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Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-
specific regulations dependent of the parental origin. Imprinted loci are especially involved
in essential mammalian functions related to growth, development and behavior. In this
mini-review, we first offer a summary of current representations associated with genomic
imprinting through key results of the three last decades. We then outline new perspectives
allowed by the spread of new omics technologies tackling various interacting levels of
imprinting regulations, including genomics, transcriptomics and epigenomics. We finally
discuss the expected contribution of new omics data to unresolved big questions in
the field.
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INTRODUCTION

Mammals inherit two sets of chromosomes, one from each parent, and therefore possess two copies
of each gene. For the majority of these genes, both alleles are expressed or repressed, depending upon
the cell type. However, a little less than 1% of mammalian genes are imprinted, which means these
are monoallelically expressed in a parent-of-origin (PofO)-specific manner. Since the discovery of
genomic imprinting (GI) in the 80s, this field of biology was observed from different angles to better
understand the originality of this mode of inheritance (Figure 1).

In brief, (i) many works have tackled the origin and the dynamics of acquisition of this process
across the development of mammals from pre-implantation to post-fertilization and beyond (Monk et al.,
2019), (ii) other groups have focused on both the conservation and specificity of these mechanisms across
phylogeny, developmental stages and tissues (Monk, 2015; Patten et al., 2016; Edwards et al., 2019), (iii) a
growing body of research has determined the key role played by imprinted genes in biological functions,
physiological processes and diseases in humans (Peters, 2014; Tucci et al., 2019), (iv) thanks to the
exceptional progress of knowledge in epigenetics over the last 15 years, significant advances were made on
the molecular mechanisms at play through the study of GI as an example of epigenetic regulation. These
achievements have benefited from the growing variety, volume and availability of omics data. Current and
future applications include sequence-based analyses encompassing the many types of molecules and
interactions involved in GI to get a more comprehensive and accurate view of such an epigenetic
phenomenon.

In the present review, we offer a quick overview of the first three aspects mentioned above,
completed by amore developed part on themolecular mechanisms involved in GI through epigenetic
marks, noncoding RNAs and chromatin organization. Building on this, we introduce why and how
novel sequencing technologies and multi-omics approaches will help tackle the study of GI genome-
wise.
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GI IS A MULTISTEP PROCESS AND
IMPRINTS NEED TO BE RESET AT EACH
GENERATION
The identification of the first imprinted genes (Barlow et al., 1991;
Rachmilewitz et al., 1992) sparked initial efforts towards
elucidating the mechanisms of imprint establishment,
maintenance and erasure (Morgan et al., 2005; Ferguson-
Smith and Bourchis, 2018; Monk et al., 2019). In primordial
germ cells (PGC), the genome undergoes extensive DNA
demethylation, including the removal of existing previous
parent-specific imprints. New imprints are acquired at later
stages of gametogenesis, according to the sex of the embryo,
with a sex-specific timeline. In sperm, imprint establishment
starts before birth and is completed in perinatal period,
whereas in the female germline imprints are acquired after
birth, during oocyte growth (Lucifero et al., 2004; Kato et al.,
2007). Those germline imprints, known as primary imprints, are
left on specific regions called Imprinting Control Regions (ICRs),
which are the site of key imprinting regulations.DNMT3A and its
cofactor DNMT3L are the main genes involved in the de novo
methylation activity in both germlines (Bourc’his et al., 2001;
Kato et al., 2007). KDM1B, which encodes a lysine demethylase
almost exclusively expressed in growing oocytes, is critical for
establishing several maternal imprints during oogenesis, as well as
non-histone transcriptional regulators, including ZFP57 and
NLRP2 among others (Begemann et al., 2018; Ferguson-Smith
and Bourchis, 2018). ZFP57 has further post-fertilization role,
when imprinted regions of paternal and maternal germline
withstand a wave of genome-wide demethylation followed by a
wave of de novo methylation. In addition, DNMT1 is crucial to
maintain the methylation imprints in the preimplantation

embryo (Hirasawa et al., 2008). Other key regulators of the
maintenance of GI include in particular DPPA3 (Nakamura
et al., 2007), CTCF (Engel et al., 2006) and components of the
nucleosome remodeling and histone deacetylation (NuRD)
complex, such as MBD3 (Reese et al., 2007) and MTA2 (Ma
et al., 2010).

CONSERVATION OF IMPRINTING
PATTERNS ACROSS MAMMALS AND
BETWEEN TISSUES OCCURS
RESTRICTED

Approximately 200 imprinted genes have been documented to
date in humans and mice. In other species, a few dozen loci have
been experimentally validated at most, such as in rats and pigs
with 14 and 45 imprinted genes identified to date, respectively
(http://www.geneimprint.com, last accessed January 2022).
Several studies suggested that imprinted genes were less
conserved across mammals than initially thought (Monk et al.,
2006; Khatib et al., 2007). Genes of the Kcnq1 cluster found to be
imprinted in the mouse placenta are not in humans (Monk et al.,
2006), while the opposite was shown for L3MBTL (Li et al., 2005).
In a more complex way, IGF2R was imprinted in the mouse but
exhibited a polymorphic, variable imprinting pattern in humans
(Xu et al., 1993). These findings suggest that GI differs between
mammals and displays species-specific regulation patterns,
raising questions on the conservation of ICRs across species.
Interestingly, the placenta is the tissue with the most imprinting
discrepancies between the mouse and humans (Monk, 2015).
Genome-wide analyses showed most of the imprinted clusters

FIGURE 1 | Comparative timeline of key discoveries in genomic imprinting and novel high-throughput sequencing technologies. The references cited in the figure
are also present in the text unless they are mentioned hereafter (Surani et al., 1984; Watanabe et al., 2011; Strogantsev et al., 2015).
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with differentially methylated regions (DMRs) in the human
placenta are not differentially methylated in the mouse
placenta (Miri et al., 2013; Court et al., 2014), which suggests
that widespread differences have occurred during imprinting
evolution. Additionally, many imprinted genes exhibit brain-
specific functions and expression patterns. A textbook case is
UBE3A, which shows a biallelic expression in most tissues but a
maternal expression profile within certain neuronal subtypes
(Albrecht et al., 1997). In a more complex way, IGF2 is
paternally expressed in the subgranular zone of the
hippocampus, acting as an autocrine factor, but biallelically
expressed in the subventricular area, displaying a paracrine
role (Ferrón et al., 2015). Such functionally important
mechanisms of transcriptional dosage control highlight the
shape-shifting nature of GI across cells and tissues.

IMPRINTED GENES ARE KEY
REGULATORS OF FETAL AND
POST-NATAL GROWTH AND ADULT
BEHAVIOUR

The discovery of the crucial roles of imprinted genes came from
uniparental mouse embryos and then from human imprinting
disorders (Peters, 2014). Experimentally-produced uniparental
embryos show lethality due to aberrant GI patterns in several
species including cattle, sheep and pig (Lagutina et al., 2004;
Zacchini et al., 2011; Sembon et al., 2012), which is in line with
pioneering studies showing development arrest due to a lack of
embryonic or extraembryonic tissues in the mouse (Barton et al.,
1984; McGrath and Solter, 1984). Paternally-expressed IGF2 is a
well-studied example of imprinted gene that positively regulates
fetal growth (DeChiara et al., 1991; Ferguson-Smith et al., 1991).
Oppositely, maternally-expressed GRB10 acts as an essential
growth restrictor (Shiura et al., 2009). It has been proposed
that many imprinted genes contributing to growth control
pathways are coordinately regulated in multiple tissues within
an imprinted gene network (Varrault et al., 2006). As suggested
through the contribution of GI to growth-related phenotypes,
imprinting dysregulation has been identified in a set of 13 so-
called imprinting disorders harbouring convergent patterns of
molecular alterations and clinical features (Eggermann et al.,
2021). Imprinted genes also have a long-known and important
role in the development of the mammalian brain and in adult
behaviour, which is illustrated by the contributions of PEG1 and
PEG3 to maternal behaviour (Ho-Shing and Dulac, 2019; Tucci
et al., 2019).

GI IS A PARTICULARLY ATTRACTIVE
EXAMPLE OF EPIGENETIC REGULATION

Main Mechanistic Features of GI
Epigenetics relates to stable and heritable patterns of gene
expression that do not involve changes in DNA sequence. GI
is a particularly attractive example of epigenetic regulation

leading to PofO-specific gene expression (Bartolomei et al.,
2020), since in the same cell only one of the two parental
alleles is stably repressed depending on epigenetic marks
(Reik and Lewis, 2005). Imprinted genes are typically
located in clusters of 3–12 genes that are spread over
20 kb–3.7 Mb of DNA, although examples of single
imprinted genes do exist (Edwards and Ferguson-Smith,
2007). Clusters of imprinted genes, designated as
imprinted domains, harbor biallelically-expressed genes
alongside maternally- and paternally-expressed genes,
which encode both protein-coding and long noncoding
(lnc) RNAs. Each cluster carries an ICR exhibiting PofO-
specific epigenetic marks, such as DNA methylation and
post-translational histone modifications, which
differentially tag the parental alleles as either active or
repressed (Maupetit-Méhouas et al., 2016). A textbook
example is the well-known Igf2/H19 imprinted cluster
(Nativio et al., 2011). PofO-specific DNA methylation
occurring at ICRs, also called canonical imprinting, is
considered a primary imprint marker that directly or
indirectly controls most of imprinted genes (Kobayashi,
2021). These primary imprints are germline differentially
methylated regions (gDMRs) that are maintained after
fertilization. In addition, some PofO-specific DNA
methylations are set post-zygotically in somatic lineages
(sDMRs) and are considered as secondary imprints
(Kobayashi, 2021). Memory mechanisms allowing the
PofO-specific DNA methylation after the global erasure
are yet to be discovered. Noncanonical imprinting has
been identified as another key gametic imprinting mark
mediated by maternal histone modification instead of
DNA methylation (Chen et al., 2021; Mei et al., 2021).

Long-Range Regulations in Imprinted
Clusters
Two well-defined mechanisms of imprinted gene regulation have
been described so far: the insulator model and the lncRNAmodel
(Plasschaert and Bartolomei, 2014). The insulator model is best
illustrated at the Igf2/H19 locus. In this example, ICRs work as
chromatin insulators and control the reciprocal imprinting of
both maternally-expressed H19 and paternally-expressed IGF2
through the differential allelic binding of the CTCF protein. In
fact, CTCF binds to the unmethylated maternal ICR and forms an
insulator, preventing IGF2 expression for the benefit of the H19
lncRNA. On the paternal allele, the hypermethylated ICR
prevents CTCF from binding and the insulator from forming,
which allows the downstream enhancers to promote IGF2 instead
ofH19. The lncRNAmodel is depicted by the Igf2r/Airn locus, in
which the promoter of a lncRNA is located within the ICR. This
allows the activation of the lncRNA from the unmethylated
paternal ICR, silencing the adjacent genes in cis. Silencing is
mediated through either the attraction of the machinery that lay
down repressive chromatin marks (Nagano and Fraser, 2009) or
the prevention of the RNA polymerase II recruitment at
promoters (Latos et al., 2012). On the maternal allele, the
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hypermethylated ICR results in silencing the lncRNA, thereby
allowing the activation of neighboring genes.

GI as Part of Coregulated Networks
Systems-level approaches to GI have increasingly developed since
the demonstration showing that the perturbation of one
imprinted gene may affect other imprinted genes as well as
biallelically-expressed genes (Varrault et al., 2006; Gabory
et al., 2009). Therefore, an imprinting gene network (IGN)
involving several imprinted genes and non-imprinted genes
was suggested (Patten et al., 2016). First studies have
confirmed that many imprinted genes are indeed coregulated
in their expression levels (Varrault et al., 2006; Al Adhami et al.,
2015). Interestingly, in porcine fetal liver cells, a sub-network
involving IGF2, DLK1 and MEG3 was shown using 3D
Fluorescence in situ Hybridization (FISH), suggesting that 3D
nuclear organization, through the colocalization of these
imprinted genes, is linked to their transcriptional state
(Lahbib-Mansais et al., 2016). While the cis-regulation of
different imprinted genes, often through the repressive role of

imprinted lncRNAs, is well documented, more and more studies
have revealed trans- silencing mechanisms (Ghousein and Feil,
2020; Whipple et al., 2020). In the Dlk1-Meg3 imprinted region, a
dense cluster of 39 miRNAs, miR-379/410, is located in the
3′UTR of maternally-expressed MEG3. Such maternal
miRNAs downregulate several paternally-expressed genes
located elsewhere like PLAGL1 (Whipple et al., 2020), which
directly regulates itself a few hundred covarying genes, including
multiple imprinted genes, together constituting a gene network
(Varrault et al., 2017).

TOWARDS CHARACTERIZING
IMPRINTOMES IN THE NEW OMICS ERA

Beside an accurate understanding of the molecular regulation
of the different imprinting regions, acquiring a global
overview of the imprinted gene network remains crucial to
better apprehend their major roles genome-wise. In this
context, recent developments in omics (including

FIGURE 2 | How multi-omics nurse knowledge on genome imprinting mechanisms. The diagram in the center of the figure depicts the different layers of GI
regulation that can be targeted using current multi-omics, through the canonical example of the Igf2/H19 imprinted cluster. The colored boxes used in the central
diagram (green, pink and yellow) represent the different interacting levels of imprinting regulations that arementioned in the corresponding omics boxes. WG(B)S:Whole-
Genome Bisulfite Sequencing; BS-Seq: BiSulfite-Sequencing; EM-Seq: Enzymatic Methyl-Sequencing; ChIP-Seq: Chromatin ImmunoPrecipitation followed by
Sequencing; CUT&Tag: Cleavage Under Targets and Tagmentation; scRNA-Seq: single-cell RNA-Seq; FAIRE-Seq: Formaldehyde-Assisted Isolation of Regulatory
Elements Followed by Sequencing; ATAC-Seq: Assay for Transposase-Accessible Chromatin with high-throughput Sequencing; ChIA-PET: Chromatin Interaction
Analysis with Paired-End Tag sequencing, 3C: Chromosome Conformation Capture; 4C: 3C on Chip; 5C: 3C-Carbon Copy; HiC: High-throughput 3C; Dip-C:
Diploid 3C.
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genomics, transcriptomics, epigenomics and chromatin
structure analyses, see Figure 2) should provide more and
more comprehensive insights on the role of GI in complex
traits in mammals (O’Doherty et al., 2015) and human
disorders (Monk et al., 2019).

Via (Epi)Genomics
Investigating GI requires considering an extra state of DNA
sequence through the mapping of methylated cytosines. It has
therefore fueled the continued development of sequencing
protocols including the bisulfite conversion of unmethylated
cytosines (Clark et al., 2006; Olova et al., 2018), so that both
conventional genotype information and the methylation status of
cytosines in any sequence context can be jointly determined. As
the cost of acquiring full sequence data has decreased, Whole-
Genome Bisulfite Sequencing (WGBS) has emerged as a standard
to move towards more exhaustive maps of GI in species with a
reference sequence assembly (Zhou et al., 2021). Today there is a
rich set of library preparation strategies using short-read
technologies to implement genome scans for imprinted genes,
from affordable ones based on methylation-dependent restriction
enzymes and suited for de novo analyses (Wang et al., 2015;
Dixon and Matz, 2021) to bisulfite-free ones aimed at preserving
DNA sequence integrity while seeking exhaustiveness (Liu et al.,
2020; Vaisvila et al., 2021). Genome-wide analyses of parent-
offspring trios, reciprocal crosses and other pedigree-based
designs have pivotal importance in detecting molecular
signatures of GI (Frésard et al., 2014; Zink et al., 2018;
Consortium et al., 2019). Such studies have much to gain from
the use of long-read technologies from Oxford Nanopore and
PacBio platforms, which are able to read both DNA sequence and
its methylation status over several kilobases. Long-range phasing
will in particular improve the acquisition of the PofO
information. More generally, long reads should improve
several facets of GI studies, including allele-specific variant
detection, access to complex sequence and parental
methylation bias identification (Gigante et al., 2019). This
paves the way to generalizable approaches coupling affordable
pedigree-based designs with low-coverage long-read sequencing
data, which could become essential to improving our
understanding of GI. Interestingly, combining bisulfite-free
sequencing library preparation strategies with long reads is
appealing both in theory and in practice (Liu et al., 2020),
making it possible to envisage many beneficial applications for
the better characterization of GI. By allowing the genome-wide
detection of protein-DNA interactions and histone
modifications, Chromatin ImmunoPrecipitation followed by
Sequencing (ChIP-Seq) offers additional possibilities to
investigate the mechanistic features of GI, including
noncanonical patterns (Chen et al., 2021; Mei et al., 2021).

Via Transcriptomics
As imprinting mechanisms are organized at the scale of
transcriptional units, we anticipate that current developments
in transcriptomics bring much to our understanding of GI, in
particular through the spread of single-cell RNA-Seq (scRNA-
Seq) experiments and long-read technologies. scRNA-Seq allows

measuring gene expression at the cell resolution, which is
particularly relevant to characterize imprinted genes with
tissue- or cell-specific expression patterns. Imprinting
expression patterns may vary from mono- to biallelic across
cells, suggesting the occurrence of epigenetic mosaicism in
mammals (Ginart et al., 2016). scRNA-Seq experiments are
here both highly advisable and challenging because the tissues
most subjected to GI show remarkable spatial and temporal
heterogeneity still undergoing exploration (Liu et al., 2018;
Varrault et al., 2020). First studies showed the potential of
scRNA-Seq to identify new imprinted candidates (Santoni
et al., 2017) and to dissect the complexity of dosage imbalance
phenomena in the cell (Stamoulis et al., 2019). The regulation of
gene expression in imprinting clusters is provided in particular by
lncRNAs, which are located in the immediate vicinity of ICRs and
have an effect on large physical distances within clusters. Their
precise roles need further clarification, but it is accepted that
lncRNAs do more than simple transcriptional interference and
are required for imprinting maintenance (MacDonald andMann,
2020; Llères et al., 2021). As such RNAs may exceed one kilobase
in length, the use of direct RNA-seq methods compatible with
long reads appears an appropriate strategy to favor their
characterization while limiting the occurrence of bias (Garalde
et al., 2018). Current effort is focused on developing suitable
methods to allow transcriptome-wide representations of long
transcripts, including those without polyadenylated tails
(Oikonomopoulos et al., 2020; Begik et al., 2021). Given the
importance of noncoding RNA species in mediating GI, the
development of new comprehensive transcriptomic approaches
based on total RNA-Seq (Verboom et al., 2019), aiming at
simultaneously detecting diverse RNA types, is good news for
future GI studies.

Via 3D Genomics
Both the epigenetic landscape and the RNA-protein complexes
regulating imprinted genes are part of a bigger picture involving
higher-order organization constraints in the nucleus. The
development of Chromosome Conformation Capture (3C)-
based technologies (C-technologies) makes it possible to study
the links between nuclear architecture, chromatin topology and
genetic elements, leading to genome-wide 3D maps (Rao et al.,
2014). The key principle of C-technologies is to obtain the
sequence information of frequently interacting chromosome
fragments to identify gene regulations at the scale of the 3D
nucleus (Barutcu et al., 2016). Such data confirmed the master
role of CTCF in 3D genome organization, supporting the view
that further characterization of the interactions between
chromatin structures and molecular binding complexes in
imprinted domains will shed light on mechanisms underlying
the maintenance and dynamics of GI (Llères et al., 2019;
Noordermeer and Feil, 2020). By jointly improving resolution,
phasing and genome coverage, C-technologies have revealed
specific higher-order structural patterns about GI. In
particular, High-throughput 3C (Hi-C) showed the enrichment
for imprinted genes in chromatin loops (Greenwald et al., 2019).
Current efforts lay the foundation for identifying differences in
3D structure between maternal and paternal alleles in imprinted
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clusters (Tan et al., 2018; Lindsly et al., 2021). In addition,
chromatin accessibility analyses like Assay for Transposase-
Accessible Chromatin with high-throughput Sequencing
(ATAC-Seq) or Chromatin Overall Omic-scale Landscape
Sequencing (COOL-Seq) make it possible to test the existence
of such a parental asymmetry at a lower level of chromatin
organization (Wu et al., 2016; Gu et al., 2019). There is
therefore today a dense set of high-throughput technologies
for analyzing chromatin organization, from the gene-level
resolution to long-range contacts, which allow genome-wide
integrative analyses on the chromatin mechanisms regulating
imprinted networks.

DISCUSSION

Review of sequence-based technological developments shows a
transition taking place along two transversal axes, from bulk to
single-cell approaches and from short to long reads. Such an
evolution carries many promises in the context of GI studies,
especially as imprinted sites host very diverse elements and are
subjected to various regulatory features. It is therefore the right
time to characterize in depth imprintomes and understated
regulations across loci, stages, cell types and species, which
will lead to a better mechanistic understanding of GI. The
incorporation of C-technologies as part of multi-omics
integrative approaches could in particular reveal imprinted
interactomes (Naveh et al., 2021).

Analyses of coding sequences remain an essential gateway to
increase our understanding of GI, as the identification of new
imprinted genes leads to various further studies. Affordable
genome-wide data acquisition benefiting from pedigree-based
designs can be implemented across phylogenetic clades, thereby
helping to address large sets of questions related to imprinting
evolution. These include a better understanding of the early
evolutionary history and diversification of GI. A closer look at
GI in certain taxa and tissues through integrative omics
approaches could for example help clarify the constraints
applied to imprinted clusters, the mechanisms that enabled the
acquisition of DMRs and the role of transposable elements in the
evolution of mammalian development (Bogutz et al., 2019; Hanin
and Ferguson-Smith, 2020; Hanna and Kelsey, 2021; Senft and
Macfarlan, 2021). Comprehensive genome scans for imprinted
genes in species with little or no previous evidence for GI bring
important information, since it promotes the understanding of

both GI evolution and related phenomena such as methylation
reprogramming and allele-specific expression, which regulate key
biological processes in vertebrates (Frésard et al., 2014; Zhuo
et al., 2017; Skvortsova et al., 2019). A recent epigenome
comparison across five placental mammals notably showed
striking species-specific features, with distinct GI mechanisms
between humans, nonrodents and rodents (Lu et al., 2021).

All this highlights the great interest of studying how GI may
influence phenotypes across mammals. Some strategies are
emerging to identify the impact of very subtle changes related
to GI on intermediate molecular phenotypes (Greenwald et al.,
2019; Lindsly et al., 2021). At a higher phenotypic level, we
know from familial and association studies that GI contributes
to complex phenotypes, including syndromic disorders
(Eggermann et al., 2021), cancer (Goovaerts et al., 2018)
and several other developmental phenotypes in both
humans (Workalemahu et al., 2020) and other mammals
(Freking et al., 2002; Van Laere et al., 2003). Investigating
multi-scale GI-phenotype relationships could provide insights
on unusual patterns of missing heritability, with the potential
for many applications. Genomic prediction in domestic
animals could for example benefit from explicitly modeling
GI for some economically important phenotypes (O’Doherty
et al., 2015; Hu et al., 2016; O’Brien and Wolf, 2019). In cancer,
evasion of growth suppression is mediated through many
imprinted loci (Stampone et al., 2018; Lecerf et al., 2019;
Sutton et al., 2019). Studies on experimental models or
patient tissues would be helpful to further document the
contribution of dysregulated imprinting patterns to cancer
evolution (Lozano-Ureña et al., 2021; Taguchi et al., 2021).
More generally, imprinted clusters host key genes offering a
gateway to larger epigenomic studies. We therefore believe that
current developments in sequencing technologies are essential
to significant advances in the characterization of such unusual
modes of trait transmission.
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