs. Three subtypes of PPARs, en-
coded by three separate genes, have been identified and

cloned: PPAR-α (NR1C1), PPAR-β/δ (NR1C2), and PPAR-
γ (NR1C3) [6]. PPAR-α is the first member and was iden-
tified in the early 1990s in rodents as a receptor for com-
pounds that induce peroxisome proliferation, which explains
its name [7]. Subsequently, other two members were iden-
tified based on sequence similarity. Since then, PPARs have
been recognized as important sensors for cellular fatty acids
and fatty acid derivatives and mediate their effects through
transcriptional regulation. Through these pathways, PPARs
and their ligands are implicated in the regulation of cell pro-
liferation, differentiation, and survival, and, therefore, car-
cinogenesis [8].

PPARs heterodimerize with retinoid X receptor (RXR)
before binding a peroxisome proliferators response element
(PPRE) in target genes. In addition to the induction of tar-
get gene expression, PPARs also mediate indirect repressive
effects through transrepression by inhibiting the activity of
key transcription factors via direct protein–protein interac-
tions or by sequestrating cofactors necessary to their activity.
In this fashion, PPAR-α and PPAR-γ interfere with NF-κB-
and AP-1-mediated gene transcription, whereas PPAR-β/δ
represses the expression of target genes induced by PPAR-α
and PPAR-γ by binding to PPRE in association with core-
pressors [9–11].

Cofactors are proteins that can repress (corepressors) or
enhance (coactivators) nuclear receptor transcriptional ac-
tivity by bridging transcription factors to the basic transcrip-
tion machinery or by specifically modifying chromatin struc-
ture. The nuclear receptor corepressor (NCoR), for example,
and the silencing mediator of retinoid and thyroid receptors
(SMRT) repress nuclear receptor activity. Their repressive ef-
fects are thought to occur through the recruitment of his-
tone deacetylases (HDACs), but interactions with the basal
transcriptional machinery might also play a role. The impor-
tance of corepressor interactions for PPAR-α and PPAR-β/δ
action is currently poorly understood. The PPAR-γ interact-
ing protein (PRIP/RAP250) and the PRIP-interacting pro-
tein with methyltransferase domain (PIMT) are two coac-
tivators acting as molecular scaffolds which enhance PPAR-
γ and RXR-mediated transcription. Importantly, the choice
of PPAR/RXR heterodimers for PPAR target gene activation
by PPAR agonists are related to the availability of cofactors
such as CREB binding protein (CBP) and p300 versus SRC-
1. Thus, the relative levels of cofactor expression control the
specificity of the physiological response to PPAR or RXR ag-
onists [12].

3. PPARS IN LUNG CANCER

In normal cells, the process of cellular differentiation is typ-
ically accompanied by cessation of proliferation, followed by
senescence and, eventually, apoptosis. The balance between
these events is disrupted in cancer cells. Therefore, the in-
duction and maintenance of a differentiated state have been
an important strategy in the search for cancer therapeutics
[13]. The use of all-trans retinoic acid for the treatment of
acute promyelocytic leukemia represents the first success-
ful application of such an approach [14]. However, this ap-
proach has not been successfully exploited for the treatment
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of solid tumors. Since PPAR-β/δ and PPAR-γ play a key role
in the differentiation of keratinocytes and adipocytes, it has
been proposed that drugs capable of activating these recep-
tors might be useful in arresting tumor growth [8, 15, 16]. In
contrast, the role of PPAR-α in human carcinogenesis is less
clear, but ligands that activate PPAR-α are implicated in the
development of hepatocellular carcinoma in rodents [8, 17].

4. PPAR-α

PPAR-α is expressed in several tissues including liver, kidney,
heart, skeletal muscle [18–20], vascular smooth muscle cells
[21], endothelial cells [22], and monocytes/macrophages
[23]. It was the first PPAR to be identified, and was shown
to mediate peroxisome proliferators actions [18]. Peroxi-
some proliferators include several unrelated molecules such
as steroids, lipids, hypolipidemic drugs (fibrates), indus-
trial plasticizers, pesticides, and solvents that target the liver,
among other organs, where they are known to induce perox-
isome proliferation, liver hypertrophy, and hyperplasia, fol-
lowed by hepatocellular carcinoma in rodents [18]. PPAR-α
null mice are resistant to the effects of peroxisome prolifera-
tors (e.g., clofibrate) and PPAR-α ligands (e.g., Wy-14,643)
as well as to the development of hepatocellular carcinoma
in response to peroxisome proliferators [24]. The underlying
mechanisms responsible for this effect remain incompletely
understood. It has been proposed that peroxisome prolifera-
tors induce DNA replication and proliferation in hepatocytes
in a PPAR-α-dependent manner [25, 26]. However, there is
no direct evidence that PPAR-α effects the transcription of
cell-cycle genes. Peroxisome proliferators are also reported
to repress apoptosis in hepatocytes both in vitro and in vivo
[27, 28]. The involvement of PPAR-α in this process was con-
firmed in studies using dominant negative PPAR-α in rat pri-
mary hepatocytes [29].

Interestingly, humans appear to be resistant to many of
the adverse effects of the known peroxisome proliferators,
but retain their beneficial effects. For example, epidemiolog-
ical studies failed to show significant peroxisome prolifera-
tion in the liver of patients treated with hypolipidemic drugs
[30, 31], and cell culture studies indicate that human cells
display a reduced transcriptional response to PPAR-α acti-
vation when compared with rat cells [32]. These differences
are important, but the mechanisms involved in their mani-
festation are unknown. Understanding the differences in the
range of responses displayed by rodents and humans is one
of the challenging aspects of PPAR-α biology. Today, very lit-
tle is known about the role of PPAR-α in lung cancer biology
and, thus, attention should be given to this area.

5. PPAR-β/δ

This PPAR isotype was first named as PPAR-β when isolated
from Xenopus oocyte [33]. It was named PPAR-δ when it was
subsequently identified in mouse [34], rat [35], and humans
[36, 37], as it was not obviously homologous to the Xeno-
pus gene. Nevertheless, it is now clear that both PPAR-β and
δ are bonafide orthologues and, for clarity, it is referred to
as PPAR-β/δ. The expression of PPAR-β/δ is broad since it

has been detected in all of the tissues tested, with varied ex-
pression levels. It is expressed at relatively higher levels in the
brain, adipose tissue, and skin [19, 38]. Several naturally oc-
curring compounds such as saturated and polyunsaturated
fatty acids and eicosanoids serve as PPAR-β/δ agonists in the
micro molar range. However, similar to other PPARs, true
physiological ligands of PPAR-β/δ are yet to be identified.
Recently, synthetic agonists with affinities in the nanomo-
lar range have been developed. GW501516 was the first syn-
thetic PPAR-β/δ ligand developed by GlaxoSmithKline [39].
It was followed by Merck’s L-165,041 compound [40] and a
1,3,5-trisubstituted aryl compound by Novartis [41]. Unlike
PPAR-α and PPAR-γ ligands, none of the PPAR-β/δ ligands
are in clinical use, but they are in different stages of clinical
testing.

The generation of receptor knock-out mice unveiled
multiple developmental and homeostatic abnormalities in
PPAR-β/δ null animals including placental defects, defects
in myelination, decreased body fat, impaired wound healing,
and altered inflammatory responses in skin [42–44]. Stud-
ies with high-affinity synthetic ligands revealed a critical role
for PPAR-β/δ in glucose and lipid metabolism making it an
important therapeutic target for the treatment of insulin re-
sistance, glucose intolerance, hypertension and dyslipidemia
(collectively known as metabolic syndrome or syndrome X),
and with the potential to control weight gain, enhance phys-
ical endurance, improve insulin sensitivity, and ameliorate
atherosclerosis [45].

Recent studies with knock-out mice and the treatment of
human keratinocytes with high-affinity ligands have demon-
strated that PPAR-β/δ plays a crucial role in the control of
important cellular functions such as adhesion, proliferation,
differentiation, and survival [8, 46]. Its role in lung cancer
is less studied. However, in NSCLC cell lines, activation of
PPAR-β/δ with GW501515 increased proliferation via stim-
ulation of PI3-kinase/Akt signaling resulting in increased
recognition of prostaglandin E2 via transcriptional upregu-
lation of its EP4 receptor [47]. This contrasts PPAR-β/δ with
PPAR-γ whose activation is consistently associated with in-
hibition of NSCLC proliferation.

6. PPAR-γ

PPAR-γ was discovered based on its similarity to PPAR-α,
and it is the most intensively studied NR. By utilizing three
different promoters, a single PPAR-γ gene encodes three iso-
forms namely PPAR-γ1, PPAR-γ2, and PPAR-γ3 [48]. Anal-
ysis of PPAR-γ1 and γ3 transcripts revealed that they both
translate into the same PPAR-γ1 protein [49]. PPAR-γ2 pro-
tein contains an additional 30 amino acids at its N-terminus
compared to PPAR-γ1. PPAR-γ is highly expressed in adi-
pose tissue and it is a master regulator of adipocyte dif-
ferentiation [50, 51]. In addition to its role in adipogene-
sis, PPAR-γ serves as an important transcriptional regula-
tor of glucose and lipid metabolism, and it has been im-
plicated in the regulation of insulin sensitivity, atheroscle-
rosis, and inflammation [52–54]. PPAR-γ is also expressed
in multiple other tissues such as breast, colon, lung, ovary,
prostate, and thyroid where it was demonstrated to regulate
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cellular proliferation, differentiation, and apoptosis [55–58].
More recently, various leukocyte populations, including
monocytes/macrophages, lymphocytes, and dendritic cells,
have also been shown to express PPAR-γ suggesting a role
for this molecule in the regulation of immune responses
[59]. PPAR-γ has been described as a negative regulator of
macrophage function since its activation suppresses the pro-
duction of inflammatory cytokines, chemokines, metallo-
proteases, and nitric oxide [60, 61]. These PPAR-γ medi-
ated anti-inflammatory effects are not restricted to mono-
cytes, as treatment with PPAR-γ agonists results in inhibi-
tion of cytokine/chemokine production in several epithelial
and stromal cell populations [62]. As will be discussed later,
PPAR-γ activation also inhibits tumor progression in NSCLC
[62, 63].

Since its discovery, several natural and synthetic com-
pounds have been identified as activators of PPAR-γ. The
insulin sensitizing antidiabetic drugs known as thiazolidine-
diones (TZDs) were the first compounds identified as PPAR-
γ agonists [64]. The TZDs rosiglitazone and pioglitazone
are currently in clinical use for the treatment of type-II dia-
betes, while troglitazone was withdrawn from clinical use be-
cause it was linked to idiosyncratic liver toxicity [65]. Other
non-TZD synthetic ligands include certain nonsteroidal anti-
inflammatory drugs such as isoxzolidinedione JTT-501 [66]
and tyrosine-based GW7845 [67]. Naturally occurring com-
pounds that activate PPAR-γ in vitro include polyunsatu-
rated fatty acids, prostaglandin D2 (PGD2) and its metabolite
15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), 12/15 lipoxyge-
nase products 15-hydroxyeicosatetraenoic acid (15-HETE),
and 13-hydroxyoctadecadienoic acid [68, 69]. However,
none of these compounds activated PPAR-γ at physio-
logically relevant concentrations. More recently, intact ni-
troalkenes such as OA–NO2 (nitrated oleic acid) and LNO2

(nitrated linoleic acid) were observed to activate PPAR-γ at
concentrations well within their detected levels in human
plasma and urine making them ideal candidates for long-
awaited endogenous ligands [70, 71]. It would be interesting
to investigate whether nitroalkenes are present in tumor tis-
sues, and their potential role in tumorigenesis. In addition,
compounds from several medicinal plants such as Saurufu-
ran A from Saururus chinesis [72], flavonoids such as chrysin
and kampferol [73], phenolic compounds from Glycyryhiza
uralensis [74], and curcumin from Curcumin longa [75, 76]
are also shown to activate PPAR.

The synthetic ligands and some natural ligands have been
used to elucidate the role of PPAR-γ in cellular functions
both in vitro and in vivo. However, several caveats should be
taken into consideration when interpreting such studies [3].
First, the natural ligands that regulate PPARs in vivo remain
incompletely defined. Second, not all PPAR-γ ligands exert
their effects through PPAR-γ since there is strong evidence
for the activation of PPAR-γ-independent signals, particu-
larly with the natural ligand 15d-PGJ2. Third, high-affinity
ligands for PPAR-γ (e.g., the TZDs) may exert partial ago-
nist/antagonist activity [77]. The latter might be due to the
fact that individual TZDs induce different PPAR-γ confor-
mations that influence the recruitment of different coactiva-
tor/corepressor molecules. Much information is now avail-

able regarding the potential role of PPAR-γ and its ligands in
lung cancer and, thus, the rest of the discussion will focus on
this topic.

7. PPAR-γ AND PPAR-γ LIGANDS IN LUNG CANCER

PPAR-γ is expressed in many cancers including colon, breast,
and prostate, and with few exceptions, PPAR-γ ligands are
generally antiproliferative in these settings. Similarly, PPAR-γ
is expressed in SCLC and NSCLC [78]. Furthermore, PPAR-γ
ligands induce growth arrest and promote changes associated
with differentiation as well as apoptosis in a variety of lung
carcinoma cell lines, although most of the knowledge avail-
able in this area has been generated in NSCLC [3, 62]. The ex-
act mechanisms linking modulation of PPAR-γ with cancer
growth inhibition remain incompletely elucidated; however,
strong evidence suggests that PPAR-γ ligands modulate the
intracellular machinery involved in cell signaling and cell cy-
cle control, and inhibit tumor cell recognition of extracellular
mitogenic signals. Yet, other studies suggest that modulation
of PPAR-γ affects the expression of angiogenic factors needed
for the development of the vascular network responsible for
supplying nutrients to tumor cells. These mechanisms are
discussed below as they relate to the action of PPAR-γ lig-
ands in lung cancer.

7.1. PPAR-γ ligands interfere with tumor cell signaling
and cell-cycle control

Several observations point to targets for PPAR-γ ligands in
the intracellular machinery responsible for cell-cycle con-
trol in tumor cells. For example, PPAR-γ ligands have been
found to inhibit the growth of A549 adenocarcinoma cells
due to G0/G1 cell cycle arrest through the upregulation of
mitogen-activated protein kinases Erk1/2 and the downreg-
ulation of G1 cyclins D and E [62]. Troglitazone inhibits
NSCLC proliferation in part by stimulating the expression
of the GADD 153 (for growth arrest and DNA damage in-
ducible gene-153) [79]. PPARγ ligands can also trigger the
activation of the mitogen-activated protein Kinase (MAPK)
Erk cascade, which plays a central role in intracellular sig-
naling by many extracellular stimuli. Interestingly, PPARγ it-
self is a target for Erks, and Erk5 was reported to interact
with PPAR-γ, but unlike the other MAPKs, this interaction
induces activation rather than inhibition of PPAR-γ tran-
scriptional activity [80]. Troglitazone was found to induce
the apoptosis of NCI-H23 cells via a mitochondrial pathway
through the activation of Erk1/2 [81]. In that study, the pro-
apoptotic effects of troglitazone were clearly mediated via
PPAR-γ since PPAR-γ siRNA blocked the response. Others
have shown similar results using CRL-202 cells, and further
demonstrated that troglitazone downregulated the expres-
sion of the pro-apoptotic molecules Bcl-w and Bcl-2, and de-
creased the activity of SAPK/JNK [82]. PPAR-γ ligands also
induce the expression of death receptor 5 (DR5) and increase
DR5 distribution at the cell surface in addition to reducing
c-FLIP levels in human lung cancer cells. These agents co-
operated with TRAIL to enhance apoptosis in human lung
carcinoma cells [83].
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Tumor suppressor genes are also affected by PPAR-γ lig-
ands. For example, PGJ2 and ciglitazone stimulated the ex-
pression of p21 mRNA and protein expression in NSCLC,
and this coincided with a reduction in cyclin D1 mRNA ex-
pression [84]. Of note, p21 antisense oligonucleotides signif-
icantly blocked lung carcinoma cell growth inhibition ob-
served with PPAR-γ ligands thereby establishing an impor-
tant role for p21 in this process. These findings are consis-
tent with those of others showing that the proliferation of
A549 cells injected subcutaneously into nude mice was in-
hibited significantly by treatment with ciglitazone, and this
coincided with increased expression in tumors of PPAR-γ
and p21, and with downregulation of cyclin D1 [85]. A con-
nection between p53, another tumor suppressor gene, and
PPAR-γ ligands has also been demonstrated by showing that
15-deoxy-PGJ2, together with docetaxel, stimulates apopto-
sis in NSCLC through inhibition of Bcl2 and cyclin D1, and
overexpression of caspases and p53 [86].

Recent reports implicate alterations in the mammalian
target of rapamycin (mTOR) signaling pathway in the an-
titumor effects of PPARγ ligands. Rosiglitazone, for exam-
ple, was reported to reduce the phosphorylation of Akt,
an upstream positive modulator of mTOR, and increase
PTEN, a negative modulator of mTOR, in NSCLC H1792
and H1838 cells; this resulted in inhibition of cell prolifer-
ation [87] (Figure 2). Although the effects of rosiglitazone
on Akt and PTEN were blocked by the selective PPAR-γ an-
tagonist GW9662 and restored by transient overexpression
of PPAR-γ, cell growth was not entirely restored suggesting
the involvement of additional PPAR-γ-independent mecha-
nisms of action. These observations are consistent with the
work of others showing similar increases in PTEN expres-
sion induced by rosiglitazone [88]. Further work revealed
that rosiglitazone increased the phosphorylation of AMPKα,
a target of LKB1 and upstream downregulator of mTOR [87].
Rosiglitazone may also activate TSC2, another potential tu-
mor suppressor and upstream downregulator of mTOR. The
latter pathway was independent of PPAR-γ since it was not
affected by GW9662 or PPAR-γ siRNA. This again highlights
the fact that TZDs may act via PPARγ-independent path-
ways. This is important since TZDs display proinflammatory
activities in part via their ability to augment PPAR-β/δ sig-
naling. Thus, some effects of PPAR-γ ligands may be medi-
ated through an off-target effect [89]. These studies empha-
size the need for PPAR modulators with increased receptor
subtype specificity.

7.2. PPAR-γ ligands inhibit tumor cell recognition of
extracellular mitogenic factors

Several studies suggest that PPAR-γ ligands exert their an-
titumor effects by blocking access to mitogenic agents such
as PGE2, a major cyclooxygenase metabolite that plays im-
portant roles in tumor biology. The functions of PGE2

are mediated through one or more of its receptors EP1,
EP2, EP3, and EP4 [90]. Human NSCLC cell lines ex-
press EP2 receptors, among other EP receptors, and the in-
hibition of cell growth by PPAR-γ ligands like GW1929,
PGJ2, ciglitazone, troglitazone, and rosiglitazone is associ-

Rosiglitazone
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Akt PTEN
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p70S6K
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Figure 2: Rosilitazone stimulates NSCLC proliferation by affecting
the Akt/mTOR pathway through PPARγ-dependent and PPARγ-
independent mechanisms.

ated with a significant decrease in EP2 mRNA and protein
expression. Notably, the inhibitory effects of rosiglitazone
and ciglitazone, but not PGJ2, were reversed by a specific
PPAR-γ antagonist GW9662, suggesting the involvement of
PPAR-γ-dependent and PPAR-γ-independent mechanisms
[90].

Other studies suggest that PPAR-γ ligands might pre-
vent the interaction of tumor cells with their surrounding
stroma, thereby interfering with host-derived and tumor-
derived factors with mitogenic and prosurvival effects. An
example of this is fibronectin, a matrix glycoprotein that re-
sides in the lung stroma that is increased in most, if not all,
chronic forms of lung disease [91]. This is true for tobacco-
related lung disorders and fibrotic disorders, all associated
with increased incidence of lung cancer [92]. Several stud-
ies suggest that fibronectin serves as a mitogen and sur-
vival factor for NSCLC [93], and fibronectin was recently
shown to stimulate tumor cell expression of matrix metallo-
proteinases, proteases implicated in metastatic disease [94].
These observations support the idea that tumor cell inter-
actions with fibronectin through surface integrin receptors
are advantageous for tumors since they stimulate prolifer-
ation, survival, and metastases [93]. This idea remains to
be proven in vivo, but if found to be true, this might un-
veil a new target for anticancer strategies. In this regard,
PPAR-γ ligands were shown to inhibit fibronectin expres-
sion in NSCLC cells by inhibiting transcription factors in-
volved in regulation of fibronectin gene expression [95].
PPAR-γ ligands (rosiglitazone and GW1929, but not PGJ2)
were also recently reported to inhibit the expression of the
gene encoding for the α5 integrin subunit resulting in re-
duced expression of the integrin α5β1, a fibronectin recep-
tor that mediates fibronectin’s mitogenic effects in NSCLC
cells and nontumor lung cells [96]. Thus, by inhibiting the
expression of fibronectin and its integrin α5β1, PPAR-γ lig-
ands might reduce tumor cell recognition of fibronectin
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with consequent changes in cell proliferation and apopto-
sis.

7.3. PPAR-γ ligands inhibit angiogenesis and
tumor vascularization

The idea that PPAR-γ might regulate the generation of the
complex vascular network that supplies tumor cells is sup-
ported by studies showing significant reduction in blood
vessel density in the lung tumors generated by the injec-
tion of A549 cells into the flanks of SCID mice treated
with PPARγ ligands [97]. In studies in vitro, the treatment
of A549 cells with troglitazone or their transient transfec-
tion with a constitutively active PPAR-γ construct blocked
the production of angiogenic molecules such as ELR+CXC
chemokines IL-8 (CXC-8), ENA-78 (CXCL5), and Gro-
alpha (CXCL1) [97]. Moreover, conditioned media from
untreated A549 cells stimulated human microvascular en-
dothelial cell chemotaxis, whereas the condition media of
troglitazone-treated A549 was inhibitory. Of note, PPARγ ac-
tivation inhibited NF-κB, a transcription factor known to
regulate the expression of many of the pro-angiogenic fac-
tors mentioned above. Similarly, rosiglitazone was shown
to inhibit mouse lung tumor cell growth and metastasis
in vivo through direct and indirect anti-angiogenic effects
[63].

7.4. PPAR-γ is a novel candidate for targeting
tumor microenvironment

In tumors, cancer cells coexist with different cell types in-
cluding fibroblasts, macrophages, endothelial cells, and mul-
titude of diverse cytokines and chemokines secreted by these
cells, constituting a distinct tumor microenvironment. One
of the important conceptual advances in tumor biology in re-
cent years has been the appreciation that all major aspects of
a cancer cell are influenced by the tumor microenvironment.
Interestingly, PPAR-γ is expressed in all major cell types
present in the tumor microenvironment, and its ligands have
been shown to inhibit several of the pro-tumorigenic func-
tions of these cell types in vitro and, in some cases, in vivo.
For example, PPAR-γ ligands were shown to inhibit prolif-
eration, and induce apoptosis, migration, and tube forma-
tion in endothelial cells [98]. Also, PPAR-γ ligands can in-
hibit the transdifferentiation of fibroblasts into myofibrob-
lasts, a phenotype similar to that of tumor-associated fi-
broblasts, in several fibrotic conditions [99–102]. A recent
study demonstrated that PPAR-γ ligands completely reverse
the antitumor cytotoxic T-lymphocyte suppressive activity
and the M2 phenotype of tumor-associated macrophages
[103]. PPAR-γ ligands are also known to inhibit the expres-
sion of several cytokines and chemokines produced by all
of the major cell types present in the tumor microenviron-
ment (60, 61, 97, 98]. Together with data showing effects
on fibronectin matrix expression and recognition in NSCLC
[95], the above observations suggest that PPAR-γ might be
a novel candidate for targeting the tumor microenviron-
ment.

8. IMPLICATIONS FOR THERAPY AND
RESEARCH NEEDS

The studies mentioned above suggest that PPARs are in-
volved in lung cancer cell biology. However, their roles re-
main uncertain, and much needs to be learned before they
are targeted for therapeutic intervention, especially when
considering PPAR-α and PPAR-β/δ. Activation of PPAR-γ is
strongly associated with decreased lung carcinoma cell pro-
liferation both in vitro and in vivo. Furthermore, in primary
NSCLC, the expression of PPAR-γ has been correlated with
tumor histological type and grade, and decreased PPAR-γ ex-
pression was correlated with poor prognosis [104]. Because
of this, and the fact that synthetic agonists of PPAR-γ with
good safety profiles are currently in use in the clinical arena,
PPAR-γ has emerged as a reasonable target for the devel-
opment of anti-lung cancer therapies. Synthetic and natural
PPAR-γ activators might be useful. For example, arachidonic
acid treatment inhibits the growth of A549 cells, and this ef-
fect is blocked by the synthetic PPAR-γ inhibitor GW9662
[105]. MK886, a 5-lipoxygenase activating protein-directed
inhibitor, stimulates apoptosis and reduces the growth of
A549 cells through activation of PPARγ [106]. These and re-
lated drugs can be used alone or in combination with other
drugs for synergistic effects. This was observed when using
low doses of MK886 in combination with ciglitazone and
13-cis-retinoic acid on A549 and H1299 cells [106]. Also,
dramatic synergistic anticancer effects have been reported
for lovastatin (an HMG-CoA reductase inhibitor) and the
PPAR-γ ligand troglitazone in several cell lines including lung
cancer cells [107]. An enhancement by rosiglitazone of the
antitumor effects of gefitinib on A549 cell growth was re-
cently noted suggesting that combination strategies using se-
lective nuclear receptor activators in conjunction with epi-
dermal growth factor receptor inhibitors might prove effec-
tive [108].

Although little information is available in vivo, emerg-
ing data are beginning to unveil potential implications to the
human condition. In this regard, a retrospective analysis of
a cohort of 87 678 individuals identified through the Veter-
ans Integrated Services Network 16 data warehouse revealed
a 33% reduction in lung cancer risk among TZD users com-
pared with nonusers after adjusting for confounder variables.
Interestingly, a similar risk reduction was not observed for
colorectal and prostate cancers [109].

Despite the above, enthusiasm for this approach should
be tempered by work showing that the PPAR-γ ligands
rosiglitazone, ciglitazone, and PGJ2 were found to stimulate
PPAR-γ transactivation in lung adenocarcinoma cell lines in
vitro, but little to no effects were noted in squamous cell or
large cell carcinomas suggesting that their anticancer proper-
ties might not be shared by all lung tumors, or that important
PPAR-γ-independent pathways are at play [108, 110]. Thus,
a better understanding of the mechanisms of action of ac-
tivated PPARs in tumors (and host cells) is required since
the dissection of these pathways might unveil better targets
for therapy. Nevertheless, the data available to date regard-
ing PPAR-γ is promising and justify engaging in prospec-
tive, randomized, clinical studies to determine the true role
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of PPAR-γ ligands in lung cancer, while further work is per-
formed to identify more selective and effective strategies.
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