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A B S T R A C T

There is a critical need to understand the health risks associated with vaping e‐cigarettes, which has reached
epidemic levels among teens. Juul is currently the most popular type of e‐cigarette on the market. Using the
Comparative Toxicogenomics Database (CTD; http://ctdbase.org), a public resource that integrates chemical,
gene, phenotype and disease data, we aimed to analyze the potential molecular mechanisms of eight chemicals
detected in the aerosols generated by heating Juul e‐cigarette pods: nicotine, acetaldehyde, formaldehyde, free
radicals, crotonaldehyde, acetone, pyruvaldehyde, and particulate matter. Curated content in CTD, including
chemical‐gene, chemical‐phenotype, and chemical‐disease interactions, as well as associated phenotypes and
pathway enrichment, were analyzed to help identify potential molecular mechanisms and diseases associated
with vaping. Nicotine shows the most direct disease associations of these chemicals, followed by particulate
matter and formaldehyde. Together, these chemicals show a direct marker or mechanistic relationship with
400 unique diseases in CTD, particularly in the categories of cardiovascular diseases, nervous system diseases,
respiratory tract diseases, cancers, and mental disorders. We chose three respiratory tract diseases to investi-
gate further, and found that in addition to cellular processes of apoptosis and cell proliferation, prioritized phe-
notypes underlying Juul‐associated respiratory tract disease outcomes include response to oxidative stress,
inflammatory response, and several cell signaling pathways (p38MAPK, NIK/NFkappaB, calcium‐mediated).
1. Introduction

Though electronic cigarettes were introduced as aids for smoking
cessation more than a decade ago (Dinardo and Rome, 2019), youth‐
targeted flavors, packaging and marketing have contributed to epi-
demic levels of teen vaping in recent years (Farzal et al., 2019). Health
consequences of exposure to vaping chemicals and molecular mecha-
nisms underlying vaping‐related illnesses are largely unknown.

Juul e‐cigarettes are a compact, closed system nicotine‐delivery
device that were introduced in 2015 and quickly became the most pop-
ular vaping device with year‐over‐year growth of nearly 700% and a
50%market share (Kavuluru et al., 2019), prompting concern that their
popularity among youth is a public health crisis (Walley et al., 2019).
Because of their dominant market position and popularity among
youth, we chose Juul e‐cigarettes as the primary subject of this analysis.
We set out to investigate the gene interactions, phenotype, pathway,
and disease associations of chemicals detected in aerosols generated
by heating Juul e‐cigarettes connected to a digital puffing machine
(Talih et al., 2019) or a Human Puff Profile Cigarette Smoking Machine
(Reilly et al., 2019). Chemicals detected by these two methods include
nicotine, acetaldehyde, formaldehyde, free radicals, crotonaldehyde,
acetone, pyruvaldehyde, and particulate matter. Additional evidence
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for the presence of nicotine, acetaldehyde, formaldehyde, reactive oxy-
gen species, acetone, pyruvaldehyde and particulate matter have also
recently been described in Juul aerosols (Muthumalage et al., 2019,
Mallock et al., 2020, Azimi et al., 2021). Concentrations of these chem-
icals in Juul emissions are listed in Table 1.

CTD is a public scientific resource, wherein PhD‐level scientists
manually curate the scientific literature for data on chemicals, genes
and diseases and integrate this data with select public data sets to help
determine the molecular mechanisms underlying chemically‐
influenced diseases (Davis et al., 2019). The external data sets inte-
grated with CTD‐curated data include OMIM, MeSH, NCBI Gene, GO,
KEGG and Reactome Pathway databases (Davis et al., 2009, Davis
et al., 2019). Thus, when CTD biocurators curate data providing direct
evidence that a chemical interacts with a gene, that data is linked to
other associated gene attributes, such as annotated molecular func-
tions, cellular location, phenotypes, pathways, and diseases. We distin-
guish between the concepts of phenotype and disease, designating a
phenotype as a biological outcome that is not inherently a disease, such
as an alteration in blood pressure, whereas hypertension is a disease.
This operational distinction facilitates integration of chemical‐
induced phenotypic and disease outcomes from the literature, and pro-
vides insight into the pre‐disease state (Davis et al., 2018). CTD also
generates transitive chemical‐disease inferences by integrating inde-
pendently curated chemical‐gene, gene‐disease, and chemical‐disease
interactions. Therefore, a previously unrecognized relationship may
become evident when a direct chemical‐gene statement is combined
with a direct gene‐disease statement to generate a chemical‐disease
inference (inferred via the shared gene). CTD statistically ranks these
inferences to facilitate hypothesis development (King et al., 2012).

To facilitate identification of intermediate steps in the pathway from
a chemical exposure to a disease outcome, CTD can be used to computa-
tionally link Chemical‐Gene interactions with Phenotypes and Disease
outcomes (“CGPD‐tetramers”). These tetramers represent building
blocks that can be assembled into larger chemical‐induced pathways
to design potential mechanism/mode‐of‐action (MOA), progressing
from subcellular to system‐wide processes (Davis et al., 2020). As sev-
eral recent publications describemultiple impacts of e‐cigarettes on pul-
monary endpoints (Thirión‐Romero et al., 2019), we used CTD to
analyze relationships among Juul aerosol chemicals, interacting genes,
phenotypes and respiratory illnesses. Such interactions provide inter-
mediate points that may represent key events in the building of
chemical‐directed pathways linking Juul e‐cigarettes to respiratory
diseases.
2. Materials and methods

2.1. CTD data version and web tools

Analysis was performed using CTD public data available in October
2020 (revision 16329). CTD is updated with new content on a
monthly basis; consequently, counts described herein may change over
time. CTD’s public analytical and visualization tools were used
Table 1
Concentrations of Chemicals in Juul Emissions.

mean per 15 puffs
(Talih et al., 2019)

range per puff
(Reilly et al., 2019)

Nicotine, mg 2.07 0.154 – 0.188
Acetaldehyde, μg 6.05 not detected
Formaldehyde, μg 0.56 0.12 – 0.26
Free Radicals, pmol not assessed 5.47 – 6.13
Crotonaldehyde, μg 0.85 not assessed
Acetone, μg 24.9 0.17 – 0.22
Pyruvaldehyde, μg 0.95 not assessed
Particulate Matter, mg 38.9 not assessed
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(http://ctdbase.org/tools/) in subsequent analysis, including Batch
Query, Set Analyzer, MyVenn, and Chemical‐Phenotype Interaction
Query. Default values were used for corrected p‐values (threshold
0.01). For all data downloads, a filter was used to return data for exact
input query terms only.
2.2. Juul chemicals

We analyzed a set of primary compounds previously reported in
Juul aerosols (Reilly, et al. 2019, Talih et al. 2019), including (CTD

accession identifier): Nicotine (D009538), Acetaldehyde (D000079),

Formaldehyde (D005557), Free Radicals (D005609), Crotonaldehyde

(also known as 2‐butenal, C012796), Acetone (D000096), Pyruvalde-

hyde (also known as methylglyoxal, D011765), and Particulate Matter
(D052638). Though there are multiple types of free radicals produced
by Juul e‐cigarettes, we limited our study to Reactive Oxygen Species
(D017382), since Juul aerosols have been shown to generate signifi-
cant amounts of acellular reactive oxygen species (ROS)
(Muthumalage et al., 2019). We refer to this entire chemical set by
the abbreviation NAFFCAPP.
2.3. Chemical relationships in CTD

CTD’s ‘Batch Query’ tool (http://ctdbase.org/tools/batchQuery.go)
was used to retrieve chemical‐disease relationships by inputting the
list of NAFFCAPP chemical terms, selecting ‘Disease Associations’ as
output, and chemical‐disease relationships were sorted by direct evi-
dence for marker/mechanistic relationships among the respective
chemicals and diseases. To retrieve chemical‐gene relationships, the
NAFFCAPP chemical terms were used as input in the ‘Batch Query’
tool, and curated gene interactions were downloaded. Output was
sorted and duplicate genes were eliminated to yield 8,256 unique
genes that were subsequently used as input in CTD’s ‘Set Analyzer’ tool
(http://ctdbase.org/tools/analyzer.go) and queried for enriched path-
ways, as previously described (Davis et al., 2013). Statistical enrich-
ment of a pathway indicates that the fraction of genes annotated to
it in a test set is significantly larger than the fraction of genes anno-
tated to it in the genome.
2.4. Determination of key event relationships

CTD tools ‘Batch Query’ and ‘MyVenn’ (http://ctdbase.org/tools/
myVenn.go) were used to identify relationships that link NAFFCAPP
chemicals to respiratory outcomes for three respiratory tract diseases:
Pulmonary Fibrosis (D011658), Asthma (D001249), and Lung Neo-
plasms (D008175). Specifically, direct disease associations obtained
from CTD’s ‘Batch Query’ of the NAFFCAPP chemical set were sorted
by disease name, and genes in the inference network that infer the
respective chemicals to these diseases were combined into a single
data set of 295 genes. These genes support the direct curated ‘M’ (mar-
ker/mechanism) relationship between Juul aerosols and these specific
diseases, and identify potential molecular initiating events. Prioritized
phenotypes were determined as those that are independently associ-
ated with the NAFFCAPP chemicals and the respiratory disease exam-
ples by combining output from CTD’s ‘Batch Query’ and ‘MyVenn’
analysis tools. A batch query was performed using the four chemicals
(nicotine, acetaldehyde, formaldehyde, and particulate matter) that
show direct relationships to the disease examples as input and select-
ing curated phenotype associations as output, resulting in 552 unique
phenotypes. Secondly, GO/phenotype terms that are annotated to each
of the 295 genes were downloaded (940 phenotypes). ‘MyVenn’ was
used to compare phenotypes annotated to the chemicals with pheno-
types annotated to the genes, selecting ‘Other’ as input type, to identify
248 prioritized phenotypes common to both sets.

http://ctdbase.org/tools/
http://ctdbase.org/tools/batchQuery.go
http://ctdbase.org/tools/analyzer.go
http://ctdbase.org/tools/myVenn.go
http://ctdbase.org/tools/myVenn.go
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CGPD‐tetramers are novel information blocks that link Chemical‐
Gene interactions with Phenotype and Disease outcomes. They are
computationally generated by integrating five independently curated
data sets in CTD: chemical‐gene interactions, chemical‐phenotype
interactions, gene‐GO/phenotype associations, chemical‐disease asso-
ciations, and gene‐disease associations (Davis et al., 2020). We con-
structed CGPD‐tetramers for the NAFFCAPP set of chemicals with
respect to the three respiratory tract diseases (pulmonary fibrosis,
asthma, and lung neoplasms). Shared chemicals, genes and phenotypes
among the CGPD tetramers were compared to help elucidate potential
mechanistic pathways.

There were 81 phenotypes common to the 248 prioritized pheno-
types and the 112 phenotypes shared among CGPD tetramers for pul-
monary fibrosis, asthma, and lung neoplasms. CTD’s “Chemical‐
Phenotype Interaction Query” tool was used to select phenotypes that
have been annotated to Respiratory System.
Fig. 1. Curated Disease Associations to Chemicals in Juul Aerosols: nicotine (N), p
pyruvaldehyde (P), acetone (AC), crotonaldehyde (C). (A) The top five categories
detailing the number of curated relationships in these categories and distribution
disease categories attributed to each chemical constituent in Juul aerosols.
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3. Results

3.1. Disease associations of Juul aerosol chemicals

The NAFFCAPP set of chemicals detected in Juul aerosols have
direct relationships with 400 diseases in CTD, which can be grouped
to 35 disease categories, with some diseases mapping to more than
one category (e.g., lung neoplasms maps to both respiratory tract dis-
eases and cancers). The top five disease groups are cardiovascular, ner-
vous system, respiratory tract, cancers, and mental disorders (Fig. 1A).
Cardiovascular disease, the disease group with the highest number of
relationships, includes 95 marker or mechanistic relationships
between six chemicals and 69 cardiovascular outcomes such as hyper-
tension, stroke, myocardial infarction and atherosclerosis. The highest
number of chemical‐disease relationships in this category is attributed
to particulate matter, followed by nicotine. Examples of direct disease
articulate matter (PM), formaldehyde (F), free radicals (FR), acetaldehyde (A),
of diseases with direct relationships to chemicals in Juul aerosols are shown,
by chemical. (B) Numbers of direct marker/mechanistic relationships in all



Ta
bl
e
2

Si
gn

ifi
ca
nt
ly

En
ri
ch

ed
Pa

th
w
ay

s
of

N
A
FF

C
A
PP

-in
te
ra
ct
in
g
G
en

es
.

En
ri
ch

ed
Pa

th
w
ay

Pa
th
w
ay

ID
To

ta
l
nu

m
be

r
un

iq
ue

N
A
FF

C
A
PP

ge
ne

s
an

no
ta
te
d
to

pa
th
w
ay

Pa
rt
ic
ul
at
e

M
at
te
r

Fo
rm

al
de

hy
de

N
ic
ot
in
e

Fr
ee

R
ad

ic
al
s-
R
ea
ct
iv
e

O
xy

ge
n
Sp

ec
ie
s

A
ce
ta
ld
eh

yd
e

Py
ru
va

ld
eh

yd
e

C
ro
to
na

ld
eh

yd
e

A
ce
to
ne

Im
m
un

e
Sy

st
em

R
EA

C
T:
R
-H

SA
-1
68

25
6

1,
08

4
72

2
54

1
27

6
14

4
62

41
43

7
M
et
ab

ol
is
m

R
EA

C
T:
R
-H

SA
-1
43

07
28

1,
07

1
68

0
46

4
20

9
89

48
22

0
0

Si
gn

al
Tr
an

sd
uc

ti
on

R
EA

C
T:
R
-H

SA
-1
62

58
2

1,
10

1
69

7
51

1
30

0
12

6
76

31
45

0
In
na

te
Im

m
un

e
Sy

st
em

R
EA

C
T:
R
-H

SA
-1
68

24
9

68
1

46
8

30
4

17
6

10
5

40
29

23
0

G
en

e
Ex

pr
es
si
on

R
EA

C
T:
R
-H

SA
-7
41

60
83

7
42

9
46

7
14

4
53

29
0

0
0

M
et
ab

ol
is
m

of
pr
ot
ei
ns

R
EA

C
T:
R
-H

SA
-3
92

49
9

73
5

45
6

33
4

14
3

56
24

0
0

0
C
yt
ok

in
e
Si
gn

al
in
g
in

Im
m
un

e
sy
st
em

R
EA

C
T:
R
-H

SA
-1
28

02
15

44
2

30
8

23
5

14
9

80
40

26
30

6
M
et
ab

ol
ic

pa
th
w
ay

s
K
EG

G
:h
sa
01

10
0

60
5

36
2

28
1

11
1

47
32

0
0

0
D
is
ea
se

R
EA

C
T:
R
-H

SA
-1
64

36
85

45
8

32
3

19
8

12
3

58
32

14
0

0
Si
gn

al
in
g
by

In
te
rl
eu

ki
ns

R
EA

C
T:
R
-H

SA
-4
49

14
7

32
5

24
5

16
8

12
4

68
35

24
26

6

C.J. Grondin et al. Current Research in Toxicology 2 (2021) 272–281
relationships in the category of nervous system diseases are Alzheimer
Disease, Parkinson Disease, and seizures, with the greatest number of
relationships for nicotine. Respiratory tract diseases such as lung neo-
plasms, pulmonary fibrosis, asthma, and pneumonia show more than
70 direct relationships with NAFFCAPP chemicals, with the highest
number attributed to particulate matter. All eight of the NAFFCAPP
chemicals contribute to direct relationships with one or more cancers,
such as lung, breast and stomach neoplasms, with the greatest number
of direct relationships for nicotine and formaldehyde. In the category
of mental disorders, there are numerous direct associations between
NAFFCAPP chemicals and autistic disorder, cognition disorders and
depressive disorders, with the highest number of direct associations
for nicotine. All individual marker or mechanistic chemical‐disease
relationships for these chemicals are provided (Supplemental
Table S1).

Besides the top disease groups related to NAFFCAPP chemicals,
individual chemicals were examined for disease associations and the
total number of direct relationships (Fig. 1B). Nicotine is associated
with the most curated disease interactions (2 0 2), followed by partic-
ulate matter (1 8 1). Formaldehyde and free radicals are associated
with 50–100 diseases, while the remaining chemicals each have less
than 20 curated disease relationships.

In addition to directly curated relationships between Juul aerosol
chemicals and diseases, all eight NAFFCAPP chemicals have inferred
relationships to diseases in CTD generated by integration of
chemical‐gene and gene‐disease statements. These transitive inferred
associations between NAFFCAPP chemicals and 3,262 additional dis-
eases provide indirect evidence of chemical‐disease relationships,
and are statistically ranked with an inference score. While the greatest
number of inferred associations overall are attributed to nicotine,
formaldehyde and particulate matter, all NAFFCAPP chemicals con-
tribute to these inferred relationships, providing rationale for further
investigation.

3.2. Enriched data sets

Molecular pathways that may contribute to Juul aerosol‐induced
diseases were identified using CTD’s ‘Set Analyzer’ tool. Collectively,
the NAFFCAPP chemical set interacts with 8,256 genes. These genes
were analyzed to survey the pathways annotated to them. Of 916 sig-
nificantly enriched pathways, five of the top ten pathways are related
to the immune system and/or signaling, while additional pathways
include those related to metabolism and gene expression. Many simi-
larities exist among the gene sets contributing to these pathways.
For example, all genes annotated to Signaling by Interleukins
(REACT:R‐HSA‐449147) belong to a subset of the genes annotated to
Cytokine Signaling in Immune System (REACT:R‐HSA‐1280215),
which in turn is a subset of genes contributing to the Immune System
(REACT:R‐HSA‐168256) pathway. Genes that interact with nicotine,
formaldehyde, and particulate matter account for 434/442 (98%)
genes annotated to Cytokine Signaling in Immune System, yet genes
that interact with all eight NAFFCAPP chemicals contribute to this
pathway, and some genes, such as TNF, interact with all eight NAFF-
CAPP chemicals. To provide insight into the pathways that may be
affected by each of the NAFFCAPP chemicals, this analysis was
repeated with genes that interact with each of the Juul aerosol chem-
icals individually. Genes annotated to each of the top 10 significantly
enriched pathways were summed for each chemical (Table 2).

3.3. Developing mechanistic pathways for Juul aerosol-induced adverse
outcomes

We leveraged CTD curated content with two methods to help prior-
itize relationships that link Juul chemical stressors with adverse respi-
ratory outcomes, using pulmonary fibrosis, asthma, and lung
neoplasms as specific examples of respiratory tract diseases.
275
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First, in CTD, there are direct relationships between NAFFCAPP
chemicals and pulmonary fibrosis, asthma, and lung neoplasms via
four chemicals: nicotine, formaldehyde, acetaldehyde, and particulate
matter. In addition, these four chemicals collectively interact with 295
genes that also have direct relationships with these same diseases,
enabling the identification of potential molecular initiating events in
pathways that connect Juul aerosol chemicals with these respiratory
tract diseases. To identify underlying biological processes that con-
tribute to these gene‐disease relationships, we compared the 552 phe-
notypes curated to these four chemicals and the 940 phenotypes
annotated to the 295 genes. There were 248 phenotypes common to
both sets that may contribute to underlying disease pathways; they
are directly influenced by the chemicals in Juul aerosols and indepen-
dently annotated to genes in the inference network that link vaping
aerosols to these respiratory tract diseases (Fig. 2). These 248 pheno-
types are prioritized for biological processes that may participate in
the MOA of Juul aerosols; representative phenotypes include oxidative
demethylation, T cell migration, and mucus secretion.

Second, we used CTD to predict molecular initiating events and
phenotypes that link Juul aerosols to respiratory tract disease out-
comes by generating computational associations between Chemical‐
Gene interactions and associated Phenotypes and Disease (CGPD‐
tetramers), using NAFFCAPP chemicals and the same respiratory tract
disease examples, pulmonary fibrosis, asthma, and lung neoplasms.
This bioinformatics approach yielded 830, 505, and 1,401 CGPD‐
tetramers for the three diseases, respectively (Supplemental
Table S2). CGPD‐tetramers for the three respiratory diseases share
112 phenotypes, of which 81 (72%) were identical to those found by
filtering priority phenotypes for respiratory tract diseases using the
first method. These 81 phenotypes were further restricted to those that
have been previously annotated to ‘Respiratory System’ using CTD’s
Anatomy module, resulting in 65 highly prioritized phenotypes
(Fig. 2). These 65 phenotypes are highlighted by several key relation-
ships: first, they are shared among pulmonary fibrosis, asthma, and
lung neoplasm CGPD‐tetramers; second, they contain curated
chemical‐phenotype annotations with nicotine, acetaldehyde,
formaldehyde or particulate matter; third, they contain curated
gene‐phenotype annotations in CTD with NAFP‐interacting genes;
and fourth, they are supported by imported GO annotations for
NAFP‐interacting genes that align with phenotypes in CTD. These phe-
notypes were ranked by frequency in which they appear in pulmonary
fibrosis, asthma and lung neoplasm CGPD‐tetramers, and the top 20
most commonly predicted phenotypes are shown (Fig. 3). In addition
to important roles for cell proliferation and apoptosis, this analysis
highlights potentially important roles for inflammatory response,
response to oxidative stress, cell migration, cytokine production
involved in inflammatory response and chemotaxis, linking Juul aero-
sols and respiratory tract diseases; these highly prioritized phenotypes
represent potential candidate events in the MOA of Juul aerosol
chemicals.

To further address molecular initiation events contributing to the
prioritized phenotypes, genes affected by Juul aerosol chemicals were
analyzed. A total of 20,073 chemical‐gene interactions were down-
loaded, corresponding to 8,256 unique genes and 459 different types
of chemical‐gene interactions, such as chemical‐induced changes in
mRNA expression, protein phosphorylation, protein activity, and
secretion. Curated interactions between the four chemicals NAFP
and 197 genes prioritized as potential molecular initiating events were
aligned with computationally‐generated CGPDs (Supplemental
Table S3). By integrating CTD chemical‐gene interactions with these
prioritized phenotypes, predictive mechanistic pathways can be con-
structed that associate nicotine, acetaldehyde, formaldehyde and par-
ticulate matter with these three respiratory outcomes (Fig. 4). For
example, these four chemicals interact with 197 genes, in potential
molecular initiating events represented by 26 genes that interact with
all four chemicals and are annotated to one or more of the priority
276
phenotypes. These phenotypes were mapped to subcellular, cellular
or system processes that align with locations of potential key events
in the sequential molecular pathways. Genes that are annotated to
multiple phenotypes interrelate and connect phenotypes along inter-
mediate pathways to the disease outcomes, helping to identify candi-
date events in predictive Juul MOAs.
4. Discussion

4.1. Disease associations of Juul aerosol chemicals

This study investigates predictive disease associations of chemicals
in Juul aerosols and underlying pathways. Using CTD, eight chemicals
detected in Juul aerosols (nicotine, acetaldehyde, formaldehyde, free
radicals/reactive oxygen species, crotonaldehyde, acetone, pyruvalde-
hyde, and particulate matter) were analyzed for interacting genes,
intermediary phenotypes, pathways and disease associations. Top dis-
ease categories associated with these chemicals in CTD are cardiovas-
cular diseases, nervous system diseases, respiratory tract diseases,
neoplasms, and mental disorders, and several recent studies support
associations between e‐cigarettes and disease risks in these same cate-
gories, including thrombosis (Ramirez et al., 2020), ischemic stroke
(Sifat et al., 2018), asthma (Clapp and Jaspers, 2017), cancer risk
(Canistro et al., 2017), and depression (Leventhal et al., 2016).

Specific examples of Juul aerosol‐induced disease parameters have
been reported in humans, rats and mice. In a randomized crossover
design, young, healthy, nonsmokers showed increased mean arterial
pressure and heart rate, and decreased muscle sympathetic nerve
activity following inhalation of Juul e‐cigarettes, but not non‐
nicotine placebo e‐cigarettes (Gonzalez and Cooke, 2021). Acute expo-
sure to Juul aerosols led to impaired endothelial function in rats com-
parable to cigarette smoke (Rao et al., 2020). Three months of Juul
aerosol exposure to mice induced dysregulation of glutamatergic sys-
tem activity in mesolimbic brain regions, as evidenced by differential
effects on several targets of the glutamatergic system in the nucleus
accumbens and hippocampus (Alhaddad et al., 2020).
4.2. Chemicals contributing to disease associations.

Based on curated chemical‐disease interactions in CTD, three chem-
icals emerge as key contributors to potential Juul‐induced disease out-
comes: nicotine, formaldehyde, and particulate matter (Supplemental
Tables S1–S3). These three chemicals show mechanistic relationships
with 364 diseases in CTD.

Recent evidence has shown that cytotoxicity of Juul aerosols
strongly correlates with nicotine concentration (Omaiye et al.,
2019). In CTD, nicotine is associated with 1,170 genes and 202 dis-
eases. Nicotine has long been known to be addictive (National Acad-
emy of Sciences, 2018), as well as play a key role in the induction
and progression of cardiovascular disorders (Balakumar and Kaur,
2009). Nicotinic acetylcholine receptors (nAChR) have been shown
to regulate cell proliferation and inhibit apoptosis, key biological pro-
cesses that are related to cancer (Gotts et al., 2019). Altered expression
of the ACE2 protein (the putative receptor for the COVID‐19 virus) in
TH2 cells exposed to nicotine, in addition to changes in nicotinic
receptor signaling and activation of inflammatory cytokines has led
to recent speculation that nicotine exposure may increase cardiopul-
monary risk to COVID‐19 (Olds and Kabbani, 2020).

The second key contributor to potential Juul aerosol‐induced out-
comes, formaldehyde, interacts with 3,927 genes in CTD, detailed in
4,502 gene interactions, and shows marker/mechanistic relationships
with 95 unique diseases. Formaldehyde is an established carcinogen,
according to the International Agency for Research on Cancer
(National Academy of Sciences, 2018). In long‐term studies, formalde-
hyde has shown carcinogenic effects on various organs and tissues, and



Fig. 2. Methodology to determine Juul-Affected Phenotypes in Respiratory Tract Disease Outcomes. The four Juul aerosol chemicals: nicotine, acetaldehyde,
formaldehyde, and particulate matter (NAFP) show marker or mechanistic associations with pulmonary fibrosis, asthma, and lung neoplasms, which are
independently supported by inferred relationships via 295 genes that interact with one or more Juul aerosol chemicals, and are independently curated to one or
more of the three diseases. As well, the four chemicals directly modulate 552 phenotypes, while the 295 genes are independently annotated to 940 phenotypes.
There were 248 phenotypes common to both sets. Furthermore, chemical-gene-phenotype-disease (CGPD) tetramers were computationally generated among the
four NAFP chemicals and pulmonary fibrosis, asthma, and lung neoplasms, resulting in 112 shared phenotypes among the three sets of CGPDs. Comparison
between the two sets of phenotypes reveal an intersection of 81 phenotypes, of which 65 are annotated to respiratory system, and are associated with 197 genes.
These genes represent potential molecular initiating events in the mode-of-action of Juul chemicals on respiratory outcomes.

Fig. 3. The top 20 most common prioritized phenotypes for Juul aerosol chemicals associated with pulmonary fibrosis, asthma and lung neoplasms. CGPD-
tetramers were computationally generated for four chemicals in Juul aerosols (nicotine, formaldehyde, acetaldehyde, and particulate matter), interacting genes,
intermediate phenotypes, and three respiratory tract diseases (pulmonary fibrosis, asthma and lung neoplasms). A total of 65 phenotypes were prioritized as
shared among the CGPD-tetramers for the three target respiratory diseases, and annotated to the specific chemicals, genes in the inference network, and
respiratory system, and the 20 most frequent phenotypes are presented as number of CGPD-tetramers per phenotype for each disease.
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Fig. 4. Predictive mechanistic pathways that relate Juul aerosol chemicals to representative respiratory outcomes, generated by integrating CTD content.
Chemical-gene interactions between nicotine, acetaldehyde, formaldehyde and particulate matter and 197 genes represent potential molecular initiating events
(MIE) that link the chemical toxicants to pulmonary fibrosis, asthma and lung neoplasms, and are represented by 26 genes that interact with all four of the
chemicals. Nineteen phenotypes that are directly modulated by these chemicals and are annotated to genes they interact with represent potential intermediate
steps along predictive mechanistic pathways, and align with intracellular, cellular, and system processes. All of the phenotypes were prioritized as key contributors
to the pathways via four types of supporting evidence: 1) curated chemical-phenotype interaction 2) curated gene-phenotype annotation 3) imported gene-GO
annotation 4) computational generation of chemical-gene-phenotype-disease tetramers. Phenotypes shown in bold italic were among the 20 most frequent
phenotypes in computationally generated CGPD tetramers. Numbers in parentheses represent the total number of genes of the 197 potential MIEs associated with
each phenotype, with associations designated by solid black lines. Curved gray arrows indicate phenotypes that are interrelated via shared genes.
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produced an increase in the total number of malignant tumors in
experimental animals (Soffritti et al., 2002). In addition, formaldehyde
has been shown to cause an increased risk of myeloid leukemia
(Schwilk et al., 2010), and there is substantial evidence that it is cap-
able of causing DNA damage and mutagenesis (National Academy of
Sciences, 2018).

Particulate matter has long been recognized as a leading contribu-
tor to global disease burden (Cohen et al., 2017, Costa, 2018), with
impacts on cardiovascular and respiratory health (Fiordelisi et al.,
2017, Losacco and Perillo, 2018, Rajagopalan et al., 2018). In CTD,
particulate matter has been shown to interact with 4,739 genes, partic-
ipate in 10,187 gene interactions, and contribute to 181 direct disease
relationships with marker/mechanism evidence (child terms of partic-
ulate matter such as smoke, soot and dust were excluded from this
analysis).

The remaining chemicals detected in Juul aerosols, acetaldehyde,
free radicals, crotonaldehyde, acetone, and pyruvaldehyde are associ-
ated with some of the same diseases as nicotine, formaldehyde and
particulate matter, but also show direct relationships with 39 unique
diseases including diabetes mellitus type 1 and amyotrophic lateral
sclerosis.

4.3. Individual chemical-gene interactions.

Analysis of genes that interact with NAFFCAPP chemicals identifies
potential molecular initiating events along pathways of vaping‐
induced disease outcomes and the generation of testable hypotheses.
For example, particulate matter has been shown to induce EGR1
expression leading to inflammatory cytokine production and mucus
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hyperproduction in airway epithelium via the NF‐κB and activator pro-
tein pathways (Xu et al., 2018). Analysis of individual chemical‐gene
interactions of the NAFP chemical set in CTD (Supplemental
Table S3) reveals that nicotine is also capable of inducing EGR1 mRNA
and protein expression, while formaldehyde and acetaldehyde can
increase EGR1 mRNA expression. This suggests that Juul pods with
reduced nicotine (3% vs 5%) may continue to induce EGR1 and conse-
quent downstream effects due to the formation of carbonyls acetalde-
hyde and formaldehyde.

Inspection of individual chemical‐gene interactions can also lead to
testable hypotheses of alternate e‐liquids in vaping products. Aerosols
generated by the Juul device with a modified e‐liquid containing
60:40 propylene glycol:glycerol with and without citral (to compare
with other commercially available e‐liquids) showed significantly
increased levels of formaldehyde and free radical production (Reilly
et al., 2019). Data in CTD show that particulate matter, formaldehyde,
and reactive oxygen species collectively interact with nine mucin
genes (MUC1, MUC16, MUC19, MUC2, MUC3A, MUC4, MUC5AC,
MUC5B, and MUCL3), altering both mRNA and protein expression.
Thus, increases in formaldehyde and free radical production may also
alter mucin production and downstream effects. These chemical‐
mediated changes in mucin expression provide mechanistic steps that
may contribute to alterations in mucin secretion that are observed in
cigarette and e‐cigarette users (Reidel et al., 2018).

4.4. Potential mechanistic pathways

Contributing factors to underlying pathways between Juul aerosols
and representative adverse respiratory outcomes were analyzed in



C.J. Grondin et al. Current Research in Toxicology 2 (2021) 272–281
three ways: selection of significantly enriched pathways of the genes
that interact with NAFFCAPP chemicals, determination of priority phe-
notypes that are annotated to NAFFCAPP chemicals as well as the
genes they interact with, and computational generation of CGPD‐
tetramers. These three methods were used to strengthen evidence for
contributing events in the pathways, and to avoid missing terms that
may not yet have all five lines of supporting evidence that are required
to generate CGPD‐tetramers. Significantly enriched pathways include
several related to the immune system and cytokine signaling in the
immune system.

Beyond the ubiquitous roles of cell proliferation and apoptosis to
disease pathways, several phenotypes emerged as playing potential
key roles in the link between Juul aerosols and respiratory outcomes:
oxidative stress, inflammatory responses, and cell signaling. Biological
processes related to oxidative stress emerged as having the most anno-
tations to NAFFCAPP chemicals. These were supported by NAFFCAPP‐
interacting gene annotations and CGPD‐tetramers. While numerous
reviews detail the contributions of the oxidative stress pathway to lung
diseases such as asthma and chronic obstructive pulmonary disease
(COPD) (Barnes, 2017, de Groot et al., 2019), this work integrates
these oxidative stress phenotypes in the broader context of potential
upstream and downstream events in the pathway. Phenotypes that
contributed the highest number of terms to CGPD‐tetramers were
related to inflammation and immune responses. Immune system
(REACT:R‐HAS‐168256) was also the most significantly enriched path-
way of all the NAFFCAPP‐interacting genes.

Several lines of evidence support a potential role for aberrant sig-
naling underlying Juul‐induced adverse outcomes, including signifi-
cant enrichment of signaling pathways of NAFFCAPP‐interacting
genes, changes in gene expression, protein activity and secretion of
cytokines by NAFFCAPP chemicals, and computational generation of
CGPD‐tetramers that include numerous signaling phenotypes. Numer-
ous cytokines and chemokines including CXCL8, IFNG, IL1B, IL2, IL4,
IL6, IL10 and TNF interact with five or more of the chemicals in the
NAFFCAPP set, suggesting that multiple chemicals contribute to the
pathway and disease endpoints. Cytokine‐cytokine receptor interac-
tion (KEGG:hsa04060) is also a significantly enriched pathway with
genes annotated to all eight NAFFCAPP chemicals, with nearly half
(47%) of the genes annotated to this pathway overlapping with genes
annotated to Signaling by Interleukins (REACT:R‐HSA‐449147).
Importance of the cytokine‐cytokine receptor interaction pathway is
supported by clinical studies showing that it is one of four pathways
that overlapped between comparisons of differentially expressed genes
in nasal biopsies of e‐cigarette users vs. non‐smokers and cigarette
users vs. non‐smokers (Martin et al., 2016).

In addition to supporting evidence for priority phenotypes gener-
ated from pathway enrichment and chemical‐ and gene‐phenotype
annotations, CGPD‐tetramers linking Juul aerosol chemicals to respira-
tory disease outcomes also revealed new priority phenotypes that can
be tested. For example, ‘memory’ and ‘learning’ emerged as pheno-
types associated with NAFFCAPP chemicals and adverse respiratory
outcomes (Supplemental Table S2). Cigarette smoking has also been
shown to negatively impact executive function in older adults, an
effect that is synergized by lung diseases (Amini et al., 2020). Thus,
CGPD‐tetramers linking Juul aerosol chemicals to interacting genes
and cognitive phenotypes can identify specific genes to further study
and explore for smoking‐induced and vaping‐induced cognitive issues.

Integration of curated chemical‐gene interactions in CTD with pri-
oritized phenotypes can help construct predictive MOAs that link
molecular initiating events with key events towards disease outcomes
(Davis et al., 2018). Here, we show representative interactions
between nicotine, acetaldehyde, formaldehyde and particulate matter
with 26 genes that affect phenotypes along predictive disease path-
ways linking these chemicals to pulmonary fibrosis, asthma and lung
neoplasm endpoints. These biological processes are directly influenced
by one or more of the four chemicals and are independently associated
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with the same genes by GO annotations. Alignment of phenotypes
from subcellular events to system‐wide processes can highlight rela-
tionships between potential key events that can be tested as interme-
diate end points for risk assessment, and help to fill in mechanistic
gaps between these chemicals and disease outcomes.

4.5. Strengths and limitations

Environmental exposures to toxic insults such as e‐cigarette aero-
sols affect human health, but the mechanisms are largely unknown.
CTD provides a unique resource that integrates primary literature on
chemical‐gene, chemical‐disease, and gene‐disease interactions, with
phenotype information, GO annotations, pathway information, and
exposure studies, culminating in over 45 million toxicogenomic rela-
tionships (Davis et al., 2021). Analysis of eight chemicals detected in
Juul aerosols yielded interactions with 8,256 unique genes, described
in over 20,000 chemical‐gene interactions. CTD tools promote the
analysis of these interactions in ways that can build mechanistic path-
ways and help to fill in molecular knowledge gaps between the chem-
ical toxicants and disease outcomes.

While this study begins to look at the gene, phenotype, pathway
and disease relationships associated with chemical constituents of e‐
cigarette emissions, several limitations remain. Chemical composition
of the inhaled aerosol and levels is still under investigation, and may
depend on several factors. Several studies have shown that potentially
toxic metals (nickel, chromium, lead, manganese and zinc) are
detected in e‐cigarette emissions, and may originate from the coils that
heat the e‐liquids as well as joints and wires (Aherrera et al., 2017,
Olmedo et al., 2018), yet toxic metals were not assessed by Talih
(Talih et al., 2019). Though acrolein has been detected in vaping aero-
sols at a concentration of 0.07–4.19 micrograms per 15 puffs (National
Academies of Sciences et al., 2018), and in aerosols from initial and
modified Juul devices in Europe (Mallock et al., 2020), acrolein in Juul
emissions was not assessed by Reilly or detected by Talih, and may
depend on the puffing regimen analyzed (Reilly et al., 2019, Talih
et al., 2019). Further, this analysis does not take into account possible
interactions among the chemicals studied.

Besides chemical composition of the aerosol, levels of these chem-
icals and metabolites in e‐cigarette users are also under investigation.
Numerous studies have measured the concentration of nicotine in
humans after vaping Juuls, ranging from 9.8 mg/ml plasma per 10
puffs (Maloney et al., 2021) to 31 ng/ml serum after 10 min puffing
(Yingst et al., 2019). Biomarkers of exposure and cardiopulmonary
injury were measured for acetaldehyde and formaldehyde in mice
after propylene glycol:vegetable glycerin‐derived (PG‐VG) aerosol
exposure (ingredients of e‐cigarette liquids including Juul). PG‐VG
exposure significantly increased post‐exposure urinary acetate (a
metabolite of acetaldehyde), and exposure to formaldehyde or PG‐
VG‐derived aerosol stimulated significant pulmonary irritation and
endothelial dysfunction (Jin et al., 2021). These findings support the
presence of these chemicals in vivo following exposure to Juul
aerosols.

Effects of vaping are dependent on abundant factors in addition to
the chemical constituents and type of device, including nicotine con-
centration (Juul is available with 3% and 5% nicotine strength:
https://www.juul.com/resources/all-about-tobacco-menthol-juulpods),
vaping patterns (such as length of inhale/exhale, puff volume, fre-
quency of vaping and time to first puff), coil resistance, product
age, composition, battery output (ohms), user age, weight, metabo-
lism, health, and genetics (National Academies of Sciences et al.,
2018). In addition to variations in device and user, analyses of
chemical‐gene‐phenotype‐disease associations are limited by
CTD‐curated content. CTD is updated monthly, and with continued
curation of publications related to vaping chemicals, associations
among these chemicals with phenotypes, pathways and diseases will
continue to be updated.

https://www.juul.com/resources/all-about-tobacco-menthol-juulpods
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5. Conclusions

We describe analysis of Juul aerosol chemicals in CTD, including
disease associations, gene interactions, enriched phenotype and path-
way relationships, and prioritized events along predictive pathways to
representative respiratory adverse outcomes. Cardiovascular diseases,
nervous system diseases, respiratory tract diseases, cancers, and men-
tal disorders were the most abundant categories of disease associa-
tions, with the highest number of relationships attributed to
nicotine, particulate matter and formaldehyde. Several predictive
mechanistic pathways were generated, based on chemical‐ and gene‐
annotated phenotypes in conjunction with CGPD‐tetramers. Integra-
tion of CTD data and computational generation of CGPD‐tetramers
can help to fill molecular knowledge gaps and generate testable
hypotheses to better understand the effects of Juul aerosol chemicals
and the effects of vaping.
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