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Abstract

Motivation: Predicting disease phenotypes from genotypes is a key challenge in medical applica-

tions in the postgenomic era. Large training datasets of patients that have been both genotyped

and phenotyped are the key requisite when aiming for high prediction accuracy. With current

genotyping projects producing genetic data for hundreds of thousands of patients, large-scale

phenotyping has become the bottleneck in disease phenotype prediction.

Results: Here we present an approach for imputing missing disease phenotypes given the geno-

type of a patient. Our approach is based on co-training, which predicts the phenotype of unlabeled

patients based on a second class of information, e.g. clinical health record information.

Augmenting training datasets by this type of in silico phenotyping can lead to significant improve-

ments in prediction accuracy. We demonstrate this on a dataset of patients with two diagnostic

types of migraine, termed migraine with aura and migraine without aura, from the International

Headache Genetics Consortium.

Conclusions: Imputing missing disease phenotypes for patients via co-training leads to larger train-

ing datasets and improved prediction accuracy in phenotype prediction.

Availability and implementation: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/

research/bioinformatics-and-computational-biology/co-training.html

Contact: karsten.borgwardt@bsse.ethz.ch or menno.witteveen@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Predicting disease phenotypes from genotypic information of a

patient is a key question in medical research, with implications for

disease diagnosis, prognosis and therapy. Any prediction system, or

classifier, relies critically on the existence of a training dataset which

includes labeled examples, that is to say, patients for which both

genotypic and phenotypic data are present. The limiting factor when

creating such training datasets used to be the low number of patients

for which genotypic or even full-genome data were available.

But experimental advances in genotyping, using genotyping

chips (Wellcome Trust Case Control Consortium, 2007) or next-

generation sequencing (Davey et al., 2011), plus the advent of many

large-scale sequencing studies (1000 Genomes Project Consortium

et al., 2012) and biobanks (Allen et al., 2014) that store genotypic

information, are steadily changing this situation; gradually, the

availability of disease phenotypes is turning into the bottleneck

when collecting training datasets for phenotype prediction.

Automated approaches to phenotyping, such as image phenotyp-

ing which extracts features from images, are currently gaining

popularity, e.g. in model organisms (Karaletsos et al., 2012) and

plant genetics (Bucksch et al., 2014), but not for all kinds of pheno-

types such images are available, e.g. for many human diseases.

Health record information on patients is collected in growing num-

bers, both manually and by electronic devices (Gagnon, 2014).
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These records have been used, for example, to examine the extent of

correlation between different diseases and strong correlations have

been found (Roque et al., 2011). An open question is whether correl-

ations between individual clinical covariates and overall disease

diagnoses can be exploited to impute missing phenotypes.

In this study, we propose an algorithm that can use clinical-side

information on a patient to impute missing disease phenotypes. We

show that augmenting training datasets through this kind of in silico

phenotyping may improve phenotype prediction accuracy.

The approach we propose is an instance of co-training

(Blum and Mitchell, 1998), a well-studied machine learning algo-

rithm that assigns class labels to unlabeled data points via a classifier

that is trained on a second view of the data, i.e. a different set of

features. Augmenting training datasets in this way has led to numer-

ous successful applications, for instance in website category classifi-

cation. The growing size of genotypic and clinical covariate datasets

in genetics now enable us to examine whether co-training can

improve disease phenotype prediction as well.

We explore the impact of our approach in a case study using two

Dutch cohorts of migraine patients (Anttila et al., 2010; Freilinger

et al., 2012). These patients were diagnosed as being affected by one

of two subtypes of migraine known as migraine with aura and with-

out aura. Two types of data were collected for all patients: clinical

covariates and genotype data. In the original studies these data were

used to find susceptibility loci for each subtype of migraine. Our

goal with phenotype prediction is to apply the philosophy of

co-training to construct a classifier on one view of the data to boost

the prediction accuracy of another classifier constructed on the

second view. The final classifier will predict if a patient should be

diagnosed as having migraine with aura or without aura. Our ana-

lysis shows that even with a modest amount of labeled data, the

approach we propose provides a massive improvement when pre-

dicting disease phenotypes from genotypes.

The remainder of this paper is organized as follows. We proceed

to discuss related work before presenting our co-training approach

to in silico phenotyping in Section 2. In Section 3, we employ our

approach in order to improve disease phenotype prediction in two

Dutch migraine cohorts that have been used by the International

Headache Genetics Consortium (IHGC). We conclude by discussing

the conditions that must be met for co-training to work, and give an

optimistic outlook to its applicability for disease phenotype predic-

tion in the future.

In Machine Learning, semi-supervised learning is a class of algo-

rithms that utilize unlabeled data as well as labeled examples when

training a model. Co-training (Blum and Mitchell, 1998) is an

instance of semi-supervised learning, which is often employed in

scenarios where the number of labeled examples is low and the

number of unlabeled instances is large. The reason for this imbal-

ance is simply due to the high cost of labeling the data. This fits per-

fectly the description of the problem we previously outlined in

which a multitude of genomic data is readily available but only

a small fraction of it contains manually curated disease phenotypes.

For notation purposes, we will assume that a dataset D con-

tains two classes of data: labeled (L) and unlabeled (U). In semi-

supervised learning, the family of bootstrapping algorithms that

learn from unlabeled data in an iterative manner, proceed in the

following way (Dasgupta et al., 2002): (i) build a classifier on L,

(ii) use it to assign labels to some instances in U and include these

newly labeled data in L. The classifier in (i) is then retrained and

the process is iterated until a given stopping criterion is met (nor-

mally when U is empty or when a certain number of iterations is

reached).

The co-training method (Blum and Mitchell, 1998) is a specific

implementation of this generic approach which benefits from a nat-

ural split of the feature space in D. In essence, an instance x is

described by the set X of all available features in D. For co-training,

X is comprised of two mutually exclusive ‘views’ X1 and X2. In this

way, a labeled object x can be referenced as ððx1;x2Þ; yÞ where x1

and x2 are the values for the features in X1 and X2 respectively, and

y is the class label. The algorithm then learns two classifiers h1 and

h2, one for each view of L, followed by an iterative bootstrapping

in which instances of U are labeled and the most confident ones

are moved to L. Two important conditions must be met for co-train-

ing to be applicable: (i) x1 and x2 should be conditionally independ-

ent of each other given y and (ii) X1 or X2 are sufficient to train

a classifier h1 or h2 that could classify the data points in D. When

this is the case, a good predictor h2 can be learned from random

classification noise from an initial weak predictor h1 (Blum and

Mitchell, 1998).

The work closest to our approach in genetics is missing pheno-

type imputation (Bobb et al., 2011; Zhou and Stephens, 2014), in

particular when dealing with high-dimensional phenotypes as in

eQTL (expression quantitative trait loci) studies. These approaches

differ from ours in that they try to predict individual missing pheno-

types in a large set of phenotypes for some individuals. In contrast,

we systematically annotate an entire unlabeled dataset with a one-

dimensional binary phenotype.

2 In silico phenotyping

2.1 Setup
In order to illustrate the applicability of our in silico phenotyping

approach in a clinical scenario, we will use a dataset of patients with

two diagnostic types of migraine, termed migraine with aura and

migraine without aura. In this dataset, a clinical diagnosis (disease

phenotype) as well as clinical covariates and genotype data are avail-

able for each patient.

The methodology is built around three main partitions of the

entire dataset, each of them consisting of different types and

amounts of data:

• Set I, the training dataset: contains a subset of the patients for

which all available information is present. For each patient

there is a disease phenotype, a set of clinical covariates and geno-

type data surveyed for a specific set of single-nucleotide poly-

morphisms (SNPs). This complete set of information is normally

hard or expensive to acquire, therefore the number of instances

in this set will be relatively small compared to the sets described

below.
• Set II, the co-training dataset: is similar to the training dataset,

with the important difference that the patients lack a disease

phenotype. Nevertheless, it has the advantage of being relatively

large since its instances are deemed to be easier or less expensive

to obtain.
• Set III, the evaluation dataset: is used for evaluation of the

method. For each patient, it contains their genotype and known

disease phenotype. It does not contain clinical covariates.

The above mentioned partitions of the data are illustrated in

Figure 1a. Additionally, each partition shows the type of informa-

tion it contains: clinical covariates, genotype data or disease pheno-

type information.

To understand the rationale of our method it is worth mention-

ing that the types of data mentioned above have an implicit price-tag
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associated to them. We assume that the phenotype information is

the one with the highest cost as it involves multiple visits to a

physician in order to obtain a clinical diagnosis. Normally, this diag-

nosis cannot be obtained without performing tests on the patient.

The results of these tests are compounded into the clinical covari-

ates, which constitute our second most expensive source of data. In

addition to the normal tests that are conducted in a clinical setting,

there may be a need to obtain genetic information about the pa-

tient’s DNA. This is what we call genotype data and we consider it

the least expensive of the three. This last assumption may be debat-

able at the time this manuscript was written but it is strongly sup-

ported by a trend in which the cost of whole-genome sequencing

continues to dramatically decrease (Mardis, 2011; Wetterstrand,

2013).

Following the spirit of co-training, the two exclusive views of the

data are the clinical covariates and the genotype data. Both of them

comprise the full dimensionality of the dataset.

The sets I, II and III were obtained from performing 100 random

splits of the entire migraine dataset. The relative sizes of the sets

were 10% for I, 70% for II and 20% for III. In the case when

patients were randomly assigned to set II, their true disease pheno-

types were assumed to be unknown. The 100 splits were then used

to determine the feasibility of the model as described in the next

section.

2.2 Approach
The previous section described the structure of the data used by our

in silico phenotyping approach. This section provides details of all

the steps implemented in our methodology. These main steps are

presented in Algorithm 1.

An important first distinction that can be made between the ori-

ginal co-training algorithm (Blum and Mitchell, 1998) and our

method is that we do not follow an iterative approach. Our method

consists of a two-stage process illustrated in Figure 1b and c.

• Step 1: the goal is to predict a disease phenotype for the patients in

set II. To that effect, a classifier hc is learned from the clinical covari-

ates of the patients in set I. The classifier is then applied to the clin-

ical covariate view of all instances in set II and disease phenotypes

are predicted for each instance. These predictions, colored in grey in

Fig. 1. Partitioning of the data and the proposed two-stage approach to co-training. Information about the disease phenotype (diagnosis) indicated as “pheno”

and colored in gold (true labels) and silver (imputed labels). Clinical covariates shown as a generic real value (9.9). Genotype information coded as a model of

additive effects {0, 1, 2}

Algorithm 1: In silico phenotyping via co-training.

Data: Set I: training set with clinical covariates, genotype data

and class labels y¼ {aura, no_aura}

Set II: co-training dataset with clinical covariates and

genotype data. No class labels

Set III: independent evaluation dataset with genotype

data and class labels y¼ {aura, no_aura}

Result: Two classifiers:

a clinical covariate classifier hc to impute labels on II

a genotype classifier hg to be tested on III

1. Use I to train a classifier hc on the clinical covariates

2. Apply hc on the clinical covariates in II. Predict the class

labels for all elements in II

3. Use the true labels in I and the imputed labels in II to train

hg on the genotype data

4. Apply hg to the genotypes in III and compare the predicted

labels to the true labels
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Figure 1b, are considered ‘imputations’ of the missing disease

phenotypes in II because of how they are utilized in the next step.
• Step 2: the disease phenotypes predicted in the previous step are

used to augment the pool of labeled examples. A second classifier

hg is constructed via co-training by using: (a) the genotype data

and true disease phenotypes in I and (b) the genotypes and pre-

dicted disease phenotypes in II. Finally, this classifier is tested on

III to obtain the area under the ROC curve (AUC score). This is

shown in Figure 1c.

The disease phenotypes for sets I and II in the figure are colored

differently to distinguish the true (gold) labels from the imputed

ones (silver).

2.2.1 Construction of the clinical covariate classifier hc

An ensemble strategy, known as bagging predictors, was used to

learn the clinical covariate classifier hc. Bagging predictors

(Breiman, 1996) generates multiple versions of a predictor and uses

them to get an aggregated predictor. The aggregation typically out-

puts an average over all values when predicting a numerical output

or conducts majority voting when predicting a class. Bagging pre-

dictors can be an effective methodology to generate high accuracy

predictors (Breiman, 1996) and was the method of choice for our

algorithm. In order to generate such an aggregated predictor for the

clinical covariates, a machine learning model for the predictors had

to be selected. In the case of the clinical data at hand, empirical

evaluation led to the choice of logistic regression for the predictors.

A vital element for the bagging predictors is that the predictors show

instability (Breiman, 1996), which in our case was achieved by

applying the following two techniques:

• the learning set was perturbed by randomly assigning 63.2% of

it to every individual predictor. A total of 5000 of these pre-

dictors were generated.
• for every predictor, a random selection of

ffiffiffi

c
p

from all c features

was assigned to the model, which is a common heuristic for gen-

erating these random subspaces.

These techniques created sufficient variability in the predictors

such that, in the end, an effective aggregated prediction was made.

For the aggregation of the logistic regressors, the mean over the class

probabilities was used (Skurichina and Duin, 2002). As mentioned

before, 5000 bagged predictors were averaged to get the final

prediction.

2.2.2 Univariate feature selection, choosing the top k SNPs

Since our genotype data is of very high dimensionality (� 500 000

SNPs), we conducted univariate feature selection before constructing

the genotype-based classifier, in order to retain only the most rele-

vant features. We performed this dimensionality reduction by deter-

mining the Pearson correlation coefficient between each SNP and

the class labels (see Supplementary materials, Section S1.3). For

each SNP j, the genotypes of all patients (coded as {0, 1, 2}) and the

binary 0/1 class vector indicating migraine without aura and with

aura were compared. This 0/1 vector with true labels is only present

in the training dataset. For the co-training dataset this class vector

comes in the form of soft labels with values vi 2 ½0; 1� for patient i.

The soft labels were obtained using the aggregated logistic regres-

sion predictors described in Section 2.2.1. The Pearson correlation

was able to deal with the two types of label vectors in concert by

simply including them into the same computation. A P-value of the

correlation was then computed for each SNP and all SNPs were

ranked by their P-values. A low P-value corresponded to a high

degree of association between the state of a SNP and the occurrence

of the two subtypes of migraine. Then, the top k SNPs with the low-

est P-values were selected as features for the hg classifier. We set k to

a default value of 2000 and the effect of varying k is described in

Section 3.3.5.

2.2.3 Construction of the genotype classifier hg

In order to train the classifier hg on the genotype data, the top 2000

SNPs obtained in Section 2.2.2 were used as attributes. Another

element that was necessary to train hg were the class labels. Since

most classification algorithms only accept clearly defined classes,

the predicted (soft) labels in the co-training dataset that were

obtained from hc had to be binarized. This was done by ranking

these prediction scores and selecting a cut-off such that the class pri-

ors, pðy ¼ auraÞ and pðy ¼ no_aura) as estimated on the training

dataset, were preserved. This is a grounded assumption by the fact

that the data in the co-training dataset were sampled from the same

distribution as the training dataset.

Due to this binarization, a supervised learning method that is

both accurate and robust to potential mislabelings in the co-training

dataset was needed. An attractive candidate was random forest

(Breiman, 2001), which was ultimately used as our genotype classi-

fier hg. To train this model 10 000 weak predictors in the form of

trees were created, using a 63.2% random data split. At each node

in the tree, the common heuristic of selecting
ffiffiffi

k
p

random features

was used (k¼2000 in our case).

3 Experiments

We explored the use of in silico phenotyping on a dataset of

migraine patients.

3.1 Datasets
The migraine patients were part of the Leiden University Medical

Center Migraine Neuro-analysis (LUMINA) programme. The

recruitment of participants and the methods to collect the clinical

and genotype data can be found in Anttila et al. (2010) and

Freilinger et al. (2012) (see summary in Supplementary materials,

Section S1.1). There were 1938 patients in total, of which 820 were

clinically diagnosed as having migraine with aura and 1118 without

aura. The two labels aura vs. no_aura constitute the patients’ dis-

ease phenotypes.

The data available for each patient can be viewed as two mutu-

ally exclusive views: clinical covariates and genotype data.

Clinical covariates. They consist of binary labels extracted from

questionnaires based on the International Classification of

Headache Disorders (ICHD-II) guidelines (Headache Classification

Subcommittee, International Headache Society, 2004) and aimed

at diagnosing the subtype of migraine. The traits are: attack length,

pulsation, unilaterality, aggravation by physical exercise, intensity

of pain, photophobia, phonophobia, nausea and vomiting. For ex-

ample, attack length is the answer to the following question: “Do

you have headache attacks lasting between 4 and 72 hours?”.

Information on gender and age of onset was also collected.

Genotype data. Patients were genotyped using Illumina arrays that

covered �500 000 SNPs. The two alleles reported for patient i and

SNP j were coded according to a model of additive effects.
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For each SNP j with j 2 f1; 2; . . . ; sg, where s is the total number

of SNPs, the genotype of patient i was coded as:

• 0 if the patient is homozygous for the major allele,
• 1 if heterozygous,
• 2 if homozygous for the minor allele.

The SNPs were pre-processed and removed from the analysis if

they did not meet the following criteria:

• minor allele frequency >0.01,
• Hardy-Weinberg equilibrium >1.0e–6.

SNPs were further filtered out if they were present in one cohort

and not in the other, i.e. the intersection between the SNP arrays

was preserved. After the filtering steps, a total of 463 825 SNPs were

analyzed for each patient.

Systematic differences in allele frequency between patients with

aura and without aura can result in misleading associations of cer-

tain SNPs. This problem is referred to as population stratification

and is measured by the genomic control factor kGC defined as a me-

dian of v2 statistics (Devlin and Roeder, 1999). For the Dutch co-

horts kGC ¼ 1:0529 and, as a result of this, we safely assumed that

population stratification was not a concern in this dataset (a value

of kGC < 1:1 normally indicates absence of stratification). The filter-

ing of SNPs, their coding to additive effects and the computation of

kGC were performed with PLINK (Purcell et al., 2007).

All data analyzed in this work were obtained from the IHGC

with the appropriate approval from the centers in charge of their

collection.

3.2 Experimental setup
The entire migraine dataset was partitioned into the training, co-

training and evaluation datasets (sets I, II and III, respectively, as

described in Section 2.1). Each sample could only belong to one of

the sets. For the samples assigned to II, their disease phenotype was

assumed missing and was therefore ignored. In a similar manner,

samples assigned to III were assumed to only have genotype data.

One hundred (100) random partitions of the data were generated

and the method was executed on each of them. From each partition,

an area under the curve (AUC) score was reported. The final classifi-

cation performance of the 100 random permutations was obtained

as the mean AUC score accompanied by its standard deviation.

The experiments were run using Python (version 2.7.6) with

Scikit-learn (version 0.15.2; Pedregosa et al., 2011). Plots and other

additional results were created in R (version 3.1.2).

3.3 Results
In order to systematically evaluate the utility of our in silico phenotyp-

ing approach, we conducted the following experiments: Firstly, we

determined the lower and upper bounds for the prediction perform-

ance of the algorithm assuming perfect labeling of the data, We then

examined how the actual prediction performance of in silico pheno-

typing compared to these bounds. Secondly, the effect of varying the

amount of data in the training and co-training sets on the prediction

performance of in silico phenotyping was established. Finally, using

the relative sizes of data splits detailed at the end of Section 2.1, we

empirically examined the effect of varying the number of SNPs that

are selected in the univariate feature selection (Section 2.2.2).

3.3.1 Upper/lower bounds and the algorithm’s performance

Four metrics were used to compare the prediction performance of

the algorithm. These metrics corresponded to different cases that

ranged from using the least possible amount of data for training (to

compute a lower bound) to using all available data (upper bound).

Between these two ranges, the actual prediction performance was

reported and all these values are shown in Table 1 with their respect-

ive receiver operating characteristic (ROC) curves in Figure 2.

Lower bound. The genotype classifier hg was trained only on I and

evaluated on III. This was the least amount of data that could be

made available to the classifier.

Upper bound. When hg was trained on Iþ II using all the true labels

(bear in mind that although II was assumed to have no disease

phenotypes, these data were available to us). This was the best case

scenario on which hg was fed with the best possible data. It assumed

that the clinical covariate classifier hc performed a perfect imput-

ation of the disease phenotypes on II.

Univariate feature selection on I. This refers to applying the entire

co-training method as described in Algorithm 1 when the top SNPs

used in hg were selected only from I (true labels).

In silico phenotyping (co-training). This is the methodology we pro-

pose in this paper and also corresponds to Algorithm 1. Here, the

Table 1. Bounds and prediction performance of in silico phenotyp-

ing. Partition of the data into: set I¼ 10%, set II¼ 70% and set

III¼ 20%; 100 random folds

AUC scores

Metric l r

Lower bound, training only on I 0.574 0.034

Univariate feature selection on I, training on Iþ II 0.608 0.035

In silico phenotyping (co-training) 0.646 0.029

Upper bound, Iþ II with true labels 0.689 0.025

Fig. 2. ROC curves of bounds and prediction performance of in silico phenotyp-

ing. Partition of data into sets: I¼10%, II¼70% and III¼20%; 100 random folds

In silico phenotyping i307

Setup
)(
-
-
-
-


univariate feature selection was done on the augmented dataset Iþ II.

In other words, the top SNPs used as attributes in hg were chosen

when a bigger dataset with true labels and predicted labels was

available.

It can be seen in Table 1 that the in silico phenotyping approach

via co-training (highlighted) is able to substantially improve the clas-

sification performance compared to the lower bound. Further, if the

univariate feature selection is not performed on the co-training data-

set the performance of the method is adversely affected. This leads

to the conclusion that feature selection is an important performance

driver in our co-training approach.

3.3.2 Varying the size of I (true labels)

In order to explore how the initial size of the training dataset af-

fected the performance of our method, we conducted an analysis in

which the size of the co-training dataset was fixed and the size of

training dataset varied. In formal terms, 100 random partitions of

the entire dataset into I, II and III were created such that their rela-

tive sizes were: 10% for set I, 70% for set II and 20% for set III.

Sets II and III were fixed and the size of I was gradually decreased

(from 193 samples to 19). Table 2 shows the results of this

analysis.

On the one hand, the expected trend that more training data

leads to a better performance is indeed observed. On the other hand,

radically decreasing the size of the training dataset does not lead to

the steep decline in performance that one might expect. Most not-

ably is the fact that for smaller sizes of I the performance stays above

the lower bound shown in Table 1. This indicates that even with a

smaller labeled set, our co-training approach clearly brings benefits

to the final performance of the classifier hg.

3.3.3 Varying the size of II (unlabeled data)

Similarly to what was done in Section 3.3.2, we wanted to analyze

the performance of our method when the size of the co-training

dataset was varied. In this case, 100 random partitions were cre-

ated with set sizes of 10% for I, 40% for II and 20% for III. Sets I

and III were fixed and II was extended from 774 to 1356 sam-

ples (70% of the data). The results of this analysis are shown in

Table 3.

The trend displayed in Table 3 summarizes the motivation of our

approach: as the unlabeled set increases, the co-training approach

benefits from a larger pool of unlabeled samples and the perform-

ance of the final classifier improves.

3.3.4 Varying simultaneously the sizes of I and II (comparison to

lower bound)

The results shown in Tables 2 and 3 present a snapshot of the per-

formance of co-training when one set is varied while the other one is

fixed. To further understand the dynamics at play, we conducted a

more comprehensive analysis in which we explored the entire spec-

trum of variations of sets I and II.

To that effect, we created 100 random partitions of the data into

sets I¼40%, II¼40% and III¼20%. For each of these random

partitions, sets I and II were subdivided into a 10-by-10 grid corres-

ponding to 10% subdivisions of the original data (40% in this case).

The entire co-training analysis was conducted on each cell of the

grid, for all random partitions. This amounted to a total of 10 000

executions of the method. Then, the mean AUC scores for every cell

were computed.

This exact same procedure was repeated on the same random

partitions and grid subdivisions mentioned above, but computing

the lower bound instead. As described in Section 3.3.1, the lower

bound was obtained by training hg on set I and by testing on set III.

The mean AUC scores were also computed for each cell. Finally, a

delta AUC (DAUC) was obtained for each cell in the grid by sub-

tracting the lower bound AUC from the AUC obtained through

co-training. This DAUC represents the improvement brought by

co-training for a given partition of the data. Figure 3 shows these

results. The DAUC was chosen because of its robust properties in

relation to other measures used to compare model performance

(Hilden and Gerds, 2014). From the figure it is clear that the

co-training approach outperforms the lower bound when the size of

set I is relatively small compared to the size of II. This is seen by

larger DAUCs in the top-left corner of Figure 3. With set I getting

larger, the benefit of co-training is diminished.

3.3.5 Choosing the value of k for univariate feature selection

As described in Section 2.2.2, we set the number of selected SNPs by

default to k¼2000. We examined the effect of this choice by the

two types of analyses described below.

Table 2. Varying sizes of I and its AUC scores when II is fixed (size

of II¼ 1356 samples, 70% of the data; 100 random folds)

AUC scores

Number of samples in I l r

193 10% of the data 0.646 0.029

96 5% 0.619 0.034

19 1% 0.605 0.035

Table 3. Varying sizes of II and its AUC scores when I is fixed (size

of I¼ 193 samples, 10% of the data; 100 random folds)

AUC scores

Number of samples in II l r

774 40% of the data 0.597 0.038

969 50% 0.604 0.035

1162 60% 0.611 0.035

1356 70% 0.646 0.029

Fig. 3. Delta of mean AUC (in silico phenotyping vs. lower bound) for varying

sizes of I and II
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Firstly, we applied our full co-training methodology by con-

structing classifiers hg with varying numbers of k features. (k 2
{200, 400, 800, 1600, 2000, 3200, 6400, 12 800, 25 600, 51 200}).

For each k, we computed the mean AUC of 100 random partitions of

the data and report these values in Table 4. The results indicate that

the mean AUC does not drastically improve for choices of k larger

than 2000. In fact, the performance for k>1600 flattens out and

does not show a strong decreasing or increasing trend. Similar results

have also been observed for a large number of other genotype-based

classifiers on other datasets (Manor and Segal, 2013).

Secondly, we also performed an objective analysis to select the

optimal number of features, k. To this effect, we compared different

choices of k by performing internal cross-validation on the training

data. The results of this analysis can be found in the Supplementary

materials (Section S1.7, Table S4). A value of k¼25 600 was found

to be optimal in terms of mean AUC in the internal cross-validation.

Still, when this k is used on the independent evaluation data (set III),

the mean AUC is only slightly better than the mean AUC obtained

for k¼2000 (0.2% improvement, see Table 4).

4 Discussion and conclusion

In this article, we have presented an approach to in silico phenotyp-

ing. It is the problem of imputing a disease phenotype for an individ-

ual with known genotype and side-information, such as clinical

covariates or health records. We have shown that in silico phenotyp-

ing can be employed to systematically augment datasets on which

models for phenotype prediction can be trained. This augmentation

of the training dataset led to a drastic improvement in prediction

quality when predicting subtypes of migraine phenotypes on patients

from a subprogramme of the International Headache Genetics

Consortium.

Several factors affect the ability to improve disease phenotype

prediction through co-training. First, the original training dataset

must be small enough to allow for any improvement by augmenting

the training dataset. Otherwise, the classifier trained on the original

dataset will already achieve a performance that can hardly be

improved.

Second, the dataset on which in silico phenotyping is performed

must be large enough compared to the original training dataset.

Adding only very few new samples to the original training dataset

will not significantly change the performance of the classifier.

Third, the side information that is used to predict missing disease

phenotypes, such as clinical covariates or health record data, must

be predictive for the given phenotype, while not being completely

redundant to the genetic data. This means, a classifier trained on the

side information may not give predictions that are highly correlated

with those of the classifier trained on the original dataset

(see Supplementary materials, Section S1.2). Otherwise, both will

mis-classify exactly the same points.

All of these constraints seem rather restrictive, but in fact, we

believe that they are met not only in our case study here, but also in

many current datasets. In most problems of disease phenotype pre-

diction, we are far from having enough samples to reach a point at

which prediction could not be improved. Large sequencing projects

create more and more genotypic data, and biobanks and electronic

health record databases are collecting more and more clinical infor-

mation on samples and patients.

It is important to note that we here focus on improving disease

phenotype prediction through augmenting the genotypic training

dataset. Despite the significant improvement that we obtain, further

improvements may be achieved not only by another increase in the

training dataset size, but also by including environmental or epigen-

etic factors, such as DNA methylation, into our model. That said,

co-training can still be applied, even when working with these richer

models, and may contribute to reaching the ultimate goal of making

disease phenotype predictions accurate enough for clinical

applications.
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