
RESEARCH ARTICLE

Predicting gene regulatory regions with a

convolutional neural network for processing

double-strand genome sequence information

Koh OnimaruID*, Osamu NishimuraID, Shigehiro Kuraku

Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Chuo-ku, Kobe,

Hyogo, Japan

* koh.onimaru@riken.jp

Abstract

With advances in sequencing technology, a vast amount of genomic sequence information

has become available. However, annotating biological functions particularly of non-protein-

coding regions in genome sequences without experiments is still a challenging task.

Recently deep learning–based methods were shown to have the ability to predict gene regu-

latory regions from genome sequences, promising to aid the interpretation of genomic

sequence data. Here, we report an improvement of the prediction accuracy for gene regula-

tory regions by using the design of convolution layers that efficiently process genomic

sequence information, and developed a software, DeepGMAP, to train and compare differ-

ent deep learning–based models (https://github.com/koonimaru/DeepGMAP). First, we

demonstrate that our convolution layers, termed forward- and reverse-sequence scan

(FRSS) layers, integrate both forward and reverse strand information, and enhance the

power to predict gene regulatory regions. Second, we assessed previous studies and identi-

fied problems associated with data structures that caused overfitting. Finally, we introduce

visualization methods to examine what the program learned. Together, our FRSS layers

improve the prediction accuracy for gene regulatory regions.

Introduction

In the last decade, advances in DNA sequencing technology have dramatically increased the

amount of genome sequence data derived from diverse species [1] as well as from individual

humans [2]. The next demanding challenge is the deeper understanding of how genome

sequences encode phenotypes and how functional information can be extracted [3]. Such

sequence-based understanding would ultimately enable the prediction of phenotypes based on

genome sequence information, i.e., genotype-phenotype mapping. The syntax of protein-cod-

ing genes is well understood, e.g., certain phenotypic consequences are predictable (such as

nonsense mutations), yet the basic rules for non-coding sequences have not been established.

Several projects including ENCODE [4,5], ROADMAP [6], and FANTOM [7] have accumu-

lated epigenomic data to annotate the characteristics of non-coding sequences, but a

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Onimaru K, Nishimura O, Kuraku S

(2020) Predicting gene regulatory regions with a

convolutional neural network for processing

double-strand genome sequence information.

PLoS ONE 15(7): e0235748. https://doi.org/

10.1371/journal.pone.0235748

Editor: Vladimir Makarenkov, Universite du Quebec

a Montreal, CANADA

Received: November 28, 2019

Accepted: June 23, 2020

Published: July 23, 2020

Copyright: © 2020 Onimaru et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All codes used in this

paper are available at https://github.com/

koonimaru/DeepGMAP. The IDs for data

downloaded from the ENCODE website are listed in

S2 Table. The data generated and/or analyzed in

the current study are available in the figshare

repository, https://doi.org/10.6084/m9.figshare.

6728348.

Funding: This work was supported in part by JSPS

KAKENHI grant number 17K15132 to KO, a Special

Postdoctoral Researcher Program of RIKEN to KO,

http://orcid.org/0000-0002-2428-9510
http://orcid.org/0000-0003-1969-2580
https://github.com/koonimaru/DeepGMAP
https://doi.org/10.1371/journal.pone.0235748
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235748&domain=pdf&date_stamp=2020-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235748&domain=pdf&date_stamp=2020-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235748&domain=pdf&date_stamp=2020-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235748&domain=pdf&date_stamp=2020-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235748&domain=pdf&date_stamp=2020-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235748&domain=pdf&date_stamp=2020-07-23
https://doi.org/10.1371/journal.pone.0235748
https://doi.org/10.1371/journal.pone.0235748
http://creativecommons.org/licenses/by/4.0/
https://github.com/koonimaru/DeepGMAP
https://github.com/koonimaru/DeepGMAP
https://doi.org/10.6084/m9.figshare.6728348
https://doi.org/10.6084/m9.figshare.6728348

comprehensive understanding of the association between epigenomic signatures and sequence

information has yet to be attained.

Recently, this challenge has been addressed with deep learning–based methods [8–11].

Deep learning is a subfield of machine-learning methods, and has been applied to a variety of

problems such as image classification and speech recognition [12]. For the application of deep

learning to genomics, convolutional neural networks (CNN) or recurrent neural networks

(RNN) are trained with input genomic sequences that are labeled with epigenomic data to pre-

dict functional non-coding sequences. Once trained, these types of classifiers can infer the

functional effect of mutations in non-coding genomic regions from individual genome

sequences. However, even though these deep learning–based classifiers have outperformed

other methods, such as the support vector machine [13], the prediction accuracy is still far

from satisfactory. In addition, as it is generally known [14], it remains elusive as to what deep

learning–based models actually "learn" and what kinds of "understanding" underlies their pre-

dictions. In the present study, we first describe a CNN-based classifier that can outperform

state-of-art models. Second, we identified problems associated with data structures that caused

overfitting. Finally, we introduce methods to visualize trained models, potentially revealing the

general syntax underlying regulatory sequences.

Results

To improve the accuracy of predicting regulatory sequences, we devised a deep learning–based

method with three main features: a) integrating information from forward and reverse DNA

sequences; b) simplifying the data structure; c) quality control to filter out low-quality data

from a training dataset.

Training design and benchmarking

As training data, we downloaded several alignment files containing data from chromatin

accessibility assays and chromatin immunoprecipitation-sequencing (ChIP-seq) experiments

from the ENCODE project, and regions enriched with reads were determined as peaks by

MACS2 peak caller [15]. These data were used to mark genome sequences. We divided each of

the mouse and human genome sequences into 1000-basepair (bp) windows and converted the

four letters (i.e., A, C, G, T) into one-hot vectors (four dimensional zero-one vectors). To

denote epigenomic marks, we assigned each window as 1 if it overlapped a signal positive

region or 0 otherwise (signal negative) (see Methods for details). To reduce the number of

potential artifacts caused by window boundaries, we also added windows that were shifted by

500 bp toward the 30 side (Fig 1A; we refer to this window structure as 1-kbp window/0.5-kbp

stride). These data were used to train CNN models (see S1 Fig for the overall scheme).

To find an effective architecture of neural networks, we first compared the network archi-

tecture of published models such as CNN-based models (DeepSEA [9] and Basset [16]) and a

CNN-RNN hybrid (DanQ [10]; see S1 Table for details of the models). Because these models

were implemented in different programming languages, we re-implemented them in our code

(referred to as the DeepSEA-type model and so on) to examine only the effect of network

architectures. In addition, because the aim of this benchmark is to find an architecture that

can be efficiently trained with limited data (all epigenomic data are fundamentally limited by

the genome size and the binding frequency of transcription factors), and the number of train-

ing epochs was constrained to one, which means that models were trained with the full dataset

only once. Moreover, because full training of models sometimes take days or weeks, we simpli-

fied the training task in this benchmarking as follows: only a subset of mouse DNase-seq data

was used (the data IDs are listed in S2 Table). As a result, the training dataset for this

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 2 / 17

and a research grant from MEXT to the RIKEN

Center for Life Science Technologies and RIKEN

Center for Biosystems Dynamics Research.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0235748

benchmark is composed of 16747 mini-batches (each mini-batch contains 100 data). For eval-

uation, we used the entire chromosome 2 sequence, which was excluded from training data-

sets, and calculated the prediction accuracy of models using two scores, namely the area under

the receiver-operation curve (AUROC) and the area under the precision-recall curve

Fig 1. The Forward- and Reverse-Sequence Scan (FRSS) layers and data structures. (A) Schematic representation of how to assign an epigenomic signal

into a binary vector. A peak region (light blue bar) and the summit of a peak (red rectangle) are determined from epigenomic data and assigned as "1" to

overlapping genomic regions (blue-filled rectangle), otherwise "0" (blue, empty rectangle). DeepGMAP, this study; DeepSEA, DanQ, previous studies. (B)

The architecture of the FRSS layers. An input sequence is scanned by the first convolution kernels, and the kernels are rotated in parallel. After

implementing the relu operation, pooling, and the second convolution, the two parallel outputs are combined through summation. (C) Illustration of the

180-degree rotation of kernels. Each variable in an M × N kernel is written as wm,n,h,k ([m] = {0,. . .,M−1};[n] = {0,. . .,N−1};[h] = {0,. . .,H−1};[k] = {0,. . .,K
−1}; H and K are the numbers of the channels and kernels, respectively). w0m0 ,n0 ,h,k is a variable after the 180-degree rotation, and equal to w(M−1−m),(N−1−n),h,k
(also see Methods). In this example, a 9 × 4 kernel is trained to detect a sequence, AGCTAAAG (left). The geometric rotation of the kernel (right) results in

the reverse complement of the original sequence. (D) A visual comparison between DNase-seq peaks and predictions of the conv4-FRSS and DeepSEA

models. Black boxes indicate 1 kb-windows that overlap with peaks. Blue and purple boxes indicate peak regions predicted by the indicated models. Note

that DeepSEA predictions contains many false positives. (E) The total number of false positives predicted by the DeepSEA model (purple) and the

conv4-FRSS model (blue). The averages were calculated from predictions by three independently trained models.

https://doi.org/10.1371/journal.pone.0235748.g001

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0235748.g001
https://doi.org/10.1371/journal.pone.0235748

(AUPRC). Because AUROC is not a proper criterion if the majority of the data is negatively

labeled, we considered AUPRC as a more important criterion [17]. As a result, we found that

the DeepSEA-type architecture performed better than the Basset-type and DanQ-type models

at least in this training condition (Table 1).

Reading forward and reverse-complementary sequences improve

prediction accuracy

Based on the above result, we next explored whether better models could be attained by modi-

fying the DeepSEA architecture. First, as deeper convolutional networks are known to perform

better [18], we inserted an additional convolution layer between the third convolution layer

and the first fully connected layer of the DeepSEA-type model (with a reduced kernel number

in some layers and smaller pooling patches). As expected, the four-layer convolutions achieved

slightly better accuracy (conv4 in Table 1). We next focused on one of the fundamental charac-

teristics of genome sequences—the forward and reverse strands. In previous studies, the infor-

mation on reverse-strand sequences was ignored or used as independent data. However, for

example, transcription factors with leucine-zipper or helix-loop-helix domains bind both

strands through dimerization, and such binding thus results in palindromic binding motifs

[19,20]. Inspired by this fact, we devised a set of layers that can integrate information from the

both strands (Fig 1B and Methods). We arranged the one-hot vectors that represent AGCT in

a symmetric manner so that a 180-degree rotation of the one-hot vectors results in a reverse

complementary sequence (Fig 1C). Thus, reverse-sequence information can be processed by

rotating the kernels 180 degrees. The hidden layers derived from the two strands are combined

by element-wise addition after the second convolution. We termed this architecture FRSS (for-

ward- and reverse-sequence scan) layers. The replacement of the first two convolutional layers

in the DeepSEA-type model with FRSS (conv3-FRSS in Table 1) improved the accuracy of pre-

diction more than the simple addition of a convolution layer (conv4). Moreover, a four-layer

convolution model with FRSS (conv4-FRSS) achieved higher AUPRC scores than the other

models (Table 1, and Fig 1D for a visual comparison). Although the magnitude of increase in

AUPRC seemed subtle, the Fig 1D clearly showed a significant decrease in false positives. This

visual intuition was validated by the total counts of false positives; the number of false positives

by the DeepSEA-type model varied among replicates and was higher than those by the

conv4-FRSS model (Fig 1E). Raising the kernel numbers of each convolution layer also slightly

Table 1. A performance comparison between models.

129_ES_E14 forebrain E11.5 forelimb E11.5 mean timeb

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

DeepSEA-type 0.9234 0.6038 0.9141 0.6380 0.9315 0.5734 0.9230 0.6051 0.1773

Basset-type 0.9085 0.5796 0.9107 0.6280 0.9175 0.5476 0.9123 0.5851 0.0847

DanQ-type 0.9057 0.5785 0.9076 0.6214 0.9046 0.5164 0.9059 0.5721 0.4586

DanQ-type blocka 0.9053 0.5699 0.9063 0.6168 0.9030 0.5031 0.9049 0.5633 0.4832

conv4 0.9300 0.6234 0.9146 0.6426 0.9351 0.5884 0.9266 0.6181 0.2548

conv3-FRSS 0.9364 0.6447 0.9171 0.6496 0.9421 0.6098 0.9319 0.6347 0.3636

conv4-FRSS 0.9414 0.6571 0.9178 0.6520 0.9476 0.6280 0.9356 0.6457 0.3729

conv4-FRSS+ 0.9418 0.6631 0.9183 0.6549 0.9475 0.6347 0.9359 0.6509 0.5802

conv4-nonFRSS 0.9331 0.6424 0.9143 0.6407 0.9388 0.6008 0.9287 0.6280 0.3760

DanQ-FRSS 0.9365 0.6523 0.9162 0.6485 0.9453 0.6222 0.9327 0.6410 0.7905

aTensorflow has several LSTM cells, and this model uses LSTMBlockCell, and the above uses LSTMCell. bthe mean time (second) of 20 minibatch updates.

https://doi.org/10.1371/journal.pone.0235748.t001

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0235748.t001
https://doi.org/10.1371/journal.pone.0235748

improved the performance (conv4-FRSS+ in Table 1) but also increased computation time

(the right most column in Table 1). To confirm that the effect of FRSS resulted not from

merely increase in the kenerl number but from the rotation of kernels, we replaced the rotated

kernels with independently trainable kernels in the conv4-FRSS (named as "conv4-nonFRSS"

in Table 1). The replacement resulted in a poorer performance than the conv4-FRSS model,

indicating that the rotated kernels improve training efficiency. We also found that the FRSS

layers increased the learning efficiency of the DanQ model by a level comparable with

conv4-FRSS (DanQ-FRSS in Table 1). These results were consistently reproduced by repeated

training and testing (S3 Table), indicating that the benchmark is robust against random ini-

tialization. Together, these results suggest that the FRSS layers enhance the predictive power of

deep learning–based models.

The length of strides affect training efficiency

Next, we examined the structure and quality of training data using the conv4-FRSS model. In

certain previous studies, epigenomic signals were distributed into 200-bp windows of genome

sequences, and 400-bp extra-sequences were added to the left and right sides of each window

[9] (referred to as "DeepSEA-type data" in this study; Fig 1A). For comparison, we trained

conv4-FRSS with the DeepSEA-type data structure. Training with the DeepSEA-type data

yielded a higher AUROC score but a lower AUPRC score (DeepSEA-type in Table 2). In addi-

tion, we tested several window and stride sizes and found that models can be trained most effi-

ciently with a 1-kbp window and 0.3-kbp stride data. These results indicated that data-

structure design is a critical factor for training models efficiently and that data augmentation

using small strides, which was implemented in several studies [21,22], is not an optimal strat-

egy for training models.

conv4-FRSS outperforms previous models

To validate the performance of the FRSS layers, we extended the list of training data. First, we

newly trained conv4-FRSS with the same set of 125 human DNase-seq data used by Zhou &

Troyanskaya (2015) [9] (see S2 Table for the lists of data). We found that conv4-FRSS signifi-

cantly outperformed DeepSEA and DanQ (Fig 2A and 2C and S4 Table; the scores of DeepSEA

and DanQ were obtained from their publications; https://media.nature.com/original/nature-

assets/nmeth/journal/v12/n10/extref/nmeth.3547-S3.xlsx for DeepSEA and auc.txt of https://

github.com/uci-cbcl/DanQ for DanQ). We also trained conv4-FRSS with 365 and 93 of

Table 2. A performance comparison between data structures.

Data structure chromosome 2 (true test) chromosome 1 (overfitting test)

AUROC AUPRC AUROC AUPRC

DeepSEA-type 0.9623 0.4841 0.9694 0.4741

1 kb window/0.5 kb stridea 0.9356 0.6457 0.9453 0.6293

1 kb window/0.4 kb stride 0.9352 0.6528 0.9457 0.6386

1 kb window/0.3 kb stride 0.9389 0.6570 0.9515 0.6618

1 kb window/0.2 kb stride 0.9397 0.6530 0.9581 0.6962

1 kb window/0.1 kb stride 0.9368 0.6396 0.9689 0.7757

The mean values of the three mouse DNase-seq data are shown. The columns under chromosome 2 are the results of true tests (the higher is better). The columns under

chromosome 1 are overfitting tests (if the scores are higher than those of true tests, that is the sign of overfitting). aThe same data with the mean values of conv4-FRSS in

Table 1.

https://doi.org/10.1371/journal.pone.0235748.t002

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 5 / 17

https://media.nature.com/original/nature-assets/nmeth/journal/v12/n10/extref/nmeth.3547-S3.xlsx
https://media.nature.com/original/nature-assets/nmeth/journal/v12/n10/extref/nmeth.3547-S3.xlsx
https://github.com/uci-cbcl/DanQ
https://github.com/uci-cbcl/DanQ
https://doi.org/10.1371/journal.pone.0235748.t002
https://doi.org/10.1371/journal.pone.0235748

human and mouse DNase-seq peaks, respectively ("hg38" and "mm10" in the Fig 2A; see S2

Table for the lists of data). As shown in the Fig 2A and S4 Table, we noticed that training with

mouse data yielded higher performance than with human data. We also focused on CTCF

ChIP-seq data because (a) CTCF has a general function in genome organization, (b) ENCODE

releases plenty of CTCF data for both mice and humans, and (c) as evident for the AUPRC

scores of DeepSEA (S2 Fig; reanalyzed data from Zhou & Troyanskaya, 2015 [9]), the predic-

tion accuracy is highly dependent on the target of ChIP-seq, and that of CTCF is the highest

among transcription factors. As a result, the conv4-FRSS model was efficiently trained with

both human and mouse CTCF data, and this model yielded a median AUPRC score of>0.70

(Fig 2B and 2D; the scores of DeepSEA and DanQ were obtained from their publications).

Together, these results validate the performance of the FRSS.

Fig 2. Performance analyses of models with extended datasets. (A, B) Comparison of AUPRCs of DNase-seq data

(A) and CTCF data (B), respectively. The scores of DeepSEA and DanQ are obtained from their original studies.

conv4-FRSS. hg38 and mm10 are the scores of conv4-FRSS with newly created training data using datasets obtained

from the ENCODE project. filtered hg38 and mm10 are the prediction scores of conv4-FRSS trained with high-cFRiP

datasets. p, two-sided Mann–Whitney–Wilcoxon test. Boxes, the lower to upper quantile values of the data; orange

lines, the median; whiskers, the range of the data (Q1 –IQR × 1.5 and Q3 + IQR × 1.5 for the lower and upper bounds,

respectively); flier points, those past the end of the whiskers. (C, D) Scatter plots of AUPRCs of DeepSEA (x axis; scores

are obtained from its original data) and conv4-FRSS (y axis).

https://doi.org/10.1371/journal.pone.0235748.g002

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 6 / 17

https://doi.org/10.1371/journal.pone.0235748.g002
https://doi.org/10.1371/journal.pone.0235748

The quality control of training data

In the above training with extended dataset, we suspected that several classes with low

AUPRCs were attributable to poor data quality. To address this possibility, we calculated a

known quality index, FRiP (fraction of reads in peaks [23]), of mouse CTCF data and found

that classes with low AUPRCs tended to have low FRiPs (top panels in the S3 Fig), with some

exceptions (arrows in the S4 Fig and S5 Table). Because FRiP is calculated based on reads in

peaks per total reads, values may be inflated when the read number of the source data is too

low. To correct such inflation, we multiplied FRiP by the fraction of genomic regions covered

by at least one read in a genome. As shown in the S3 Fig, the corrected FRiPs (cFRiPs) could

distinguish high and low AUPRC data more clearly. In addition, cFRiP yielded a stronger cor-

relation with the total peak numbers of data than the uncorrected FRiP (bottom panels in the

S3 Fig). Although the other datasets showed weaker relations between FRiP and AUPRC, data

with optimal cutoff values of cFRiP increased the average AUPRC score except for the human

CTCF data (filtered hg38 and mm10 data in the Fig 2A and 2B, and S4 Fig). These results sug-

gested two points. First, the correction method reasonably represents the true quality of the

data. Second, the linear correlation between peak numbers and cFRiPs implies that data qual-

ity is not saturated enough to detect all true peaks (and hence, the possibility remains that the

model learns sample quality rather than cell-specific patterns). Therefore, whereas the

ENCODE project seems to consider�1% FRiP as good data [23], our results suggest that

higher stringency during quality control is required for the precise annotation of genomes.

The utility of conv4-FRSS

Because the conv4-FRSS model showed a good accuracy for CTCF binding site prediction, we

further examined the utility of this model. A comparison between the predictions of the model

and CTCF motif regions detected by a motif scanning tool, FIMO [24] (FIMO in the Fig 3A)

revealed that the model can predict CTCF binding regions that do not contain the canonical

CTCF motif. In addition, we also used the class saliency extraction method [25] to identify

informative sequences at the single-nucleotide level, which produce data similar to ChIP-seq

signals (influential value in the Fig 3A and S5 Fig). This method is equivalent to the in silico
saturation mutagenesis approach used previously [8,9] but is more computationally efficient

because it does not require mutation-by-mutation evaluation (see Methods for details). Fur-

thermore, using the dog genome (CanFam3.1), we performed a cross-species prediction of

CTCF binding regions with the model trained solely with mouse data. As shown in the Fig 3B,

the predictions of the model matched with the real CTCF signals of dog liver [26] and detected

species-specific differences (compare red rectangles in the Fig 3), indicating the generality of

the model. Based on all these data, we concluded that conv4-FRSS can be applied to diverse

data.

Visualization of what deep-learning models learn about genome sequences

To obtain insights into how the models predict regulatory sequences, we visualized

conv4-FRSS trained with the subset of mouse DNase-seq data. First, as has been done in previ-

ous studies [8,10], we analyzed individual kernels of the first layer, which directly interact with

DNA sequences and thus represent DNA motifs that are important for classifying regulatory

sequences. We converted the weight variables to probability matrices by using a softmax-like

operation and found that established models have indeed learned many known transcription

factor binding motifs, such as those bound by CTCF, SOX9, OCT4 and KLF4 (Fig 4A, S6 Fig

and see S6 Table for full comparison between the kernels and known motifs). Next, we applied

the activation maximization method [25,27,28], in which we look for DNA sequences that

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 7 / 17

https://doi.org/10.1371/journal.pone.0235748

maximize neuron activities in the final layer of a trained model by training the sequence itself

(see Methods for formal mathematical expressions). First, we trained a sequence to activate the

129 ES E14–specific neuron in the last output layer. As with image-recognition studies [25,28],

this method generated randomly repeated sequences that probably capture the 129 ES E14

class-specific traits (Fig 4B). Using the motif comparison software Tomtom [29], we found

that the generated sequence contained the motifs of several reprogramming-related transcrip-

tion factors, such as OCT4/SOX2 and KLF4, which are important for the pluripotency of

embryonic stem cells [30] (the full detected motifs are listed in S7 Table). For comparison, we

also trained a sequence to activate all of the three classes of the neurons, resulting in a CTCF

motif–rich sequence (Fig 4C). This result is consistent with the general role of CTCF as an

enhancer looping factor [31]. In addition, the generated sequence also contained small motifs

next to the well-known 20-bp motif (dashed boxes in the Fig 4C, which resembled the other

part of the alternative long CTCF motif (33/34 bp in length, including an additional

GGNANTGCA or TGCANTNCC sequence) [26] (the full detected motifs are listed in S8

Table). Thus, the detection of motifs that are longer than the kernel size constitutes one of the

advantages of this activation maximization method. Taken together, the activation maximiza-

tion method helps understand how deep-learning models predict enhancer sequences.

Discussions

Our results demonstrate that a new convolution architecture, FRSS, efficiently discerns pat-

terns of regulatory DNA sequences. Furthermore, the analyses of data quality and structure

revealed that training efficiencies highly depend on the means by which the source data are fil-

tered and processed. Although the visualization methods are still in development, these

Fig 3. An example of CTCF binding site predictions on the HoxD cluster of mice and dogs. (A) Comparison between predictions by

conv4-FRSS, experimaental data and motifs detected by FIMO in mouse chromosome 2 sequence. predictions, CTCF binding regions

predicted by conv4-FRSS (prediction values�0.2 are shown, and the bluer is more probable); influential value, values calculated with the

class saliency extraction method; mouse liver CTCF, alignment data from ENCFF627DYN; FIMO, CTCF sites that were detected by FIMO

(black boxes, p� 1e-4; gray boxes, 1e-4< p� 1e-3). (B) Comparison between predictions by conv4-FRSS and experimaental data in the

sequence of dog chromosome 36. dog liver CTCF, alignment data from ERR022304; red rectangles, a CTCF peak that is present in the

mouse genome (solid rectangle) but not the dog genome (dashed rectangle).

https://doi.org/10.1371/journal.pone.0235748.g003

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 8 / 17

https://doi.org/10.1371/journal.pone.0235748.g003
https://doi.org/10.1371/journal.pone.0235748

methods will provide researchers with clues for understanding the syntax of gene regulatory

sequences.

We designed FRSS to process the information for forward and reverse sequences simulta-

neously, and we demonstrated the efficacy of FRSS for this purpose. This is the first to show

that a new CNN architecture specialized for processing DNA sequences outperforms existing

models. However, there are many ways for designing layers for this purpose. For example,

instead of pair-wise summation in the last layer of FRSS, one can concatenate the output ten-

sors similar to bidirectional RNN [32]. In addition, during finishing this study, we found a

study that implemented a CNN model with a similar idea but a different architecture, although

their model seemed to suffer from a run-time memory problem, and they did not clearly

Fig 4. Visualization of trained kernels and results of the activation maximization method. (A) Examples of known motifs (top) that match with kernels. (B,

C) Sequences trained to activate the 129 ES E14–specific neuron in the last layer (B) and all neurons in the last layer (C), respectively. Boxes in the left panel,

OCT4/SOX2 binding motifs; dashed boxes in the left panel, KLF4 binding motifs; boxes in the right panel, CTCF binding motifs; dashed boxes, motifs similar

to the second part of the alternative longer CTCF motif.

https://doi.org/10.1371/journal.pone.0235748.g004

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0235748.g004
https://doi.org/10.1371/journal.pone.0235748

compare the performance of their model with that of other models [33]. We choose the current

FRSS architecture because its computational cost is smaller than that of other configurations.

However, better architectures may be possible that retain low computational cost yet offer greater

prediction power. Overall, our study indicates that neural net designs that take the nature of

genomic molecules into account will yield high accuracy for genomic information processing.

We released DeepGMAP (https://github.com/koonimaru/DeepGMAP), a software that allows

users to train models and predict regulatory sequences in de novo genome sequences.

Materials and methods

Dataset and processing

The sequences for the human (hg19, hg38) and mouse (mm10) genomes were downloaded

from UCSC (http://hgdownload.soe.ucsc.edu/goldenPath/). Mitochondrial DNA sequences

were excluded from analyses. The genomic sequences were divided into 1-kbp windows with a

variety of strides as described in Results. The filtered alignment files for epigenomic data were

downloaded from the ENCODE website (https://www.encodeproject.org/; see S2 Table for

details). A peak caller, MACS2 version 2.1.1.20160309, was used to determine signal peak

regions with the following options: "callpeak—call-summits -t<target bam file> -c<control

bam file> -f<BAM or BAMPE> -g <hs or mm> -q 0.01" for ChIP-seq, and "callpeak—

call-summits -q 0.01 –nomodel–shift -100 –extsize 200 -t<target bam file> -f <BAM or

BAMPE> -g <hs or mm>" for DNase-seq. Using the outputs of MACS2, bedtools [34], and

our codes, genomic regions were designated as positive if windows were found to overlap with

the summits of peaks (Fig 1A). DNase-seq data with < 10,000 peaks were excluded from train-

ing data because they showed an apparent poor quality. For comparative analyses in Fig 2A

and 2B, peak files were downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/ (these peak files were generated by ENCODE using hg19). These data were used

to mark genome sequences. For cross-species comparison, CanFam 3.1 was downloaded from

NCBI (https://www.ncbi.nlm.nih.gov/genome/?term=dog), and the short reads for CTCF

ChIP-seq data (ERR022304) were downloaded from EMBL-EBI ArrayExpress (https://www.

ebi.ac.uk/arrayexpress/experiments/E-MTAB-437/).

We divided each of the mouse and human genome sequences into 1000-basepair (bp) win-

dows and converted the four letters into one-hot vectors (four dimensional zero-one vectors).

Namely, the DNA symbols, A, G, C, T and N were converted into one-hot vectors: (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (0, 0, 0, 0), respectively. Therefore, one training sample

became a 1000×4 tensor. To reduce the number of potential artifacts caused by window

boundaries, we also added windows that were shifted by 500 bp toward the 30 side (Fig 1A).

With a mini-batch number of 100 for the stochastic gradient descent and channel dimension 1

(a dimension for colors if the input was image data), the final shape of the input tensor was

100×1000×4×1. To denote epigenomic marks, we assigned each window as 1 if it overlapped a

signal positive region or 0 otherwise, which became a label tensor of size mini-batch number×-
class number [i.e., 100 label vectors, and each label looks like (0, 0, 0, 1, 0, 1,, 0); see the S1

Fig for visual illustration]. We generated several training datasets with different reference

genome sequences (for example, we used the mm10 genome sequence for the mouse DNase-

seq peaks that we determined with MACS2 and the hg19 genome sequence for the peak files

downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/).

Design of models and implementation

Tensorflow r1.8 for python (https://www.tensorflow.org/) with CUDA Driver v9.0 and

cuDNN v7.0.5 was used as the main machine-learning library for model implementation. The

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 10 / 17

https://github.com/koonimaru/DeepGMAP
http://hgdownload.soe.ucsc.edu/goldenPath/
https://www.encodeproject.org/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
https://www.ncbi.nlm.nih.gov/genome/?term=dog
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-437/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-437/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
https://www.tensorflow.org/
https://doi.org/10.1371/journal.pone.0235748

Tensorflow library was compiled from the source codes with the bazel compiler (https://bazel.

build/; with options: "-c opt—copt = -mavx—copt = -mavx2—copt = -mfma—copt =

-mfpmath = both—copt = -msse4.2—config = cuda -k //tensorflow/tools/pip_package:build_-

pip_package"). For convolutions, we used a module, tensorflow.nn.conv2d, with options:

"strides = [1, 1, 1, 1], padding = VALID". For the Basset model, because batch normalization

did not yield any positive effects, we removed this operation. For RNN layers, we used the long

short-term memory cells [35] (tensorflow.nn.rnn_cell.LSTMCell or tensorflow.contrib.rnn.

LSTMBlockCell without the peephole option) and tensorflow.nn.bidirectional_dynamic_rnn

for output calculations. The operations and hyperparameters of models are listed in S1 Table.

For the FRSS layers, convolution kernels were rotated 180 degrees to extract reverse com-

plementary information in the first and second layers in parallel with normal convolutions as

follows. Let Wl a weight tensor of size M×N×H×K (M, kernel height; N, kernel width; H, input

channel number; K, output channel number) in the l th convolution layer, defined as

½Wl�m;n;h;k ¼ wl
m;n;h;k ([m] = {0,. . .,M−1};[n] = {0,. . .,N−1};[h] = {0,. . .,H−1};[k] = {0,. . .,K−1}).

The rotated tensor Wl
rc can be written as ½Wl

rc�m;n;h;k ¼ wl
ðM� 1� mÞ;ðN� 1� nÞ;h;k (see the Fig 1C for a

visual illustration for the rotation). Then, the first part of the FRSS layers is

X1 ¼ pool
�
relu
�
convðW0;X0Þ

��
;

X1
rc ¼ pool

�
relu
�
convðW0

rc;X
0Þ
��
;

where Xl is an input/output tensor of size B×S×N×H (B, mini batch number; S, sequence

length; N, input width; H, input channel number) in the l th convolution layer, Xl
rc is the out-

put of convolution with the rotated tensor, conv is the convolution operation, relu is the recti-

fied linear unit, and pool is the max pooling operation of size 2×1 and stride 2. The second part

of the FRSS layers is

X2 ¼ pool
�
relu
�
convðW1;X1Þ

�
þ relu

�
convðW1

rc;X
1Þ
��
:

Note that the variables of Wl
rc are not independent training targets but rather are the copies of

those of Wl.

Training and testing models

Stochastic gradient–based optimization was used for training models. For human data, the

chromosome 8 and 9 were excluded from training data. For mouse data, the chromosome 2

was excluded. The excluded sequences were used to test trained models. hg19 genome was

used for comparisons with previously reported AUPRCs (Fig 2A and 2B). A training dataset

was subdivided into mini-batches containing 100 sequences. In the quick benchmark, because

the fraction of positively labeled genomic windows was too small, negative samples were ran-

domly downsampled to 25%. To accelerate the learning rate and compensate for the limited

data size, each mini-batch was further divided into two sub-mini-batches, and updates were

made alternately twice per sub-mini-batch (i.e., four updates per mini-batch). The loss func-

tion we used for training our models and the DeepSEA model is

1

n

Xn� 1

k¼0

ðyklogðŷkÞ þ ð1 � ykÞlogð1 � ŷkÞÞ þ l1kWk
2

2
þ l2kHk1;

where yk is a label of class k, ŷk is a prediction after the sigmoid operation, kWk2

2
is the L2 regu-

larization of all variables, kHk1 is the L1 regularization of predictions before the sigmoid

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 11 / 17

https://bazel.build/
https://bazel.build/
https://doi.org/10.1371/journal.pone.0235748

operation. λ1 and λ2 were set as 5×10−7 and1×10−8, respectively according to [9]. For the

remaining models, the loss function without the regularization terms was used. The optimiza-

tion algorithms RMSprop [36] and Adam [37] were used to train the DanQ model and the oth-

ers, respectively. To monitor training accuracy, models were tested by every mini-batch before

updating variables and then evaluated based on the F1 score (
2�precision�recall
precisionþrecall) to assess temporal

accuracy. When a mean of F1 scores of the last three tests exceeded a certain threshold (0.75),

models were tested by three mini-batch sets that had been randomly excluded from a training

dataset and saved when a higher F1 score was attained relative to the previous test.

NVIDIA TITAN X (Pascal; 3584 CUDA Cores; total amount of global memory, 12190 Mby-

tes; GPU Max Clock rate, 1531 MHz) was used for GPU-computing. Intel Xeon Processor E5-

2640 v4 (2.40 GHz) was used for CPU-computing (see S1 Note for the full specification of our

machine). Total training time was dependent on the number of classes, the amount of training

data, and model architecture. For example, conv4-FRSS took three hours to train with the subset

of mm10 DNase-seq data (three classes) and 11 hours with hg38 DNase-seq (365 classes). The

bottleneck was, in part, to send tensor data from the GPU to CPU for evaluation of the temporal

accuracy of the training models. In previous studies, training time was reported as 85 hours in

the Basset paper with NVIDIA Tesla K20m and 164 classes, and as approximately 15 days in the

DanQ paper with NVIDIA Titan Z and 919 classes. However, a fair comparison of training time

with previous studies is difficult owing to differences in the machines, languages, and datasets.

To test trained models, the chromosome 2 sequence for mice and chromosome 8 and 9

sequences for humans were divided into the same window size and stride with those of the

training data. AUROC and AUPRC were calculated with functions in the scikit-learn library

version 0.19.1 (http://scikit-learn.org/stable/). We compared the accuracy between a model

trained with the full training data and one saved during training, and adopted the one with

higher AUPRCs. AUPRCs of DeepSEA and DanQ in the Fig 2A and 2B were obtained from S3

Table of the DeepSEA paper (https://media.nature.com/original/nature-assets/nmeth/journal/

v12/n10/extref/nmeth.3547-S3.xlsx) and auc.txt of the DanQ repository (https://github.com/

uci-cbcl/DanQ) and are listed in our S4 Table. Predictions presented in the Figs 1D and 3 were

visualized using the integrative genomics viewer [38].

The class saliency extraction method

To evaluate informative sequences at the single-nucleotide level (Fig 3 and S5 Fig), the class

saliency extraction method was performed as previously described [25] with slight modifica-

tions. Let Si(X0) be the score of the class i before sigmoidal operation, computed by the

conv4-FRSS model for an arbitrary DNA sequence X0 of size 1000×4×1. In other words, Si(X0)

is a function that includes all operations such as FRSS, convolution and fully-connected layers

except the last sigmoidal operation. The derivative of Si(X0) with respect to X0 is

o ¼
@SiðX0Þ

@X0

�
�
�
�
X0

0

;

where X0
0

is a given DNA sequence. The derivative ω is a tensor of size 1000×4×1, and each ele-

ment corresponds to each element of X0. The values shown in the Fig 3A and S5 Fig (orange)

are ∑n|ωs,n,h| (s = 0, . . ., 999; n = 0,. . ., 3; h = 0). To remove irrelevant values, the figures only

show sequences with Si(X0)�−2.0. These values represent the magnitude of the effect on the

class score when nucleotide substitutions occur. Therefore, these values may be termed as

influential values.

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 12 / 17

http://scikit-learn.org/stable/
https://media.nature.com/original/nature-assets/nmeth/journal/v12/n10/extref/nmeth.3547-S3.xlsx
https://media.nature.com/original/nature-assets/nmeth/journal/v12/n10/extref/nmeth.3547-S3.xlsx
https://github.com/uci-cbcl/DanQ
https://github.com/uci-cbcl/DanQ
https://doi.org/10.1371/journal.pone.0235748

FRiP calculation and correction

To calculate FRiPs, initially, mitochondrial and black-listed regions (https://sites.google.com/

site/anshulkundaje/projects/blacklists) were removed from peak files. A module, "countRead-

sPerBin.CountReadsPerBin" in deeptools [39], was used to count reads in peaks, and these

read counts were then divided by total reads. As a correction for read number differences,

FRiP was multiplied by the fraction of genome regions covered by at least one read.

Visualizing the inside of a trained model

Variables in each kernel were converted to a probability matrix by a softmax-like operation.

Tomtom [29] version 4.12.0 and MEME motif database version 12.15 (http://meme-suite.org/

meme-software/Databases/motifs/motif_databases.12.15.tgz) were used to identify closely

related known transcription factor binding motifs. For visualizing kernels in the first layer of

FRSS, the probability matrices were scaled by information content. Motif logos except Tom-

tom outputs were generated by our customized codes using the cairocffi library (https://

cairocffi.readthedocs.io/en/latest/).

The activation maximization method

Let ŷiðX0Þ be the score of the class i (i = 0,1,2), computed by the conv4-FRSS model for a

sequence X0. To find a sequence that is specific to class i, we sought to optimize the following

problem:

argmax
X0

ŷiðX0Þ
P

k6¼iŷkðX0Þ
� lkX0k

2

2
;

where λ = 5.0×10−3. For the common sequence (right panel in the Fig 4), the problem was:

argmax
X0

Y
ŷiðX

0Þ � lkX0k
2

2
:

These formulae differ slightly from those reported previously [25] because our model used the

sigmoid function for the last output, whereas the others used softmax. The optimizer Adam

was used to optimize the target sequence. The initialization of variables of X0 was set to have a

mean of 0.02 and stddev of 0.02, and this was a critical factor for this optimization problem.

Training with different initialization conditions sometimes did not converge, suggesting that

the optimization landscape is rugged and there is a possibility that the results shown in the Fig

4 are not the optimal solution. The generated sequences were visualized with our customized

codes using the cairocffi library. Tomtom was used to find motifs in the generated sequences.

Supporting information

S1 Fig. Illustration of how a convolutional neural network reads DNA sequences. (A) One-

hot vectors that represent a DNA sequence. A 1-kbp DNA sequence is converted into a

1000×4 matrix. (B) A general convolutional network for sequence classifications. Only the first

layer is shown, as an example. In the first layer, 9×4 kernels "scan" a sequence by striding base

pair-by-base pair. Each "scan" is actually an element-wise multiplication of the values of a ker-

nel (wmnhk) with values of 0 or 1 in a part of the sequence, yielding a scalar value represented

by the black-to-white colored boxes shown below. By striding, scalar values are concatenated

to a vector of size 992 (1000–9 + 1). Because the layer has multiple kernels (320 in this case),

the output of the layer is 320 vectors. Maxpooling chooses maximum elements in each win-

dow. In this case, because the window size is 2, the total length of the sequence is halved by

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 13 / 17

https://sites.google.com/site/anshulkundaje/projects/blacklists
https://sites.google.com/site/anshulkundaje/projects/blacklists
http://meme-suite.org/meme-software/Databases/motifs/motif_databases.12.15.tgz
http://meme-suite.org/meme-software/Databases/motifs/motif_databases.12.15.tgz
https://cairocffi.readthedocs.io/en/latest/
https://cairocffi.readthedocs.io/en/latest/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s001
https://doi.org/10.1371/journal.pone.0235748

pooling. After fully connecting the layers, sigmoid operations yield output values between 0

and 1, which is compared with the class labels of "0" and "1".

(PDF)

S2 Fig. AUPRCs of the DeepSEA model. Boxplots of AUPRCs sorted by factors. The data

were derived from nmeth.3547-S3.xlsx of Zhou & Troyanskaya (2015). Boxes, the lower-to-

upper quantile values for the data; orange lines, the median; whiskers, the range of the data.

Flier points, those past the end of the whiskers. Note that the prediction of CTCF binding sites

(red rectangle) had the best performance among transcription factors.

(PDF)

S3 Fig. Scatter plots for FRiP and corrected FRiP with AUPRCs (top panels) and peak

numbers (bottom panels). AUPRCs are the prediction accuracy of conv4-FRSS trained with

mm10 CTCF dataset. Black arrows indicate data with low AUPRCs but relatively high FRiP

scores. The quality of these data is reasonably estimated with cFRiP. The validity of cFRiP is

also supported by the better correlation with peak numbers. corr., Spearman’s correlation.

(PDF)

S4 Fig. The average of AUPRCs with various cutoff values of corrected FRiP. (A, B) Plots of

average AUPRCs for human and mouse DNase-seq data (A and B) and CTCF data (C and D)

as a function of cutoff values of corrected FRiPs. Note that increase in cutoff values of the cor-

rected FRiPs results in an increase of the average AUPRCs, at least to some extent, except as

shown in c. Red line, cutoff values for the filtered data in Fig 2A and 2B.

(PDF)

S5 Fig. Evaluation of informative sequences at the single-nucleotide level. (A) CTCF

binding distribution of mouse liver E14.5, as an example. Influential value, the values calcu-

lated by the class saliency extraction method; Prediction, CTCF binding sites predicted with

conv4-FRSS; CTCF signal, CTCF ChIP-seq signals derived from ENCFF844ZSH; red rectan-

gle, a region magnified in b. Note that the distribution of influential values is similar to that of

the CTCF signal although the model is not directly trained with the signal data. (B) Compari-

son of influential values and CTCF binding motif. The CTCF binding motifs were detected

with FIMO. Note that nucleotides with high influential value (orange) are aligned with the

high information content sites in the CTCF motif (arrows).

(PDF)

S6 Fig. All kernels of conv4-FRSS trained by a subset of the mouse DNase-seq data. Note

that several kernels contain little information and thus appear empty. These kernels may sug-

gest either that the kernel number was sufficiently set or that training was insufficient to opti-

mize all kernels.

(PDF)

S1 Note.

(PDF)

S1 Table.

(XLSX)

S2 Table.

(XLSX)

S3 Table.

(XLSX)

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s010
https://doi.org/10.1371/journal.pone.0235748

S4 Table.

(XLSX)

S5 Table.

(XLSX)

S6 Table.

(XLSX)

S7 Table.

(XLSX)

S8 Table.

(XLSX)

Acknowledgments

We thank Dr. Yuichiro Hara for critical comments and Dr. Mitsutaka Kadota for discussions

concerning unpublished data.

Author Contributions

Conceptualization: Koh Onimaru.

Data curation: Koh Onimaru.

Formal analysis: Koh Onimaru.

Funding acquisition: Koh Onimaru, Shigehiro Kuraku.

Investigation: Koh Onimaru.

Methodology: Koh Onimaru, Osamu Nishimura.

Project administration: Koh Onimaru.

Resources: Koh Onimaru.

Software: Koh Onimaru.

Supervision: Shigehiro Kuraku.

Validation: Koh Onimaru.

Visualization: Koh Onimaru.

Writing – original draft: Koh Onimaru.

Writing – review & editing: Koh Onimaru, Osamu Nishimura, Shigehiro Kuraku.

References

1. Meadows JRS, Lindblad-Toh K. Dissecting evolution and disease using comparative vertebrate geno-

mics. Nat Rev Genet. 2017; 18: 624–636. https://doi.org/10.1038/nrg.2017.51 PMID: 28736437

2. Consortium 1000 Genomes Project, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al.

An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491: 56–65. https://

doi.org/10.1038/nature11632 PMID: 23128226

3. Kratochwil CF, Meyer A. Closing the genotype-phenotype gap: Emerging technologies for evolutionary

genetics in ecological model vertebrate systems. BioEssays. 2015; 37: 213–226. https://doi.org/10.

1002/bies.201400142 PMID: 25380076

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0235748.s015
https://doi.org/10.1038/nrg.2017.51
http://www.ncbi.nlm.nih.gov/pubmed/28736437
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
https://doi.org/10.1002/bies.201400142
https://doi.org/10.1002/bies.201400142
http://www.ncbi.nlm.nih.gov/pubmed/25380076
https://doi.org/10.1371/journal.pone.0235748

4. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA ele-

ments in the mouse genome. Nature. 2014; 515: 355–364. https://doi.org/10.1038/nature13992 PMID:

25409824

5. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated encyclopedia of DNA

elements in the human genome. Nature. 2012; 489: 57–74. https://doi.org/10.1038/nature11247 PMID:

22955616

6. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH

roadmap epigenomics mapping consortium. Nat. Biotechnol. 2010. pp. 1045–1048. https://doi.org/10.

1038/nbt1010-1045 PMID: 20944595

7. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active

enhancers across human cell types and tissues. Nature. 2014; 507: 455–461. https://doi.org/10.1038/

nature12787 PMID: 24670763

8. Kelley DR, Snoek J, Rinn JL. Basset: Learning the regulatory code of the accessible genome with deep

convolutional neural networks. Genome Res. 2016; 26: 990–999. https://doi.org/10.1101/gr.200535.

115 PMID: 27197224

9. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning–based sequence

model. Nat Methods. 2015; 12: 931–934. https://doi.org/10.1038/nmeth.3547 PMID: 26301843

10. Quang D, Xie X. DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the

function of DNA sequences. Nucleic Acids Res. 2016; 44: e107. https://doi.org/10.1093/nar/gkw226

PMID: 27084946

11. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-

binding proteins by deep learning. Nat Biotechnol. 2015; 33: 831–838. https://doi.org/10.1038/nbt.3300

PMID: 26213851

12. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521: 436–444. https://doi.org/10.1038/

nature14539 PMID: 26017442

13. Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence prediction using

gapped k-mer features. PLoS Comput Biol. 2014; 10. https://doi.org/10.1371/journal.pcbi.1003711

PMID: 25033408

14. Alain G, Bengio Y. Understanding intermediate layers using linear classifier probes. Preprint at http://

arxiv.org/abs/1610.01644. 2016. Available: http://arxiv.org/abs/1610.01644

15. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of

ChIP-Seq (MACS). Genome Biol. 2008; 9. https://doi.org/10.1186/gb-2008-9-9-r137 PMID: 18798982

16. Kelley DR, Snoek J, Rinn JL, Phelan CM, Kuchenbaecker KB, Tyrer JP, et al. Basset: learning the regu-

latory code of the accessible genome with deep convolutional neural networks. Genome Res. 2016; 26:

990–999. https://doi.org/10.1101/gr.200535.115 PMID: 27197224

17. Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. Proc ICML.

2006. pp. 233–240. https://doi.org/10.1145/1143844.1143874

18. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Proc

IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2015;7–12: 1–9. https://doi.org/10.1109/CVPR.

2015.7298594

19. Glover JNM, Harrison SC. Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun

bound to DNA. Nature. 1995. pp. 257–261. https://doi.org/10.1038/373257a0 PMID: 7816143

20. Shimizu T, Toumoto A, Ihara K, Shimizu M, Kyogoku Y, Ogawa N, et al. Crystal structure of PHO4

bHLH domain-DNA complex: Flanking base recognition. EMBO J. 1997; 16: 4689–4697. https://doi.

org/10.1093/emboj/16.15.4689 PMID: 9303313

21. Singh S, Yang Y, Poczos B, Ma J. Predicting enhancer-promoter interaction from genomic sequence

with deep neural networks. Preprint at https://www.biorxiv.org/content/early/2016/11/02/085241. bioR-

xiv. 2016. https://doi.org/10.1101/085241

22. Min X, Zeng W, Chen S, Chen N, Chen T, Jiang R. Predicting enhancers with deep convolutional neural

networks. BMC Bioinformatics. 2017; 18. https://doi.org/10.1186/s12859-017-1878-3 PMID: 29219068

23. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and

practices of the ENCODE and modENCODE consortia. Genome Res. 2012. pp. 1813–1831. https://

doi.org/10.1101/gr.136184.111 PMID: 22955991

24. Grant CE, Bailey TL, Noble WS. FIMO: Scanning for occurrences of a given motif. Bioinformatics.

2011; 27: 1017–1018. https://doi.org/10.1093/bioinformatics/btr064 PMID: 21330290

25. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classifica-

tion models and saliency maps. Preprint at http://arxiv.org/abs/1312.6034. arXiv.org. 2013. Available:

http://arxiv.org/abs/1312.6034

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 16 / 17

https://doi.org/10.1038/nature13992
http://www.ncbi.nlm.nih.gov/pubmed/25409824
https://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
https://doi.org/10.1038/nbt1010-1045
https://doi.org/10.1038/nbt1010-1045
http://www.ncbi.nlm.nih.gov/pubmed/20944595
https://doi.org/10.1038/nature12787
https://doi.org/10.1038/nature12787
http://www.ncbi.nlm.nih.gov/pubmed/24670763
https://doi.org/10.1101/gr.200535.115
https://doi.org/10.1101/gr.200535.115
http://www.ncbi.nlm.nih.gov/pubmed/27197224
https://doi.org/10.1038/nmeth.3547
http://www.ncbi.nlm.nih.gov/pubmed/26301843
https://doi.org/10.1093/nar/gkw226
http://www.ncbi.nlm.nih.gov/pubmed/27084946
https://doi.org/10.1038/nbt.3300
http://www.ncbi.nlm.nih.gov/pubmed/26213851
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1371/journal.pcbi.1003711
http://www.ncbi.nlm.nih.gov/pubmed/25033408
http://arxiv.org/abs/1610.01644
http://arxiv.org/abs/1610.01644
http://arxiv.org/abs/1610.01644
https://doi.org/10.1186/gb-2008-9-9-r137
http://www.ncbi.nlm.nih.gov/pubmed/18798982
https://doi.org/10.1101/gr.200535.115
http://www.ncbi.nlm.nih.gov/pubmed/27197224
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1038/373257a0
http://www.ncbi.nlm.nih.gov/pubmed/7816143
https://doi.org/10.1093/emboj/16.15.4689
https://doi.org/10.1093/emboj/16.15.4689
http://www.ncbi.nlm.nih.gov/pubmed/9303313
https://www.biorxiv.org/content/early/2016/11/02/085241
https://doi.org/10.1101/085241
https://doi.org/10.1186/s12859-017-1878-3
http://www.ncbi.nlm.nih.gov/pubmed/29219068
https://doi.org/10.1101/gr.136184.111
https://doi.org/10.1101/gr.136184.111
http://www.ncbi.nlm.nih.gov/pubmed/22955991
https://doi.org/10.1093/bioinformatics/btr064
http://www.ncbi.nlm.nih.gov/pubmed/21330290
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://doi.org/10.1371/journal.pone.0235748

26. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonalves Â, Kutter C, et al. Waves of retrotransposon

expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell.

2012; 148: 335–348. https://doi.org/10.1016/j.cell.2011.11.058 PMID: 22244452

27. Erhan D, Bengio Y, Courville A, Vincent P. Visualizing higher-layer features of a deep network. Ber-

noulli. 2009; 1–13. Available: http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing

+higher+layer+features+of+a+deep+network.pdf

28. Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding Neural Networks Through Deep Visu-

alization. Preprint at http://arxiv.org/abs/1506.06579. 2015. Available: http://arxiv.org/abs/1506.06579

29. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs.

Genome Biol. 2007; 8. https://doi.org/10.1186/gb-2007-8-2-r24 PMID: 17324271

30. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibro-

blast cultures by defined factors. Cell. 2006; 126: 663–676. https://doi.org/10.1016/j.cell.2006.07.024

PMID: 16904174

31. Ong CT, Corces VG. CTCF: An architectural protein bridging genome topology and function. Nat. Rev.

Genet. 2014. pp. 234–246. https://doi.org/10.1038/nrg3663 PMID: 24614316

32. Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Process. 1997; 45:

2673–2681. https://doi.org/10.1109/78.650093

33. Shrikumar A, Greenside P, Kundaje A, Science C. Reverse-complement parameter sharing improves

deep learning models for genomics. Preprint at https://www.biorxiv.org/content/early/2017/01/27/

103663. bioRxiv. 2017. https://doi.org/10.1101/103812

34. Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformat-

ics. 2010; 26: 841–842. https://doi.org/10.1093/bioinformatics/btq033 PMID: 20110278

35. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997; 9: 1735–1780. https://

doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

36. Hinton GE, Srivastava N, Swersky K. Lecture 6e- rmsprop: Divide the gradient by a running average of

its recent magnitude. COURSERA Neural Networks Mach Learn. 2012; 26–31. Available: https://goo.

gl/RsQeis

37. Kingma DP, Ba JL. Adam: a Method for Stochastic Optimization. Int Conf Learn Represent 2015. 2015;

1–15. http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503

38. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative geno-

mics viewer. Nat. Biotechnol. 2011. pp. 24–26. https://doi.org/10.1038/nbt.1754 PMID: 21221095

39. Ramı́rez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation

web server for deep-sequencing data analysis. Nucleic Acids Res. 2016; 44: W160–W165. https://doi.

org/10.1093/nar/gkw257 PMID: 27079975

PLOS ONE Convolutional neural network for processing double-strand genome sequence information

PLOS ONE | https://doi.org/10.1371/journal.pone.0235748 July 23, 2020 17 / 17

https://doi.org/10.1016/j.cell.2011.11.058
http://www.ncbi.nlm.nih.gov/pubmed/22244452
http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+of+a+deep+network.pdf
http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+of+a+deep+network.pdf
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1506.06579
https://doi.org/10.1186/gb-2007-8-2-r24
http://www.ncbi.nlm.nih.gov/pubmed/17324271
https://doi.org/10.1016/j.cell.2006.07.024
http://www.ncbi.nlm.nih.gov/pubmed/16904174
https://doi.org/10.1038/nrg3663
http://www.ncbi.nlm.nih.gov/pubmed/24614316
https://doi.org/10.1109/78.650093
https://www.biorxiv.org/content/early/2017/01/27/103663
https://www.biorxiv.org/content/early/2017/01/27/103663
https://doi.org/10.1101/103812
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://goo.gl/RsQeis
https://goo.gl/RsQeis
http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
https://doi.org/10.1038/nbt.1754
http://www.ncbi.nlm.nih.gov/pubmed/21221095
https://doi.org/10.1093/nar/gkw257
https://doi.org/10.1093/nar/gkw257
http://www.ncbi.nlm.nih.gov/pubmed/27079975
https://doi.org/10.1371/journal.pone.0235748

