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Abstract: A novel chaotic system called complex Rikitake system is proposed. Dynamical properties,
including symmetry, dissipation, stability of equilibria, Lyapunov exponents and bifurcation,
are analyzed on the basis of theoretical analysis and numerical simulation. Further, based on
feedback control method, the complex Rikitake system can be controlled to any equilibrium points.
Additionally, this paper not only proves the existence of two types of synchronization schemes in the
complex Rikitake system but also designs adaptive controllers to realize them. The proposed results
are verified by numerical simulations.
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1. Introduction

Since the pioneer research work of Ott et al. [1], Pecora and Carroll [2], the topic of chaos control
and synchronization has attracted a lot of researchers in diverse areas including mathematics, physics,
biology, medicine, engineering, and so on. Lots of research has been paid to study chaos control for
real systems, and plenty of control methods have been put forward, such as feedback control [3,4],
sliding mode control [5,6], backstepping method [7], and so on. These control strategies can also be
employed to realize various kinds of synchronization of real chaos. Further developments in this
direction can be found in [8–14].

The quoted literature above are only related to real chaotic systems and do not consider the
chaotic systems which consist of complex variables. As is known to all, in the real world, many cases
exist in the form of complex variables. For instance, Fowler et al. [15] discovered the complex Lorenz
system when they studied laser physics and baroclinic instability of the geophysical flows in 1982.
Since then, the study on complex nonlinear systems has been paid a substantial amount of attentions
and has become a hot topic due to its wide applications in chemical systems, optics and especially
in secure communications [16–18]. A considerable amount of complex dynamical systems exhibit
chaotic motion, such as the complex Chen system [19], the time-delay complex Lorenz system [20],
the complex generalised Lorenz hyperchaotic system [21], just to name a few examples. Compared
with real chaos, complex chaos has the diversity of synchronization types and results. On the one hand,
a lot of authors extend some synchronization schemes of real chaos into complex space, for example,
complete synchronization (CS) [22], anti-synchronization (AS) [23], lag synchronization (LS) [24],
combination synchronization [25], etc. On the other hand, some new synchronization schemes have
been proposed on the basis of the characteristics of complex systems, such as complex complete
synchronization (CCS) [26], complex lag synchronization (CLS) [27], complex anti lag synchronization
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(CALS) [28], combination complex synchronization [29,30], and so forth. However, the existing
results on complex chaos have three disadvantages: Firstly, chaos control of the complex dynamical
systems has gained little attention. Secondly, the existence of the synchronization problem, which is
fundamental theoretical base, has not been considered so far. Finally, most of the current designed
controllers eliminate the nonlinear term of the system, which are not only complicated but also difficult
to realize in engineering. Therefore, control and synchronization in complex chaotic systems needs to
be further and extensively studied.

Motivated by the aforementioned discussion, the current investigation concentrates on chaos
control and synchronization of a novel complex dynamical system named as complex Rikitake system,
which is proposed based on the Rikitake system. Following the idea of studying dynamics in chaotic
systems, this paper investigates symmetry, dissipation, stability of equilibria, Lyapunov exponents,
Poincaré-sections and bifurcation of the complex Rikitake system. Thus, along with the deeper
understanding of feedback control method presented in [9], we construct simple adaptive controllers
to realize control and synchronization of the complex Rikitake system. Furthermore, we obtain a
criterion to detect the existence of synchronization in the complex Rikitake system and further prove
that there exist CS and the coexistence of CS and AS.

The main construct of the article is arranged as follows. We present the complex Rikitake system
and analyze some basic dynamics in Section 2. In Section 3, adaptive controllers are designed to control
the complex Rikitake system to any equilibrium points. Section 4 gives the main results on chaos
synchronization of the complex Rikitake system. The conclusions are provided in Section 5.

2. A Complex Chaotic Rikitake Dynamo System

In 1958, Rikitake discovered the 3-D Rikitake dynamo system [31] whose equations are
ẋ = −βx + yz,
ẏ = −βy− αx + xz,
ż = 1− xy,

(1)

where x, y, z ∈ R are state variables, α, β > 0 are parameters. As mentioned in [32], the Rikitake system
(1) behaves chaotically for α = 5 and β = 2 with (x0, y0, z0) = (3, 1, 6), which are shown in Figure 1.
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Figure 1. The projection of chaotic attractor for the Rikitake dynamo system (1). (a) in the z-y-x space;
(b) in x-y space.
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A new system can be generated by assuming that x and y are complex states and changing cross
coupled terms x and y to complex conjugate form. Thus, we call it complex Rikitake system, which can
be described as 

ẋ = −βx + yz,
ẏ = −βy− αx + xz,
ż = 1− 1

2 (x̄y + xȳ),
(2)

where x = x1 + jx2, y = x3 + jx4, z = x5, j = −1, x̄ and ȳ denote the complex conjugates of x
and y. Replacing x, y in system (2) with real and imaginary variables can lead to the following
equivalent system 

ẋ1 = −βx1 + x3x5,
ẋ2 = −βx2 + x4x5,
ẋ3 = −βx3 − αx1 + x1x5,
ẋ4 = −βx4 − αx2 + x2x5,
ẋ5 = 1− x1x3 − x2x4.

(3)

In the next subsection, we study some dynamical properties of this new system (3).

2.1. Symmetry

Given a coordinate transformation T as follows

T(x1, x2, x3, x4, x5) −→ (−x1,−x2,−x3,−x4, x5).

It is clear that each trajectory is symmetrical with respect to the x5-axis. That means system (3) is
invariant for the given transformation T.

2.2. Dissipation

The divergence of system (3) can be calculated as

∇V =
5

∑
l=1

∂ẋl
∂xl

= −4β.

As a result, it follows from the condition β > 0 that system (3) is dissipative.

2.3. Equilibria and Stability

In order to find the equilibria of system (3), we consider equations in the form

−βx1 + x3x5 = 0,
−βx2 + x4x5 = 0,
−βx3 − αx1 + x1x5 = 0,
−βx4 − αx2 + x2x5 = 0,
1− x1x3 − x2x4 = 0.

After computation, we obtain the following equilibrium points:

S = (
cosθ

r
,

sinθ

r
, rcosθ, rsinθ,

α +
√

α2 + 4β2

2
),
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where r =
√

2β

α+
√

α2+4β2
and θ ∈ [0, 2π]. Now, we consider the stability of S. The Jacobian of system

(3) at point S is deduced as:

JS =



−β 0 α+
√

α2+4β2

2 0 rcosθ

0 −β 0 α+
√

α2+4β2

2 rsinθ√
α2+4β2−α

2 0 −β 0 cosθ
r

0
√

α2+4β2−α
2 0 −β sinθ

r
−rcosθ −rsinθ − cosθ

r − sinθ
r 0


.

Furthermore, one can get the characteristic polynomial of JS,

λ(λ + 2β)(λ3 + 2βλ2 + (
4β

α +
√

α2 + 4β2
+

α

β
)λ + α +

√
α2 + 4β2 +

4β2

α +
√

α2 + 4β2
) = 0.

According to Routh–Hurwitz criterion, it is unstable for any given α > 0 and β > 0.

2.4. Chaotic Behavior and Attractors

Assuming that α = 5, β = 2 and x(0) = (5− 3j, 1− 4j, 5.5)T , the methods numerical analysis are
used to obtain chaotic attractor, Poincaré map and bifurcation diagrams, see Figures 2–4. Figure 2
shows chaotic attractors of the complex Rikitake system in different planes. The Poincaré diagrams
of system (3) are depicted in Figure 3. As described in Figure 4a, basic bifurcation versus parameter
β ∈ (0, 3) with α = 5. Figure 4b demonstrates system (3) is sensitivity to initial value. Furthermore,
we apply numerical computation to obtain the corresponding Lyapunov exponents of system (3),

LE1 = 0.117534, LE2 = −0.043679, LE3 = −0.051743, LE4 = −3.957388, and LE5 = −4.064725.

Thus, using the formula of fractal dimension [33], we easily deduce that

D = j +
1

|LEj+1|

j

∑
i=1

LEi = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.0055875.

This implies that the Lyapunov dimension of system (3) is fractional. Consequently, it is noticeable
that system (3) behaves chaotically for this choice of α = 5 and β = 2.
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Figure 2. Chaotic attractors of system (3) in different spaces. (a) in x3− x1− x5 space; (b) in x4− x5− x2

space; (c) in x3 − x5 space; (d) in x1 − x3 space.
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Figure 3. Poincaré map of system (3) with α = 5 and β = 2. (a) in x1 − x3 − x5 space; (b) in
x1 − x3 space.
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Figure 4. (a) Bifurcation diagram of system (3) with α = 5; (b) State variable under different
initial values.

3. Chaos Control

Adaptive technique is adopted to investigate the control problem of the complex Rikitake system.
Before giving the conclusion of this section, we first introduce a lemma.
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Lemma 1 ([9]). Consider the nonlinear system

ϑ̇ = ϕ(ϑ), (4)

where ϑ ∈ Rn is the state, ϕ(ϑ) ∈ Rn is continuous function with ϕ(0) = 0. Suppose that there exists a
nonsingular coordinate transformation υ = Tϑ, which can convert system (4) into two subsystems

µ̇1 = G1(µ1, µ2),
µ̇2 = G2(µ1, µ2),

where µ1 = (υ1, υ2, . . . , υr)T , r ≥ 1, µ2 = (υr+1, υr+2, . . . , υn)T , G1(µ1, µ2) ∈ Rr, G2(µ1, µ2) ∈ Rn−r,
and the subsystem

µ̇2 = G2(0, µ2)

is globally asymptotically stable (GAS). Then the controller is designed as

u = (kµ1, 0)T

and the adaptation law is in the form of

k̇ = −σµT
1 µ1,

where σ > 0 is an arbitrary real number. That is to say, the controlled system

µ̇1 = G1(µ1, µ2) + kµ1,
µ̇2 = G2(µ1, µ2)

is asymptotically stable.

As discussed in Section 2, the complex Rikitake system has no stable equilibrium point.
Next, we design a feedback controller to stabilize the complex Rikitake system to any fixed points.
The equilibrium point of system (3) is recorded as S = (s1, s2, s3, s4, s5). Making the following
coordinate transformation: 

x1 = x̃1 + s1,
x2 = x̃2 + s2,
x3 = x̃3 + s3,
x4 = x̃4 + s4,
x5 = x̃5 + s5,

we further have the controlled system

˙̃x1 = −βx̃1 − x̃3 x̃5 + x̃3s5 + x̃5s3 + u1,
˙̃x2 = −βx̃2 − x̃4 x̃5 + x̃4s5 + x̃5s4 + u2,
˙̃x3 = −βx̃3 + x̃1 x̃5 + x̃1s5 + x̃5s1 − αx̃1 + u3,
˙̃x4 = −βx̃4 + x̃2 x̃5 + x̃2s5 + x̃5s2 − αx̃2 + u4,
˙̃x5 = −x̃1 x̃3 − x̃1s3 − x̃3s1 − x̃2 x̃4 − x̃2s4 − x̃4s2 + u5,

(5)

where u = (u1, u2, u3, u4, u5)
T is the controller to be designed. Thus, the problem of stabilizing system

(3) to the equilibrium point S is converted to that of stabilizing system (5) at the origin. By Lemma 1,
we have the following result.
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Theorem 1. System (3) can be controlled to the equilibrium point S = (s1, s2, s3, s4, s5) by constructing the
following adaptive feedback controller {

u = (kx̃1, kx̃2, 0, 0, 0)T ,
k̇ = −σ(x̃2

1 + x̃2
2),

(6)

where σ > 0 is a chosen positive real number.

Proof. It is noticeable that when x̃1 = x̃2 = 0, the remainder subsystem of system (5) without a
controller becomes 

˙̃x3 = −βx̃3 + x̃5s1,
˙̃x4 = −βx̃4 + x̃5s2,
˙̃x5 = −x̃3s1 − x̃4s2.

(7)

The coefficient matrix of system (7) is

J =

 −β 0 s1

0 −β s2

−s1 −s2 0

 ,

and its corresponding characteristic equation is described by

(λ + β)(λ2 + βλ + s2
1 + s2

2) = 0. (8)

Through the analysis of Equation (8), we conclude all roots have negative real part. Thus, according
to Routh–Hurwitz criterion, system (7) is GAS. By Lemma 1, one deduces that system (5) can be
regulated at the origin by controller (6), that is, system (3) tends to the equilibrium point S.

By the same argument, when x̃3 = x̃4 = 0, the subsystem of system (5) without controller is of
the form 

˙̃x1 = −βx̃1 + x̃5s3,
˙̃x2 = −βx̃2 + x̃5s4,
˙̃x5 = −x̃1s3 − x̃2s4,

which is GAS. We derive another result on stabilization of the complex Rikitake system from Lemma 1.

Theorem 2. System (3) can be regulated to the equilibrium point S = (s1, s2, s3, s4, s5) by constructing the
following adaptive feedback controller {

u = (0, 0, kx̃3, kx̃4, 0)T ,
k̇ = −σ(x̃2

3 + x̃2
4),

(9)

where σ > 0 is an arbitrary real number.

Based on the proposed results, we will now give a numerical description on controlling the
complex Rikitake system. In the following two cases, choose the parameters as α = 5, β = 2, and fix
the initial values as x(0) = (5− 3j, 1− 4j, 5.5)T .

For the choice of θ = π
2 , an unstable equilibrium point can be obtained as S1 =

(0, 1.689, 0, 0.5923, 5.702). From Theorem 1, we derive the controller (6) with σ(0) = 1 and k(0) = −1.
From Figure 5, one can see that the complex Rikitake system (3) can be regulated to its equilibrium
point S1 via the controller (6).
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For the choice of θ = 0, an unstable equilibrium point can be obtained as S2 =

(−1.689, 0,−0.5923, 0, 5.702). From Theorem 2, we derive the controller (9) with σ(0) = 3 and
k(0) = −2. As shown in Figure 6, the complex Rikitake system (3) converges to its equilibrium
point S2.
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Figure 5. (a) Control the complex Rikitake system (3) to S1; (b) k tends to a negative constant.
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Figure 6. (a) Control the complex Rikitake system (3) to S2; (b) k approaches to a negative constant.

4. Synchronization Scheme

This section proves the existence of synchronization of the complex Rikitake system, and then
realizes CS and the coexistence of CS and AS by feedback control method.

Let us consider two identical complex Rikitake systems with different initial conditions. The drive
system is described by

Ẏ = h(Y), (10)

where Y = (y1, y2, y3)
T ∈ C3, y1 = yr

1 + jyi
1, y2 = yr

2 + jyi
2, h(Y) = (h1(Y), h2(Y), h3(Y))T ∈ C3,

y3 ∈ R, and

h1(Y) = −βy1 + y2y3,
h2(Y) = −βy2 − αy1 + y1y3,
h3(Y) = 1− 1

2 (ȳ1y2 + y1ȳ2).

In the same way, the response system with controllers can be expressed as

Ż = h(Z) + u, (11)



Entropy 2020, 22, 671 9 of 16

where Z = (z1, z2, z3)
T ∈ C3, z1 = zr

1 + jzi
1, z2 = zr

2 + jzi
2, u = (u1, u2, u3)

T ∈ C3 is the error feedback
controller to be designed, z3 ∈ R, and

h1(Z) = −βz1 + z2z3,
h2(Z) = −βz2 − αz1 + z1z3,
h3(Z) = 1− 1

2 (z̄1z2 + z1z̄2).

The synchronization error is denoted as

e = Z− δY,

where δ = diag{δ1, δ2, δ3} and δi 6= 0 are real constants (i = 1, 2, 3).
Following the results in [12], we introduce the relevant definition.

Definition 1. For the drive system (10) and the response system (11),

1. Systems (10) and (11) are said to be CS if there exists a diagonal matrix δ = I3, i.e., δi = 1 (i = 1, 2, 3),
such that lim

t→∞
||e(t)|| = 0;

2. Systems (10) and (11) are said to be AS if there exists a diagonal matrix δ = −I3, i.e., δi = −1 (i = 1, 2, 3),
such that lim

t→∞
||e(t)|| = 0;

3. Systems (10) and (11) are said to achieve the coexistence of CS and AS if there exist some δi = 1 while the
remaining δj = −1 (i 6= j, i, j = 1, 2, 3), such that lim

t→∞
||e(t)|| = 0.

4.1. The Existence of Synchronization in the Complex Rikitake System

Taking the derivative of e(t) and using Equations (10) and (11), one obtains

ė = h(Z)− δh(Y) + u,

which is equivalent to the following equations

ėr = hr(Z)− δhr(Y) + ur,

and

ėi = hi(Z)− δhi(Y) + ui.

It is clear that e = 0 implies er = 0 and ei = 0. In order to implement a suitable controller, er = 0
should be a fixed point of the error system without controllers (i.e., ur = 0)

ėr = hr(Z)− δhr(Y) (12)

and ei = 0 should be a fixed point of the error system in absence of controllers (i.e., ui = 0)

ėi = hi(Z)− δhi(Y). (13)

Thus, one has {
hr(δY) = δhr(Y),
hi(δY) = δhi(Y).

Furthermore, the following equality holds

h(δY) = δh(Y).
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Thus, we obtain the conclusion about the existence of the synchronization problem.

Theorem 3. The existence of synchronization in complex chaotic system (10) iff h(δY) = δh(Y) has solutions
for δ.

Proof. The proof is easily obtained by Theorem 1 in [12], so it is omitted here.

Using the result of Theorem 3, one gets that the existence of synchronization in the complex
Rikitake system (10) is converted to the following equations having solutions for δ,

h1(δY)− δ1h1(Y) = (δ2δ3 − δ1)y2y3 = 0,
h2(δY)− δ2h2(Y) = (δ1δ3 − δ2)y1y3 − α(δ1 − δ2)y1 = 0,
h3(δY)− δ3h3(Y) = 1− δ3 − 1

2 (δ1δ2 − δ3)(ȳ1y2 + y1ȳ2) = 0,

which leads to 
δ1 = δ2,
δ3 = 1,
|δi| = 1, i = 1, 2.

Furthermore, we have the following results:

I δ1 = δ2 = δ3 = 1, which implies CS in the complex Rikitake system (10) occurs.
II δ1 = δ2 = −1, δ3 = 1, which implies the coexistence of CS and AS in the complex Rikitake system

(10) exists.

4.2. CS of the Complex Rikitake System

Now, we consider CS of two complex Rikitake systems (10) and (11). When δ1 = δ2 = δ3 = 1,
the CS error is defined as e = Z−Y. The error system is calculated as

ė1 = ż1 − ẏ1 = −βe1 + e2e3 + y3e2 + y2e3 + u1,
ė2 = ż2 − ẏ2 = −βe2 − αe1 + e1e3 + y3e1 + y1e3 + u2,
ė3 = ż3 − ẏ3 = − 1

2 (ē1e2 + e1 ē2 + ē1y2 + e1ȳ2 + ȳ1e2 + y1 ē2) + u3,

which can be rewritten as

ėr
1 = −βer

1 + er
2e3 + y3er

2 + yr
2e3 + ur

1,
ėi

1 = −βei
1 + ei

2e3 + y3ei
2 + yi

2e3 + ui
1,

ėr
2 = −βer

2 − αer
1 + er

1e3 + y3er
1 + yr

1e3 + ur
2,

ėi
2 = −βei

2 − αei
1 + ei

1e3 + y3ei
1 + yi

1e3 + ui
2,

ė3 = −(er
1er

2 + ei
1ei

2 + er
1yr

2 + ei
1yi

2 + yr
1er

2 + yi
1ei

2) + u3,

(14)

where ũ = (ur
1, ui

1, ur
2, ui

2, u3)
T is a real controller to be designed. Thus, on the basis of Lemma 1, one

has the following result.

Theorem 4. Two identical complex Rikitake systems (10) and (11) can realize CS via the following
adaptive controller {

ũ = (0, 0, k1er
2, k1ei

2, 0)T ,
k̇ = −σ((er

2)
2 + (ei

2)
2),

(15)

where σ > 0 is an arbitrary real number.
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Proof. Let us consider the uncontrolled error dynamical system (14). It is clear that if er
2 = ei

2 = 0, then
the subsystem of uncontrolled system (14) reads as

ėr
1 = −βer

1 + yr
2e3,

ėi
1 = −βei

1 + yi
2e3,

ė3 = −yr
2er

1 − yi
2ei

1,

which is GAS. From Lemma 1, system (14) with controller (15) approaches to the zero equilibrium
point, i.e., CS of two identical complex Rikitake systems (10) and (11) can be realized by the designed
controller (15).

In the same argument, when er
1 = ei

1 = 0, the subsystem of system (14) in absence of controller is
presented as 

ėr
2 = −βer

2 + yr
1e3,

ėi
2 = −βei

2 + yi
1e3,

ė3 = −yr
1er

2 − yi
1ei

2,

which is GAS. Thus, the following result is deduced.

Theorem 5. Two identical complex Rikitake systems (10) and (11) can realize CS by designing
adaptive controller {

ũ = (ker
1, kei

1, 0, 0, 0)T ,
k̇ = −σ((er

1)
2 + (ei

1)
2),

(16)

where σ > 0 is an arbitrary real number.

In the next part, by giving the initial conditions as y(0) = (15− 3j, 1− 4j, 5.5)T , z(0) = (4− j, 2−
3j,−0.3)T , k(0) = −1, σ = 2, and constructing controller (15), we have simulation results which are
shown by the following Figures 7 and 8. Figure 7a displays that the errors er

1, ei
1, er

2, ei
2 and e3 can

been regulated to the zero equilibrium point. Figure 8 depicts that state variables of system (11) are
completely synchronized with state variables of system (10). That is, two identical complex Rikitake
systems realize CS.

time t/s
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e 1r
,e

1i
,e

2r
,e

2i
,e

3

-15

-10

-5

0

5

e
1
r
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r
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(a)
time t/s
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Figure 7. (a) CS error system is regulated to the zero equilibrium point; (b) k approaches to a
negative constant.
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Figure 8. State variables of the complex Rikitake systems (10) and (11) varying time. (a) Trajectories
of yr

1 and zr
1; (b) Trajectories of yi

1 and zi
1; (c) Trajectories of yr

2 and zr
2; (d) Trajectories of yi

2 and zi
2;

(e) Trajectories of y3 and z3.

4.3. The Coexistence of CS and AS in the Complex Rikitake System

When δ1 = δ2 = −1, δ3 = 1, AS error is denoted as E1 = z1 + y1 and E2 = z2 + y2, CS error is
denoted as e3 = z3 − y3. It is easy to obtain the following error dynamical system

Ė1 = ż1 + ẏ1 = −βE1 + E2e3 + y3E2 − y2e3 + u1,
Ė2 = ż2 + ẏ2 = −βE2 − αE1 + E1e3 + y3E1 − y1e3 + u2,
ė3 = ż3 − ẏ3 = − 1

2 (Ē1E2 + E1Ē2 − Ē1y2 − E1ȳ2 − ȳ1E2 − y1Ē2) + u3,

which turns into 

Ėr
1 = −βEr

1 + Er
2e3 + y3Er

2 − yr
2e3 + ur

1,
Ėi

1 = −βEi
1 + Ei

2e3 + y3Ei
2 − yi

2e3 + ui
1,

Ėr
2 = −βEr

2 − αEr
1 + Er

1e3 + y3Er
1 − yr

1e3 + ur
2,

Ėi
2 = −βEi

2 − αEi
1 + Ei

1e3 + y3Ei
1 − yi

1e3 + ui
2,

ė3 = −Er
1Er

2 − Ei
1Ei

2 + Er
1yr

2 + Ei
1yi

2 + yr
1Er

2 + yi
1Ei

2 + u3.

(17)
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Theorem 6. Two identical complex Rikitake systems (10) and (11) can achieve the coexistence of CS and AS by
virtue of the following adaptive controller{

ũ = (0, 0, kEr
2, kEi

2, 0)T ,
k̇ = −σ((Er

2)
2 + (Ei

2)
2),

(18)

where σ > 0 is an arbitrary real number.

Proof. Let us consider the system (17) in absence of controller. Obviously, when Er
2 = Ei

2 = 0, the
subsystem of system (17) without controller can be converted to

Ėr
1 = −βEr

1 − yr
2e3,

Ėi
1 = −βEi

1 − yi
2e3,

ė3 = yr
2Er

1 + yi
2Ei

1,
(19)

which is GAS. From Lemma 1, system (17) can be governed at the origin by controller (18). That is
to say, the coexistence of CS and AS in two identical complex Rikitake systems (10) and (11) can be
realized by adaptive controller (18).

Similarly, when Er
1 = Ei

1 = 0, the subsystem of system (17) without controller is described by
Ėr

2 = −βEr
2 − yr

1e3,
Ėi

2 = −βEi
2 − yi

1e3,
ė3 = yr

1Er
2 + yi

1Ei
2,

which is GAS. Thus, by means of Lemma 1, we obtain another result.

Theorem 7. Two identical complex Rikitake systems (10) and (11) can realize the coexistence of CS and AS by
designing the following controller {

ũ = (kEr
1, kEi

1, 0, 0, 0)T ,
k̇ = −σ((Er

1)
2 + (Ei

1)
2),

(20)

where σ > 0 is an arbitrary real number.

For numerical simulations, fix the initial values as y(0) = (18+ 2j, 1+ 2j, 3)T and z(0) = (4− j, 1+
2j,−0.3)T . By constructing controller (20) with k(0) = −4 and σ = 5, we can obtain the simulation
results, see Figures 9 and 10. As one can see from Figure 9 the errors Er

1, Ei
1, Er

2, Ei
2 and e3 can be

regulated to the zero equilibrium point. Figure 10 describes the change of state variables of systems
(10) and (11). It is easy to see that zr

1,zi
1, zr

2 and zi
2 of system (11) anti-synchronize yr

1, yi
1, yr

2 and yi
2

of system (10) respectively, while z3 of system (11) synchronizes completely with y3 of system (10).
Therefore, the coexistence of CS and AS in two identical complex Rikitake systems can be realized.
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Figure 9. (a) The synchronization error system is regulated to the zero equilibrium point; (b) k is
estimated to a negative constant.
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Figure 10. State variables of two identical complex Rikitake systems (10) and (11) varying time.
(a) Trajectories of yr

1 and zr
1; (b) Trajectories of yi

1 and zi
1; (c) Trajectories of yr

2 and zr
2; (d) Trajectories of

yi
2 and zi

2; (e) Trajectories of y3 and z3.

5. Conclusions

This paper centers on control and synchronization of a new complex chaotic system.
Firstly, we propose a complex Rikitake system and investigate its dynamical behavior. Then, by means
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of feedback control, we design controllers to regulate the complex Rikitake system to any equilibrium
points. Thus, we not only prove the existence of synchronization in the complex Rikitake system but
also construct adaptive controllers to realize two types of synchronization schemes, such as CS and
the coexistence of CS and AS. It is notable that the presented scheme is a single and linear feedback
controller and it is easy to implement in engineering. Therefore, the control method will be widely
applied in practice in the future.
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