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Abstract
Chaitophorinae aphids are widespread across Eurasia and North America, and include some important 
agricultural and horticultural pests. So, accurate rapid species identification is very important. Here, we 
used three mitochondrial genes and one endosymbiont gene to calculate and analyze the genetic distances 
within different datasets. For species delimitation, two distance-based methods were employed, threshold 
with NJ (neighbor-joining) and ABGD (Automatic Barcode Gap Discovery), and two tree-based ap-
proaches, GMYC (General Mixed Yule Coalescent) and PTP (Poisson Tree Process). The genetic interspe-
cific divergence was clearly larger than the intraspecific divergence for four molecular markers. COI and 
COII genes were found to be more suitable for Chaitophorinae DNA barcoding. For species delimitation, 
at least one distance-based method combined with one tree-based method would be preferable. Based on 
the data for Chaitophorus saliniger and Laingia psammae, DNA barcoding may also reveal geographical 
variation.
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Introduction

Aphids from more than 5,000 species (Favret 2016) feed on plant phloem directly 
and spread various plant diseases (Blackman and Eastop 2000), many serving as 
important economic pests. The identification of aphid species based on morphological 
characteristics faces tremendous challenges due to their complicated life cycle, 
polymorphism, phenotypic plasticity, and numerous morphs (Zhang and Zhong 
1983, Foottit et al. 2009a). Chaitophorinae lies within Aphididae, and comprises 
two tribes, Chaitophorini and Siphini, including 196 species and subspecies in 12 
genera (Remaudiere and Remaudiere 1997, Favret 2016). The subfamily is distributed 
mainly in the Palaearctic (about 80% of species), and Nearctic (Richards 1972, Qiao 
1996, Liu et al. 2009, Wieczorek 2010). Most species in this subfamily are monoecious 
holocyclic, but some species, such as Sipha (Sipha) flava and Sipha (Rungsia) maydis, may 
be anholocyclic in regions with milder winters (Blackman and Eastop 2000, Wieczorek 
2010, Wieczorek and Bugaj-Nawrocka 2014). The Chaitophorini is mainly associated 
with plants of the families Salicaceae and Aceraceae (Blackman and Eastop 1994), 
whereas the Siphini infest plants in the Poaceae, Cyperaceae, Juncaceae and Typhaceae 
(Blackman and Eastop 2006). Additionally, individual species often have high host 
specificity (Blackman and Eastop 1994). Species identification of Chaitophorinae 
aphids can be difficult when based on their morphological characteristics. The 
Chaitophorini have clear morphological differences between genera, but Chaitophorus 
(109 known species) and Periphyllus (49 known species) have high species diversity 
(Essig 1952, Hille Ris Lambers 1960, Pintera 1987, Qiao 1996); and the morphological 
differences between species within these genera are relatively slight, often depending 
on the chaetotaxy of the body dorsum and appendages (Pintera 1987). In the Siphini, 
both among genera and between species, overlap and convergence of morphological 
characteristics are common, and genus and species identification are not easy. Sipha in 
particular (11 known species) has relatively great diversity, and species identification 
can be a problem.

DNA barcoding based on a short fragment of mitochondrial DNA can provide an 
effective tool for species diagnosis. In animals, the 5’end of mitochondrial cytochrome 
c oxidase I (COI) with a 658-bp fragment was selected as a standard DNA barcode 
(Hebert et al. 2003). This has been widely used for identifying unknown specimens 
and the rapid identification of species (Hebert et al. 2003, Wang and Qiao 2009, 
Wang et al. 2013b, Wen et al. 2013). Its practicability and effectiveness have been 
recognized and accepted in some insect groups, such as Diptera (Scheffer et al. 2006), 
Lepidoptera (Hajibabaei et al. 2006), Ephemeroptera (Ball et al. 2005), Hemiptera 
(Lee et al. 2011), Coleoptera (Lobl and Leschen 2005), and Hymenoptera (Smith 
et al. 2008). Additionally, the application range was expanded to pest control and 
quarantine (Armstrong and Ball 2005, Ratnasingham and Hebert 2007, Naaum et al. 
2012, Pelletier et al. 2012). For aphids, the DNA barcoding approach has played an 
efficient role in the rapid identification of species on specific plants (Naaum et al. 
2012, Chen et al. 2013b, Wang et al. 2013a, Wang et al. 2013b, Wen et al. 2013, 
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Wang et al. 2015), the effective distinction of morphologically indistinguishable spe-
cies and subspecies (Wang and Qiao 2009, Rebijith et al. 2013, Cocuzza and Cavalieri 
2014, Beji et al. 2015, Kinyanjui et al. 2016), the recognition of cryptic species (Re-
bijith et al. 2013, Lee et al. 2015), and in species classification (Cocuzza and Cavalieri 
2014, Mroz et al. 2015). Likewise, DNA barcoding may be used in species diversity 
assessment within different regions (Podmore et al. 2015, Chen et al. 2016); and is 
a powerful tool for the identification of multi-life stages, different morphs, and bio-
logical debris (Shufran and Puterka 2011). Crucially, it has improved the monitoring 
and control of pest aphids. The identification of aphid species is often difficult due to 
the shortage of easily distinguishable morphological characteristics, or feature conver-
gence (Wang and Qiao 2009). Some chaitophorine species are important agricultural, 
forestry, and horticulture pests, for which accurate identification is necessary. At the 
authors’ last count (2016.04.06), researchers have provided some chaitophorine DNA 
barcoding sequences for 36 species to the NCBI and for 49 species to the Barcode of 
Life Data System (BOLD) (Foottit et al. 2008, Foottit et al. 2009b, Lee et al. 2011, 
Gwiazdowski et al. 2015). However, the DNA barcoding of this group is insufficient. 
In this work, we sequenced 1,609 sequences from 670 samples in 8 genera from both 
tribes of Chaitophorinae, based on three genes from the aphid mitochondrial genome, 
and one from the endosymbiont Buchnera. We employed four methods (threshold 
with NJ, ABGD, GMYC, and PTP) to analyze sequence diversities and genetic diver-
gences between different species and probe the efficiency of identifying species. Based 
on DNA barcoding data, we also discuss the influence of geographical distribution on 
population differentiation.

Materials and methods

Taxa sampling and gene selection

All samples were collected into and cryopreserved in 95% or 100% ethanol. DNA 
from one individual per sample was isolated for molecular studies and three to five 
individual aphids per collection were mounted on microscope slides for morphological 
examination. Preserved aphid colonies were examined prior to preparation to ensure 
that they did not consist of multiple species. Voucher specimens for each sample were 
identified by G.X. Qiao based on morphological diagnostic features using standard 
literature-based keys (esp. Blackman and Eastop 1994, Pintera 1987, Wieczorek 2010) 
and by a comparison with previously identified specimens in the National Zoological 
Museum of China, Beijing. To avoid mutual influence and to ensure the independ-
ence of the different research methods, the morphological identification and molecular 
research were performed independently. All samples and voucher specimens were de-
posited in the National Zoological Museum of China, Institute of Zoology, Chinese 
Academy of Sciences, Beijing, China. Details of the sequenced taxa and voucher infor-
mation are listed in Suppl. material 1.
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Three aphid genes were targeted: mitochondrial cytochrome oxidase c subunit I 
(COI), cytochrome oxidase c subunit II (COII), and cytochrome b (Cytb), and one 
aphid endosymbiont Buchnera gene gluconate-6-phosphate dehydrogenase (gnd) (Kim 
and Lee 2008, Wang and Qiao 2009, Zhang et al. 2011, Chen et al. 2012).

DNA extraction, amplification and sequencing

Total genomic DNA was extracted from single aphid. Individual aphids were selected 
from the ethanol-preserved candidates with a destructive DNA extraction procedure. 
Plump adults are the ideal experimental material, but they must be examined under 
a microscope (Leica DM 2500) to eliminate parasitized individuals. Total DNA was 
extracted by following the Quick-Start protocol of DNeasy Blood & Tissue Kit (QIA-
GEN, Dusseldorf, Germany) with a single individual. The DNA solution was then 
stored at -20 °C for subsequent molecular experiments.

The polymerase chain reaction (PCR) mixture for the amplification of COI, COII, 
Cytb, and gnd genes comprised 22 μl of double distilled water (ddH2O), 3 μl of 10 
×EasyTaq Buffer (+ Mg2+) (TransGen Biotech, Beijing, China), 2.4 μl of 2.5 mM/800 
μl dNTPs (TransGen Biotech), 0.6 μl of 10 pmol/μl forward and reverse primers, 
0.4 μl of 5 U/μl EasyTaq DNA Polymerase (TransGen Biotech), and 1 μl of DNA 
solution for a total volume of 30 μl.

The PCR conditions differed according to the gene and the specific primers, es-
pecially the annealing temperature, which was the most critical factor influencing 
product quality. The detailed primer information is shown in Suppl. material 2. The 
thermal setup of primer LepF/LepR (Foottit et al. 2008) or LCO1490/HCO2198 
(Folmer et al. 1994) for COI gene fragment was: a 5-minute initial denaturation at 
95 °C followed by 35 cycles of 30-second denaturation at 95 °C, 30 seconds of an-
nealing at 50 °C, a 1-minute extension at 72 °C, and a 10-minute final extension at 
72 °C. The protocol for primer mt2993+ (Stern 1994)/A3772 (Normark 1996) for 
tRNA/COII molecular marker was as follows: a 5-minute initial denaturation at 95 °C 
followed by 35 cycles of 1-minute denaturation at 95 °C, 1 min at 42 °C , 1 min at 
72 °C, and a 7-minute final extension at 72 °C. The parameters of primer CP1/CP2 
(Harry et al. 1998) for Cytb amplification was simplified as: 94 °C with 5 min, and 
40 cycles of 94 °C with 50s, 48 °C with 1 min, 72 °C with 1.5 min, and 72 °C with 
10  min. The setup of primer BamHI/ApaI (Clark et al. 1999) for Buchnera gnd gene 
was predigested as: 94 °C with 5 min, and 30 cycles of 94 °C with 1 min, 55 °C with 
30s, 72 °C with 1 min, and 72 °C of 10 min final extension.

The amplification products were detected by 1.5% agarose gel electrophoresis 
(AGE), and then purified using EasyPure Quick Gel Extraction Kit (TransGen 
Biotech). The eligible products were then sent to TsingKe Biological Technology, 
Beijing, China or BGI, Shenzhen, China for sequencing, which was required to 
be bidirectional.
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Sequence edition and alignment

The returned forward and reverse chromatograms were loaded and then assembled and 
edited by SeqMan in DNAStar software (DNASTAR, Madison, Wisconsin, USA). The 
nucleotide sequences were first examined in NCBI by Basic Local Alignment Search 
Tool (BLAST) (Altschul et al. 1990) to test their affiliations. Concurrently, for the 
encoding gene fragments, we translated the assembled contigs into amino acids by 
MEGA6 (Tamura et al. 2013) to examine whether the sequences were correct and ac-
curate. Multiple alignments were accomplished by MAFFT (Katoh and Standley 2013), 
and the sequences were then adjusted and trimmed manually in MEGA6. It is notewor-
thy that the sequences amplified with primer mt2993+/A3772 covered the COII gene 
fragment as well as a tRNA, which was then removed for subsequent analysis.

Species delimitation methods

In addition to sequences from 425 samples, we downloaded 245 COI and 1 COII 
sequence from NCBI. Here, we defined the datasets as COI-670 (including the whole 
research group and NCBI sequences), COII-376 (including 375 internal sequences 
and 1 NCBI sequence), Cytb-413 (newly gotten for this study), gnd-396 (newly ob-
tained sequences), and COI-338, COII-338, Cytb-338, gnd-338, which contained 
only the specimens that acquired all 4 gene sequences.

A neighbor-joining (NJ) (Saitou and Nei 1987) tree was constructed by MEGA6 
based on the aligned sequences. One thousand bootstrap replications were calculated 
to assess the credibility of the NJ analysis. The Kimura 2-parameter (K2P) model of 
base substitution (Kimura 1980) was selected in pairwise distances calculation, and for 
the more accurate comparison between sequences, the pairwise deletion pattern was 
selected for gaps/missing data treatment. After bootstrap consensus trees with boot-
strap values at each node were obtained, we computed the condensed tree with a 50% 
cut-off value for the consensus tree. When analyzing the COI-670 tree, we chose a 
threshold of 2% (Foottit et al. 2009b) for a cluster standard, which has been well used 
in aphids. With regard to the COII-376, COII-338, Cytb-413, Cytb-338, gnd-396 
and gnd-338 NJ trees, we calculated only the cluster topologies.

The Automatic Barcode Gap Discovery (ABGD) (Puillandre et al. 2012a) ap-
proach is a model-based method for delimiting species. Based on the existence of 
a barcoding gap (namely the intraspecific divergences are smaller than interspecific 
divergences) and a prior intraspecific divergence (p), the ABGD procedure first sorts 
the dataset into a hypothetical species, and then computes recursively with the previ-
ous groups to obtain a result optimized until there are no better partitions. We ran the 
ABGD with a graphic web version (http://wwwabi.snv.jussieu.fr/public/abgd/abgd-
web.html). First, we calculated the distance values among samples by using MEGA6 
with p-distance, Jukes-Cantor (JC69) model, and K2P model separately, and the 

http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
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result data were saved as CSV format file. We then chose 0.055, which had been sug-
gested for Aphididae (Foottit et al. 2009b), as the prior intraspecific divergence for 
COI-670 and COI-338 datasets, and we used a p value of 0.1, which was the default 
and shown to be sufficient for analysis, for the other data sets. The other parameters 
were maintained by default for all analyses.

The General Mixed Yule Coalescent (GMYC) (Fujisawa and Barraclough 2013) 
is a tree-based approach for the delimitation of species. We ran the GMYC meth-
od in R project (available from: https://www.r-project.org/) by using the “splits” 
package (available from: http://r-forge.r-project.org/projects/splits). The input tree 
was required to be strictly ultrametric and bifurcating, which meant there was no 
zero-length branch. Here, we used a maximum likelihood (ML) tree as the input. 
Therefore, the haplotypes were calculated and generated by DnaSP (Librado and 
Rozas 2009), and an ML tree was constructed by RAxML (Stamatakis 2006) with 
haplotype data. Due to the ultrametric and bifurcating requirement, the ML tree 
was constructed with r8s (Sanderson 2003). The outcome tree modified by r8s 
was read into the “splits” R package, and the delimiting result was obtained with 
relevant commands.

The Poisson Tree Process (PTP) (Zhang et al. 2013) model is another tree-based 
method for inferring putative species. The PTP approach is a close relative of the 
GMYC method, but it only needs a simple phylogenetic tree as its input without 
requiring it to be ultrametric and bifurcating. As an updated version of the original 
PTP, the bPTP method was employed simultaneously to separate hypothetical spe-
cies, which added a Bayesian support value to the tree. The PTP and bPTP analyses 
were run on a web server (http://species.h-its.org/ptp/) and the value 500,000 was 
selected for MCMC generations, with the other parameters set by default. The in-
put tree was an ML tree constructed by RAxML with GTRCAT model. However, 
we encountered the same problem as Schwarzfeld and Sperling (2015), namely 
that the bPTP analysis failed to show convergence under 500,000 generations (the 
upper limit of the web server). Therefore, only the PTP result is displayed and 
discussed below.

Results

Morphological identification

The 425 samples collected by the group members in recent years were carefully au-
thenticated with mounted individuals under the microscope, and all 425 samples were 
identified to species. The few vouchers with uncertain species identification were sort-
ed into featured clusters and were given the epithet “sp.”, which made them convenient 
for further analysis. A total of 75 morphological species were determined from 670 
whole samples, and 51 were identified from the 425 mounted samples.

https://www.r-project.org/
http://r-forge.r-project.org/projects/splits
http://species.h-its.org/ptp/
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Sequence alignment

The COI sequences were trimmed to a length of 658 bp, which included 365 con-
served sites, 293 variable sites and 258 parsimony-informative sites. The sequences had 
an average nucleotide composition of 38.0% T, 17.1% C, 34.4% A, and 10.5% G. 
The COII sequences were trimmed to a final length of 672 bp, among which 399 sites 
were conserved, 273 sites were variable, and 251 sites were parsimony-informative. 
The average T, C, A, G compositions of these sequences were 38.7%, 14.0%, 39.5%, 
and 7.8%, respectively. The Cytb gene was 760 bp, in which there were 420 conserved 
sites, 340 variable sites and 303 parsimony-informative sites. The Cytb sequences con-
sisted of 41.4% T, 15.3% C, 34.3% A, and 9.0% G. We obtained a total length of 
807 bp for the gnd gene with an average nucleotide composition of 37.8% T, 9.8% 
C, 39.5% A, and 12.8% G, among which there were 368 conserved sites, 439 variable 
sites and 417 parsimony-informative sites. Across all 4 genes, a strong T and A nucleo-
tide composition bias existed.

From a total of 425 samples, 425 COI gene fragment sequences, 375 COII gene 
fragment sequences, 413 Cytb gene fragment sequences, and 396 gnd gene fragment 
sequences were acquired. The successive amplification efficiency of those markers in 
order was COI (100%) > Cytb (97%) > gnd (93%) > COII (88%).

Genetic divergence analysis

Genetic divergences were assessed by 5 disparate metrics among and within species. For 
the interspecific divergences of congeneric species, we chose the average interspecific 
distance, which was calculated within genera that contained more than one species, 
and the smallest interspecific distance, which meant the minimal value of interspecific 
distance within genera with at least two species. When evaluating the intraspecific 
divergences, three variables (average intraspecific distance, mean theta, and average 
coalescent depth) were applied. The average intraspecific distance was the average value 
of the genetic distances between samples within species that had at least two individu-
als. The mean theta signified a modified theta, which expressed the average pairwise 
distance scored for species with more than one obtained representative, by dislodging 
improper individuals concerned with the asymmetrical acquisition of samples. The 
average coalescent depth, namely the average value of maximum intraspecific distance, 
was calculated for species in which there were no fewer than two samples.

All five interspecific and intraspecific metrics were determined within genera and 
species (Table 1). The results of different genes and datasets showed distinctly high 
interspecific divergences and low intraspecific distances. For DNA barcoding the 
smallest interspecific distance and average coalescent depth were the most useful and 
intuitive parameters. Within Chaitophorinae, the genetic divergence ranges of small-
est interspecific distance and average coalescent depth of COI, COII, Cytb, and gnd 
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Table 1. The inter- and intra-specific genetic distances of congeneric species of Chaitophorinae.

Interspecific Distance Intraspecific Distance

Genus/Dataset (no. 
species/specimens)

average 
interspecific 

distance

smallest 
interspecific 

distance

average 
intraspecific 

distance
mean theta average 

coalescent depth

Chaitophorus
COI-670(38/534) 0.1158±0.0191 0.1015±0.0178 0.0070±0.0060 0.0083±0.0057 0.0126±0.0126
COII-376(25/283) 0.0956±0.0246 0.0853±0.0207 0.0017±0.0019 0.0025±0.0019 0.0060±0.0054
Cytb-413(25/323) 0.1233±0.0281 0.0971±0.0260 0.0049±0.0066 0.0058±0.0068 0.0219±0.0357
gnd-396(25/306) 0.0996±0.0316 0.0807±0.0248 0.0020±0.0030 0.0034±0.0032 0.0042±0.0051
COI-338(25/253) 0.1117±0.0286 0.0995±0.0215 0.0058±0.0044 0.0077±0.0033 0.0088±0.0071
COII-338(25/253) 0.0950±0.0247 0.0855±0.0208 0.0018±0.0021 0.0027±0.0021 0.0062±0.0055
Cytb-338(25/253) 0.1169±0.0310 0.0983±0.0270 0.0043±0.0064 0.0052±0.0067 0.0164±0.0337
gnd-338(25/253) 0.0843±0.0264 0.0811±0.0255 0.0014±0.0016 0.0025±0.0014 0.0032±0.0033
Lambersaphis
COI-670(1/3) - - 0.0040±0.0028 0.0060±0.0000 0.0060±0.0000
COII-376(1/3) - - 0.0047±0.0033 0.0070±0.0000 0.0070±0.0000
Cytb-413(1/3) - - 0.0053±0.0012 0.0053±0.0012 0.0070±0.0000
gnd-396(1/3) - - 0.0007±0.0005 0.0010±0.0000 0.0010±0.0000
COI-338(1/3) - - 0.0040±0.0028 0.0060±0.0000 0.0060±0.0000
COII-338(1/3) - - 0.0047±0.0033 0.0070±0.0000 0.0070±0.0000
Cytb-338(1/3) - - 0.0053±0.0012 0.0053±0.0012 0.0070±0.0000
gnd-338(1/3) - - 0.0007±0.0005 0.0010±0.0000 0.0010±0.0000
Periphyllus
COI-670(19/83) 0.1113±0.0231 0.1075±0.0220 0.0040±0.0146 0.0080±0.0198 0.0218±0.0439
COII-376(13/53) 0.0936±0.0299 0.0938±0.0282 0.0007±0.0014 0.0027±0.0015 0.0024±0.0024
Cytb-413(14/54) 0.0975±0.0200 0.0944±0.0194 0.0020±0.0029 0.0041±0.0030 0.0052±0.0032
gnd-396(14/54) 0.1256±0.0669 0.1292±0.0602 0.0004±0.0010 0.0016±0.0014 0.0007±0.0012
COI-338(13/53) 0.0971±0.0258 0.0985±0.0248 0.0019±0.0032 0.0056±0.0032 0.0044±0.0035
COII-338(13/53) 0.0936±0.0299 0.0938±0.0281 0.0007±0.0014 0.0027±0.0015 0.0024±0.0024
Cytb-338(13/53) 0.0974±0.0203 0.0935±0.0206 0.0020±0.0029 0.0041±0.0030 0.0052±0.0032
gnd-338(13/53) 0.1250±0.0679 0.1283±0.0632 0.0004±0.0010 0.0016±0.0014 0.0007±0.0012
Trichaitophorus
COI-670(3/3) 0.1233±0.0200 0.1233±0.0200 - - -
COII-376(3/3) 0.1103±0.0190 0.1103±0.0190 - - -
Cytb-413(2/2) 0.1040±0.0000 0.1040±0.0000 - - -
gnd-396(3/3) 0.1427±0.0162 0.1427±0.0162 - - -
COI-338(2/2) 0.0990±0.0000 0.0990±0.0000 - - -
COII-338(2/2) 0.1190±0.0000 0.1190±0.0000 - - -
Cytb-338(2/2) 0.1040±0.0000 0.1040±0.0000 - - -
gnd-338(2/2) 0.1600±0.0000 0.1600±0.0000 - - -
Yamatochaitophorus
COI-670(3/3) 0.0043±0.0009 0.0043±0.0009 - - -
COII-376(3/3) 0.0037±0.0021 0.0037±0.0021 - - -
gnd-396(3/3) 0.0007±0.0005 0.0007±0.0005 - - -
Chaetosiphella
COI-670(3/24) 0.0515±0.0418 0.0693±0.0490 0.0149±0.0128 0.0197±0.0111 0.0185±0.0165
COII-376(3/24) 0.0372±0.0368 0.0563±0.0399 0.0083±0.0051 0.0091±0.0047 0.0090±0.0090
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were (0.0693–0.1233, 0.0060–0.0218), (0.0563–0.1110, 0.0024–0.0070), (0.0703–
0.1060, 0.0052–0.0230), and (0.0807–0.1427, 0.0010–0.0090), respectively. The 
figures above were obtained across the whole dataset. To obtain a more reliable and 
comparable analysis, we calculated the results of the 338-sample datasets. The small-
est interspecific distance and average coalescent depth ranges of COI-338, COII-338, 
Cytb-338, and gnd-338 were (0.0693–0.0995, 0.0044–0.0165), (0.0563–0.1190, 
0.0024–0.0090), (0.0703–0.1040, 0.0052–0.0230), and (0.0811–0.1600, 0.0010–
0.0090), respectively. The computations above showed a properly high smallest inter-
specific distance and a comparatively low average coalescent depth.

To observe the occurrence frequency of different genetic divergences, we drew the 
frequency line charts of inter- and intra-specific genetic distances based on 338 datasets 
(Figure 1). Each gene was signified in one chart: the top half was calculated with all 

Interspecific Distance Intraspecific Distance

Genus/Dataset (no. 
species/specimens)

average 
interspecific 

distance

smallest 
interspecific 

distance

average 
intraspecific 

distance
mean theta average 

coalescent depth

Cytb-413(3/24) 0.0481±0.0455 0.0703±0.0498 0.0140±0.0123 0.0154±0.0120 0.0230±0.0220
gnd-396(3/23) 0.0521±0.0608 0.0887±0.0627 0.0084±0.0068 0.0107±0.0058 0.0090±0.0090
COI-338(3/23) 0.0512±0.0422 0.0693±0.0490 0.0147±0.0128 0.0202±0.0107 0.0165±0.0145
COII-338(3/23) 0.0371±0.0369 0.0563±0.0399 0.0083±0.0052 0.0091±0.0048 0.0090±0.0090
Cytb-338(3/23) 0.0480±0.0457 0.0703±0.0498 0.0142±0.0124 0.0158±0.0121 0.0230±0.0220
gnd-338(3/23) 0.0521±0.0608 0.0887±0.0627 0.0084±0.0068 0.0107±0.0058 0.0090±0.0090
Laingia
COI-670(1/2) - - 0.0640±0.0000 0.0640±0.0000 0.0640±0.0000
COII-376(1/2) - - 0.0680±0.0000 0.0680±0.0000 0.0680±0.0000
Cytb-413(1/2) - - 0.0620±0.0000 0.0620±0.0000 0.0620±0.0000
Sipha
COI-670(5/17) 0.0940±0.0250 0.0882±0.0320 0.0082±0.0127 0.0147±0.0139 0.0118±0.0159
COII-376(2/5) 0.1115±0.0009 0.1110±0.0000 0.0027±0.0012 0.0027±0.0012 0.0040±0.0000
Cytb-413(2/5) 0.1073±0.0013 0.1060±0.0000 0.0048±0.0031 0.0058±0.0024 0.0090±0.0000
gnd-396(1/4) - - 0.0005±0.0005 0.0010±0.0000 0.0010±0.0000
COI-338(1/4) - - 0.0033±0.0021 0.0040±0.0017 0.0060±0.0000
COII-338(1/4) - - 0.0027±0.0012 0.0027±0.0012 0.0040±0.0000
Cytb-338(1/4) - - 0.0048±0.0031 0.0058±0.0024 0.0090±0.0000
gnd-338(1/4) - - 0.0005±0.0005 0.0010±0.0000 0.0010±0.0000

Notes: Interspecific divergences were calculated using the average interspecific distance and smallest 
interspecific distance. Intraspecific divergences were evaluated by the average intraspecific distance, mean 
theta, and average coalescent depth. The average interspecific distance was calculated within genera that 
contained more than one species. The smallest interspecific distance was defined as the minimal value of 
interspecific distance within genera with at least two species, the average intraspecific distance was the 
average value of the genetic distances between samples within those species that had at least two individ-
uals, the mean theta was expressed as the average pairwise distance scored from species with more than one 
obtained representatives by dislodging improper individuals concerned with the asymmetric procurement 
of samples, and the average coalescent depth was the average value of maximum intraspecific distances.
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Figure 1. Frequency line charts of inter- and intra-specific genetic distances based on 338 dataset. The 
x-axis represents the genetic distance, and the y-axis represents the occurrence times in the whole genetic 
distance matrix. Each peak was a data point with corresponding genetic distance and occurrence times. 
The data points on the green and red line were calculated with the interspecific distances, and the points 
on purple and blue line were calculated with the intraspecific distances. The overlap region, which was the 
crossing area of inter- and intra-specific divergence, is indicated by the red dotted rectangle. Each gene 
was signified in one chart: the top half was calculated with all the 338 samples; and the bottom half was 
scored by eliminating the queried samples of Chaetosiphella longirostris.
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Figure 1. Continue.

338 samples; and the bottom half was scored by eliminating two samples (Nos. 25138 
and 25161) of Chaetosiphella longirostris. The overlap region was indicated by the red 
dotted rectangle. No obvious barcoding gap was found in these samples across COI, 
COII, Cytb, and gnd genes. The overlap regions of COI, COII, Cytb, and gnd in 
the top half were 0.000–0.031, 0.000–0.023, 0.000–0.045, 0.000–0.018; and those 
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in the bottom half were 0.022–0.031, 0.011–0.023, 0.015–0.045, 0.006–0.018, re-
spectively. It was clear that the overlap region was much narrower by eliminating the 
questioned vouchers, and the total frequency within that region was also reduced sig-
nificantly (Figure 1). The data in the overlap region represented samples that the DNA 
barcoding would fail to identify. Therefore, a lower total frequency in that region was 
better. The order of the total frequencies in the overlap region was COI < COII < Cytb 
< gnd in the top and bottom half parts.

Species delimitation

Given that there were no unambiguous and credible references of genetic thresholds 
for COII, Cytb, and gnd in aphids, the method of threshold with NJ was applied only 
in the COI-670 dataset with a threshold of 2% (Foottit et al. 2009b). For all the COI, 
COII, Cytb and gnd datasets, one distance-based method ABGD (for the analysis re-
sults, see Suppl. material 3 for details) and two tree-based approaches GMYC and (b)
PTP were employed simultaneously as reference counterpoints to each other.

The morphological and molecular identification results are shown in Table 2. To 
suitably display the analysis results, four group names were used: accurate, of which 
the putative species clusters were identical with morphological identifications; split, 
whose component vouchers were merely part of a specific unabridged morphological 
species without representatives of others; lumped, which was defined as an aggregation 
of more than one species including all samples of those species; and partial lumped, a 
multi-species cluster that consisted of all the vouchers of one or several species as well 
as part samples of other species.

Seventy-five morphological species were identified from COI-670, which included 
sequences downloaded from NCBI. For COI-670, we obtained 89 putative species by 
the GMYC approach with a 65.17% accuracy rate, 85 species using PTP with 67.06% 
accuracy, 81 species using ABGD with 72.84% accuracy, and 81 species by threshold-
NJ with 72.84% accuracy. The COII-376 dataset with only one sequence from NCBI 
contained 51 morphological species, and 53 hypothetic species were gleaned using the 
GMYC method with an accuracy rate of 83.02%, 48 species using PTP with 83.33% 
accuracy, and 50 species using ABGD with 82.00% accuracy. The Cytb-413 data con-
tained 48 morphological species and generated 54 clusters by the GMYC method with 
an accuracy rate of 79.63%, 49 species using PTP with 81.63% accuracy, and 48 spe-
cies using ABGD with 79.17% accuracy. There were 49 morphological species within 
gnd-396, and the putative species found using the GMYC approach was 46 with an 
accuracy rate of 86.96%, using the PTP method was 45 species with an accuracy rate 
of 84.44%, and using the ABGD analysis was 48 species with 87.50% accuracy. An 
analysis of COI-338, COII-338, Cytb-338, and gnd-338 were performed to compare 
the results of different genes with diverse methods under the same sample composi-
tion. There were 45 morphological species within the given 338 samples. The analy-
sis results of various genes and accuracy rate were: COI-338 (GMYC: 47, 89.36%; 
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Table 2. Analysis results of different datasets with various approaches.

Dataset/Method Morphology Cluster number Accurate Split Lumped Partial lumped
COI-670 75
GMYC 89 65.17% 31.46% 2.25% 1.12%
PTP 85 67.06% 28.24% 3.53% 1.18%
ABGD 81 72.84% 23.46% 2.47% 1.23%
threshold with NJ 81 72.84% 23.46% 2.47% 1.23%
COII-376 51 1.89%
GMYC 53 83.02% 13.21% 1.89%
PTP 48 83.33% 8.33% 8.33% 0.00%
ABGD 50 82.00% 12.00% 6.00% 0.00%
Cytb-413 48
GMYC 54 79.63% 18.52% 0.00% 1.85%
PTP 49 81.63% 12.24% 2.04% 4.08%
ABGD 48 79.17% 12.50% 4.17% 4.17%
gnd-396 49
GMYC 46 86.96% 4.35% 8.70% 0.00%
PTP 45 84.44% 4.44% 11.11% 0.00%
ABGD 48 87.50% 6.25% 4.17% 2.08%
COI-338 45
GMYC 47 89.36% 8.51% 0.00% 2.13%
PTP 49 85.71% 12.24% 0.00% 2.04%
ABGD 46 91.30% 6.52% 0.00% 2.17%
COII-338 45
GMYC 45 93.33% 4.44% 2.22% 0.00%
PTP 45 86.67% 8.89% 4.44% 0.00%
ABGD 45 86.67% 8.89% 4.44% 0.00%
Cytb-338 45
GMYC 50 80.00% 18.00% 0.00% 2.00%
PTP 46 80.43% 13.04% 2.17% 4.35%
ABGD 42 83.33% 4.76% 7.14% 4.76%
gnd-338 45
GMYC 42 92.86% 0.00% 7.14% 0.00%
PTP 41 90.24% 0.00% 9.76% 0.00%
ABGD 44 93.18% 2.27% 2.27% 2.27%

Notes: The morphology column gives the number of morphological species of different datasets. Clus-
ter number represents the putative species amount of each method. Accurate represents which putative 
species clusters were identical with morphological identifications; and split represents which compon-
ent vouchers were merely part of a specific unabridged morphological species without representatives of 
others. Lumped, was defined as an aggregation of more than one species and the entire samples of those 
species were included, whereas partial lumped was defined as a multi-species cluster, which consisted of all 
the vouchers of one or several species as well as part samples of other species.

PTP: 49, 85.71%; ABGD: 46, 91.30%), COII-338 (GMYC: 45, 93.33%; PTP: 45, 
86.67%; ABGD: 45, 86.67%), Cytb-338 (GMYC: 50, 80.00%; PTP: 46, 80.43%; 
ABGD: 42, 83.33%), and gnd-338 (GMYC: 42, 92.86%; PTP: 41, 90.24%; ABGD: 
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44, 93.18%). The final results were all displayed in NJ trees (see Suppl. material 4–11) 
with bootstrap values. The tree topology should be regarded only as distance affinity 
and not a phylogenetic relationship.

Discussion

The appropriate DNA barcoding and suitable analysis method to Chaitophorinae

COI has not been the only gene marker used for aphid DNA barcoding, other genes 
from the mitochondrial genome and from endosymbionts having been used for vari-
ous aphid groups (Chen et al. 2012, Chen et al. 2013a, Liu et al. 2013, Tang et al. 
2015) . Additionally, many analytical methods have been used in DNA barcoding. 
Here, we focused on COI, COII, Cytb, and gnd genes, and applied four methods, 
threshold with NJ, ABGD, GMYC, and PTP, to delimitate species of Chaitophorinae.

For different genes, the amplification efficiency was COI (100%) > Cytb (97%) 
> gnd (93%) > COII (88%). Within the 338-sample dataset, the difference in values 
between the smallest interspecific distance and average coalescent depth were unequal 
in different groups. For Chaitophorus, Periphyllus, and Chaetosiphella (Table 1), the 
difference values were COI > Cytb > COII > gnd, gnd > COI > COII > Cytb, and 
gnd > COI > COII = Cytb, respectively. From the overlap region and total frequency 
(Figure 1), COI and COII were similar with a narrower overlap region and less frequency 
than Cytb. Although the overlap span of gnd was sufficient, its total frequency in that 
region was slightly larger. Therefore, the COI and COII genes may be better markers 
for DNA barcoding.

The most important factor in choosing the delimitation method was the identi-
fication accuracy within different genes. Therefore, a better approach means higher 
identification accuracy and a greater range of application with various genes. The ac-
curacy of GMYC, PTP, and ABGD within COI-338, COII-338, Cytb-338, and gnd-
338 were ABGD (91.30%) > GMYC (89.36%) > PTP (85.71%), GMYC (93.33%) 
> PTP = ABGD (86.67%), ABGD (83.33%) > PTP (80.43%) > GMYC (80.00%), 
and ABGD (93.18%) > GMYC (92.86%) > PTP (90.24%), respectively (Table 2). 
In Chaitophorinae, the ABGD was a much better analytical method, and GMYC 
was also better than PTP in tree-based approaches. Considering that the analysis 
of ABGD required prior intraspecific distance, a tree-based method needed to be 
employed concurrently. A tree-based approach should be crosschecked against a non-
tree-based approach within species delimitation studies (Fontaneto et al. 2015). As 
different methods may yield inconformity conclusions (Carstens et al. 2013), the ac-
curate identification of species requires further integrative analysis (Puillandre et al. 
2012b, Pante et al. 2015). Herein, a brief investigation of the morphological charac-
teristics combined with a distance-based method of ABGD and a tree-based method 
of GMYC may be a very suitable pattern for species delimitation and the rapid iden-
tification of Chaitophorinae.
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DNA barcoding may reveal population differentiation driven by geographical dis-
tribution

Chaitophorus saliniger Shinji is an important pest on willows in East Asia. Based on the 
topology structure and results of analysis with different methods (Figure 2A, Suppl. ma-
terial 4–11), all samples of this species were divided into two clades which could be 
regarded as two different species. However, based on the morphological characteristics, 
all samples should be Chaitophorus saliniger. On examining the geographical distribution 
information of all samples, we found that one of the clades consisted of two samples 
(Nos. 17651 and 33320) of C. saliniger collected from Northeast China, Heilongjiang 
Province, and the voucher of another sequence (C. saliniger-GU978785.1, a downloaded 
sequence from NCBI) from the Korean Peninsula. The location sites of these three sam-
ples were all at a relatively high latitude. All samples in the other clade were not from the 
aforementioned regions. So, within C. saliniger, a population differentiation emerged 
among the samples from different locations. The genetic divergences between the two 
clades for COI, Cytb, and gnd were 0.043, 0.039, and 0.020, respectively, which could 
be regarded as interspecific distances. Although the morphological characteristics of all 
samples were similar, differentiation at the gene level seems to have occurred between 
northern and southern populations. Similar genetic differentiation between these popu-
lations has also been demonstrated for a nuclear gene, EF-1α (Fang et al. 2016).

In a similar manner, two samples (Nos. 17613 and 19950) of Laingia psammae 
Theobald were divided into two independent clades (Figure 2B), a result supported at 
all genes and using different approaches. Sample No. 17613 was from Jilin, northeast-
ern China, whereas sample No. 19950 was from Xinjiang, northwestern China. The 
genetic distances of three genes (COI, COII and Cytb) between the two samples were 
0.064, 0.068, and 0.062, respectively, which reach the level of species (Wang and Qiao 
2009). Therefore, differentiation between northeastern and northwestern populations 
in L. psammae exists.

From the topology structures and the constructed consequences of threshold with 
NJ, ABGD, GMYC, and PTP, we observed that population differentiation was clearly 
present within both C. saliniger and L. psammae. Similar findings have been reported 
in other aphid species (Lee et al. 2011, Wang et al. 2011). The prominent differences 
among populations may even be an indication of cryptic species (Bickford et al. 2007). 
Speciation is a long and continuous process, and cryptic species are not easily ex-
plained. Within the process, the incipient species may hold for millions of years (Avise 
and Walker 1998). Therefore, cryptic species need further study with more samples, 
combined with morphological characteristics and biological information.

Conclusions

In this work, the DNA barcoding of Chaitophorinae aphids was investigated. Three 
mitochondrial genes and one endosymbiont gene were used to calculate and compare 
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Figure 2. The analysis results of some species from the COI-670 dataset. The analysis results based on 
other genes were almost identical. The NJ tree was constructed based on the Kimura 2-parameter (K2P) 
model with a bootstrap value over 50% displayed. The gray blocks behind the tree represent the putative 
species, which means that the taxa in the tree corresponding to a single block are in one putative species. 
The number of blocks express the number of putative species using this method. A Chaitophorus saliniger 
B Laingia psammae.
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the genetic distances within different datasets. For the delimitation of species, two 
distance-based methods, threshold with NJ and ABGD, and two tree-based approach-
es, GMYC and PTP were employed. The interspecific genetic divergence was clearly 
greater than intraspecific divergence in the four molecular markers. Additionally, the 
COI and COII genes were more suitable as Chaitophorinae DNA barcoding markers. 
Based on the data for Chaitophorus saliniger and Laingia psammae, DNA barcoding 
may reveal population differentiation driven by geographical distribution.
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Figure S1
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Figure S2
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Figure S4
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Figure S5
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Figure S6
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Figure S7
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Data type: molecular data
Explanation note: The analysis results of dataset Cytb-338.
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Figure S8
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Data type: molecular data
Explanation note: The analysis results of dataset gnd-338.
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