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Abstract: Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that pro-
gresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozy-
gous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic
protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase
(ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine
that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive
to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone
formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and
intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no
approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify
a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs
have shown promising results. In this review, we describe the molecular mechanisms underlying
ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate
existing in vitro models to screen for novel compounds with a potential application in FOP. We sum-
marize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and
clinical stages.

Keywords: activin; ALK2; BMP; bone; FOP; repurposed drug; signal transduction; TGF-β

1. Introduction

Fibrodysplasia ossificans progressiva (FOP) is an ultrarare genetic musculoskeletal
disease (OMIM: #135100). The prevalence of this condition is approximately 1 in 2 mil-
lion worldwide with no indication of gender, ethnic, or geographical predisposition [1].
FOP progresses by episodic formation of ectopic bone (heterotopic ossification, HO), that
arises from endochondral bone formation at extraskeletal sites including muscles, tendons,
ligaments, and fascia. No HO is present in the tongue, diaphragm, and extraocular muscles,
and both cardiac muscle and smooth muscle are also spared in FOP.

HO in FOP can be triggered by muscle injury following, e.g., biopsies, surgical inter-
ventions, or an accidental trauma, although an episode of HO typically develops following
a flare-up [2]. Common features of a flare-up, which can last 6–8 weeks, are painful soft-
tissue swelling, warmth, redness, stiffness, and decreased movement. A flare-up in FOP
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can arise spontaneously or be induced by minor soft-tissue injury, muscular stretching,
falls, fatigue, intramuscular immunization, or an influenza-like illness. FOP flare-ups result
in the transformation of soft tissue into heterotopic endochondral bone. Flare-ups usually
follow specific anatomic patterns: they start in the neck, jaw, and shoulders, followed by
the back, and advance to the trunk and limbs. The first episode of HO generally occurs
during the first decade of life. FOP severely affects normal daily living due to the progres-
sion of HO throughout the body. HO in the trunk and extremities impairs motility and
balance, increasing the chance of a fall causing trauma that exacerbates HO in those re-
gions, rendering movement impossible in time. This leads to a vicious cycle of impairment
and increasing disability. In addition to the progressive immobility, other life-threatening
complications include severe weight loss following ankylosis of the jaw, affecting opening
of the mouth and eating, as well as pneumonia and right-sided heart failure resulting
from deformation in the thorax. This also makes breathing complicated and leads to the
development of thoracic insufficiency syndrome [3]. Malformation of the great toe is also
usually observed as a highly penetrant, congenital characteristic. Although HO is the major
phenotype of FOP, atypical alterations in the central nervous system have also been re-
ported, such as mild cognitive impairment, cerebellar abnormalities and hypoplasia of the
brainstem [4,5]. Interestingly, brainstem lesions were observed early after birth, suggesting
an impaired regulation of brainstem progenitor cell differentiation during development
or early after birth [4,6]. Finally, although heart disease is typically overlooked in FOP,
cardiac abnormalities in new-borns, such as ventricular septal hypertrophy, and cardiac
conduction abnormalities have been reported [7,8], which might be related with vessel
abnormalities [9–11] and endothelial dysfunction [12], also described in FOP.

In 2006, a heterozygous gain of function mutation (c.617G>A; R206H) in the glycine-
serine (GS) domain of the activin A receptor type I (ACVR1), also known as activin receptor-
like kinase 2 (ALK2), was identified as the genetic cause of FOP [13]. Approximately
97% of all FOP patients carry this single point mutation in ACVR1, but all 13 variant
forms of ACVR1 described to date seem to underlie the similar molecular cause of FOP
(see later) [14]. Early diagnosis of FOP is crucial to limit disabilities and prevent iatrogenic
harm, as to date there is no treatment proven to be effective for FOP to prevent flare-ups
or HO. In the past, FOP was often diagnosed after the development of a flare-up, or
even after the first evidence of HO. Currently FOP is diagnosed in young children prior
to the onset of HO by identification of the malformation of the great toe, as previously
described [15]. Surgical procedures are not suitable for the treatment of FOP, because
the resulting trauma causes a far more serious HO [1,15]. Current treatment strategies
for FOP aim to reduce inflammation and/or prevent ossification. Symptomatic use of
corticosteroids such as prednisone [16] and nonsteroid anti-inflammatory drugs (NSAIDs),
such as selective cyclooxygenase-2 (COX-2) inhibitors, are prescribed to relieve pain and
prevent or delay HO in FOP, despite of the appearance of considerable side effects [17,18].

Currently, several molecules aiming to normalize the aberrant function of the mutant
ACVR1 are in ongoing clinical trials for the treatment of FOP (https://www.ifopa.org/
ongoing_clinical_trials_in_fop, accessed on 11 January 2021). In this manuscript, we will
discuss the aberrant signal transduction pathways altered by mutations in ACVR1/ALK2
and briefly review the existing in vitro platforms to screen for novel drugs and genes
with therapeutic potential in FOP. We will introduce the existing treatments under clinical
investigation and focus on drug repositioning as an alternative promising approach with
potential benefits in the field of rare diseases.

2. Aberrant TGF-β Signalling Underlies FOP

As previously mentioned, in past years genetic studies have revealed the presence of
single point mutations in the gene encoding the bone morphogenetic protein (BMP) type I
kinase receptor ALK2. Using more advanced in vitro systems expressing the mutant ALK2
(see below), we now know that FOP involves disturbances in BMP and transforming growth
factor (TGF)-β-like signalling. BMPs, TGF-βs, and other related molecules like activins are
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circulating and locally acting growth factors belonging to the transforming growth factor
(TGF)-β family. Therefore, in order to understand aberrant signal transduction in FOP, we
will briefly introduce the different signalling cascades of TGF-β family members.

TGF-β ligands are structurally related secreted dimeric cytokines that act in an au-
tocrine, paracrine, and endocrine manner on a large and diverse spectrum of cell types [19].
They exert pleiotropic cellular functions of which the effects are highly dependent on
cellular context [20,21]. Not only do they play pivotal roles in multicellular organisms
during embryogenesis and in maintaining tissue homeostasis, but their malfunction has
been causally associated with developmental disorders, cancer, cardiovascular, and muscle-
skeletal diseases [22–26]. TGF-β family members signal via structurally related complexes
of single transmembrane spanning TGF-β family type I and type II receptors that are en-
dowed with an intrinsic serine/threonine kinase domain [27]. Five human type II receptor
and seven human type I receptors have been identified. The type I receptors are also termed
ALKs. Each ligand within the TGF-β family has its selective partner receptors. For example,
whereas activin binds to activin type II receptors (ActRII and ActRIIB) and ALK4 and ALK2,
BMPs interact with ActRIIs and BMP type II receptor (BMPR2) and ALK1, ALK2, ALK3,
and ALK6 [27,28]. Different TGF-β family members can exert similar functions but also
distinct functions, and even antagonize each other’s functions. As described, activins and
BMPs share common receptors and several recent studies have demonstrated competition
of these ligands for these receptors as an important mechanism for crosstalk [29–31].

To initiate intracellular signalling, the TGF-β family soluble ligand induces het-
eromeric type I/type II membrane receptor complex formation, upon which the con-
stitutively active type II kinase trans-phosphorylates serine and threonine residues in
the juxta-membrane domain of the type I receptor, also called glycine and serine residue
rich (GS) domain) [27,28]. This activates the type I receptor, which subsequently induces
the phosphorylation of intracellular substrates that include the SMAD transcriptional
proteins [32]. Whereas activation of TGF-β type I receptor (ALK5) and ActRIB (ALK4)
mediates the phosphorylation of receptor-regulated SMAD2 and SMAD3, BMP type I
receptors (ALK1, ALK2, ALK3, and ALK6) induce SMAD1, SMAD5, and SMAD8 phos-
phorylation. The type I receptor-induced SMAD phosphorylation occurs on the two most
carboxy terminal serine residues. Activated receptor-regulated SMADs partner with the
common mediator SMAD4. These heteromeric complexes translocate to the nucleus where
they participate in transcriptional responses by cooperating with co-activators and co-
repressors [33]. Receptor-regulated SMADs (except for the predominant spliced form
of SMAD2) and SMAD4 bind in a sequence-dependent manner to DNA. The affinity is
rather weak, and there is a need for cooperation with other DNA-binding transcription
factors [33].

Besides the canonical SMAD pathway, TGF-β family receptors can also initiate non-
canonical signalling that is SMAD-independent [34,35]. Examples of these pathways
include extracellular signal-regulated kinase (ERK), p38, and c-Jun amino terminal kinase
(JNK) mitogen-activated protein (MAP) kinases, RHO family GTPases, phosphatidylinositol-
3 kinase (PI3K), and nuclear factor-kappa B (NF-κB) signalling. These non-SMAD signalling
pathways are not specific for TGF-β family members and occur in a cell-type-dependent
manner. Interestingly, some of these pathways, such as the E3 ubiquitin ligase tumour
necrosis factor receptor-associated factor (TRAF)-4-mediated activation of TGF-β activated
kinase-1 (TAK1), which can trigger JNK/p38, PI3K, and NF-κB signalling, occur in an
ALK5-dependent but kinase-independent manner [36–39]. The SMAD and non-SMAD
pathways crosstalk and fine-tune each other’s responses [34,40]. For example, MAP kinases
(MAPKs) can phosphorylate SMADs and either inhibit [41] or potentiate SMAD func-
tion [42,43]. MAPKs induce activation of activator protein-1 (AP1) transcription factors,
which can partner with SMADs and thereby enforce or repress certain transcriptional re-
sponses [44–48]. In addition, activated SMADs can transcriptionally induce the expression
of ligands of growth factors that act through tyrosine kinase receptors. Thus, they can, in
an SMAD-dependent manner, elicit non-SMAD signalling responses [34]. Of note, these
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findings indicate that pharmacological modulation of the TGF-β family type I receptor
kinases or enzymes involved in non-SMAD signal pathway may perturb but not block all
signalling responses.

The pathological mechanisms underlying FOP involve an imbalance between BMP
and TGF-β signalling, including canonical and non canonical signalling. Therapeutic
agents for FOP should aim to normalize the aberrant ALK2 signalling pathway, either
directly or by affecting pathways that crosstalk with it. Inflammation plays an important
contribution exacerbating the mutant ALK2-induced HO response. In the next section, we
will discuss how ALK2 signal transduction becomes dis- and mis-regulated in FOP.

ALK2 Signalling in FOP

Since the discovery of ACVR1 as a causative gene for FOP, different in vitro models
resembling aberrant ALK2 signalling have been used to dissect the molecular and cellu-
lar mechanisms underlying FOP. In this section, we will discuss the current knowledge
regarding the malfunction of ALK2 in FOP.

Although different mutations in the ACVR1 gene (encoding ALK2) have been iden-
tified, the heterozygous single point mutation in the GS region leading to ALK2R206H

is present in more than 97% of FOP patients [49,50]. ALK2R206H displays mild ligand-
independent BMP signalling, as well as increased responsiveness to BMP stimulation. In
addition to the c.617G>A ACVR1 mutation (encoding ALK2R206H), all mutations detected
in FOP and diffuse-intrinsic pontine glioma (DIPG) also show enhanced SMAD1/5/8
responses to BMPs [51–57]. Interestingly, the mutant ALK2 does not require its ligand-
binding domain to over activate BMP signalling [56]. Therefore, it has been suggested
that the overactivation of the mutant ALK2 could arise from a reduced ALK2 interaction
with the intracellular negative regulator FKBP prolyl isomerase 1A (FKBP12). FKBP12
binds to the GS domain of ALK2 and suppresses its leaky activation, by spontaneous non
ligand mediated type I/type II complex formation [58–61]. In the presence of a ligand,
phosphorylation of the GS domain by type II receptors releases FKBP12, allowing type I
receptor activation [62,63]. In fact, crystallographic studies found that ACVR1 mutations
in the GS domain of ALK2 directly impair binding to FKBP12 and resulted in its basal
overactivation [52].

Recent studies added compelling evidence that the ALK2R206H mutation also confers
an unexpected signalling neofunction. ALK2 was originally identified as a cell-surface
protein interacting with TGF-β and activin A [64,65]. Subsequently, ALK2 was found
to bind to and signal for BMPs (such as BMP-5/6/7), thereby triggering SMAD1/5/8
activation [66–69]. Several consecutive studies confirmed that ALK2 forms a non signalling
complex upon binding to activin A and type II receptors [30,70], and that activin and BMP7
compete for type II receptor binding [29]. In FOP, ALK2R206H gained the ability to induce
SMAD1/5/8 activation upon activin A stimulation [54,71] and subsequently to trigger
endochondral ossification and enhance chondrogenesis of induced mesenchymal stromal
cells derived from FOP induced pluripotent stem cells (iPSCs) in vitro [54,71]. Additionally,
activin A also induced SMAD1/5/8 activation through ALK2 in other atypical FOP-causing
ACVR1 mutations [51,54]. Consistent with this notion, spontaneous and trauma-induced
HO were inhibited or partly reduced in most mice treated with activin A-neutralizing
antibodies [72].

The exact mechanism by which mutations in the intracellular domain of ALK2 cause
a switch for activin A-induced ALK2 receptor complexes from a non signalling to a BMP-
signalling configuration remains elusive [73,74]. While heterozygous mutations in ACVR1
cause FOP, complete loss of the wild-type Acvr1 allele in Acvr1R206H/+ mice results in a
substantial increase in HO volume [72]. ALK2R206H requires its type II receptor partners,
BMPR2 and ActRIIa to signal after engaging either BMP-6/7 or activin A, but it does not
seem to require their type I receptor partners ALK3 or ALK6 [54,56]. Pointing also to the
importance of the relative balance between receptors, some studies reported that activin
A signalling through wild-type ALK2 occurred in a cell-type-dependent manner [30,75].
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The effects of BMPR2 on SMAD1/5 signalling can be paradoxical: the loss of BMPR2
potentiated, and BMPR2 overexpression reduced, the SMAD1/5/8 signalling via ALK2-
ActRIIa/b induced by activin A [30]. Altogether, this evidence highlights the importance of
competition between wild-type and mutant ALK2 receptors. This competition for complex
formation preference might determine the signalling outcome, which is further altered in
the presence of ALK2R206H [30,76].

Non canonical ALK2 signalling also plays a role in FOP. For instance, lymphocytes de-
rived from FOP patients have dysregulated ALK2-p38 MAPK signalling that can be blocked
with p38 inhibitors [77]. The phosphatidyl-inositol 3-kinase (PI3K)/AKT/mechanistic tar-
get of rapamycin (mTOR) pathway has also been linked to trauma-induced HO and FOP.
Different inhibitors of mTOR complexes, including rapamycin, reduced ossification in
FOP mice [78,79], similarly inhibitors of PI3Kα prevented SMAD activation and HO in
animal models of FOP [80]. Moreover, mutant Acvr1R206H/+ mice also showed increased
activation of RHOA, altered cell morphology, and misinterpretation of the tissue microen-
vironment [75].

In summary, during the last 15 years the molecular mechanisms underlying ectopic
bone formation in FOP have started to become unveiled, enabling further research into
drug development. Gathering this information has been partially possible through the
establishment of in vitro models, in which BMP and, more specifically, ALK2 signalling is
disturbed to resemble FOP. In the next section, we briefly describe the different and recently
developed in vitro models available to identify potential new targetable mechanisms and
compounds with therapeutic potential in FOP.

3. In Vitro Research Platforms Resembling FOP

During the past years, new mechanistic insights have led to the identification of
potential therapeutic targets in FOP. Patient-derived induced pluripotent stem cells (iPSCs)
and transgenic mice expressing the mutant ACVR1 gene in a tissue and time restricted
manner are now extensively used in the field. In addition to such recent developments,
various in vitro models with increasing degrees of complexity have been established and
utilized historically (Figure 1). These models were developed to resemble particular
hallmarks of FOP, such as increased ALK2 activation, exposure to inflammation or bone-cell
differentiation. Furthermore, one might make use of in vitro/ex vivo models to investigate
tissue-specific responses to TGF-β family ligands and drugs (for example, cardiotoxicity
tests in iPSC-derived cardiomyocytes or endothelial cells [81]).

For drug-development strategies, particularly drug repositioning, such models are
useful in early preclinical phases to screen for approved candidate drugs with therapeutic
potential. Depending on the biological process to be targeted (e.g., SMAD1/5/8 activation,
bone matrix deposition), a simple in vitro assay system may be preferred. In order to
facilitate the selection of a model, in this section, we will summarize and briefly discuss the
pros and cons of existing in vitro models for FOP.
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Figure 1. Drug repurposing route in fibrodysplasia ossificans progressiva (FOP). Although other paths are possible (i.e.,
serendipitous findings) that enable drug repurposing, one common approach starts with commercially available compound
libraries containing drugs already approved for their use in humans by the corresponding medical authorities (i.e., US
Food and drug administration [FDA], European medicines agency [EMA]). Such libraries are screened in in vitro cell-based
assays of FOP, where the mutant receptor ALK2R206H drives a clear functional phenotype (e.g., SMAD1/5 activation
or osteoblast/chondrocyte differentiation). Patient-derived cells are very useful in this sense. Selected candidates are
subsequently validated in animal models of FOP for their toxicity and effectiveness preventing heterotopic ossification (HO).
Because the pharmacological properties of these drugs have been already characterized, lead candidates can immediately
enter Phase II and Phase III clinical studies, where disease progression is monitored (for example, by NaF PET/CT scan [82])
before their final approval and authorized application in the clinical practice.

Even before the discovery of genetic mutations in ACVR1 in patients with FOP, aber-
rant BMP signalling activity was linked with FOP disease progression [83,84]. Therefore,
expression levels of BMPs (e.g., BMP4) were monitored as a surrogate for bone activ-
ity [85], mainly using patient-derived lymphoblastoid lines isolated from peripheral blood.
Researchers introduced the use of recombinant BMP ligands to stimulate cell lines lacking
the mutant receptor (e.g., C2C12 [86], PASMCs [87], QM7 [55]). One should note, however,
that depending on the relative expression level of every BMP receptors (and co-receptors)
and the concentration of the ligand, BMP ligands may signal via BMP receptors other
than ALK2 (reviewed in [88]). This becomes relevant when searching for ALK2-specific
antagonists or downstream pathways, for example.

Following the association of ACVR1 single point mutations with FOP, in vitro mod-
els were developed in which ALK2R206H and other less-common mutant receptors were
over-expressed both transiently and stably. Experiments performed under these condi-
tions rapidly highlighted that mutations in the intracellular GS or kinase domain of ALK2
rendered the receptor ligand-independent and constitutively active [59,60,86,89,90]. In ad-
dition, these studies allowed for comparison between different ALK2 mutations in FOP,
as well as with the artificial constitutive active form of ALK2Q207D (thus far, not reported
in humans). In order to fairly compare the effects between different versions of ALK2
using these overexpression strategies, it becomes key to confirm (and normalize) the ex-
pression levels of the ectopic genes. Moreover, non physiological levels of expression may
lead to experimental artefacts (for example, non spontaneous association and aberrant
overactivation of the kinase receptors), which should be taken into account. In part to
overcome these disadvantages, new cell lines with endogenous expression of mutant ALK2
were established. This was possible, for example, differentiating patient-derived (iPSC)
or inserting the FOP gene mutation in non FOP lines, using regularly interspaced short
palindromic repeats (CRISPR)/Cas9 gene-editing approaches [54,79,91].

The development of mouse models of FOP facilitated the establishment of immor-
talized murine embryonic fibroblasts (MEFs [92]) and, more recently, fibroadipogenic
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progenitor cells (FAPs) which have been demonstrated to drive HO autonomously [72],
resembling the ability to differentiate into the osteo/chondrogenic lineage. These cells,
therefore, may represent a suitable tool for in vitro functional assays. Moreover, Mx1+ (MX
dynamin-like GTPase 1) and Scx+ (Scleraxis) cells were freshly isolated by flow cytometry
from muscles of transgenic FOP mice [93]. These two cell populations displayed enhanced
alkaline phosphatase (ALP) activity in vitro, when stimulated with recombinant activin A.

A number of patient-derived primary cell systems have been utilized during the last
decades for FOP research. As such, mutations in ACVR1 were identified in DNA sequenc-
ing in peripheral blood lymphoblastic lines from FOP donors [13]. Furthermore, peripheral
blood monocytes have been used to profile immune cell populations in FOP [84,85,94,95].
Skin fibroblasts cultured from 3-mm-thick skin biopsies were reported to exhibit enhanced
SMAD1/5 activation in the presence of serum and increased expression of osteogenic
markers when cultured under osteogenic conditions [96]. Periodontal ligament cells from
extracted teeth were used to test the effect of the small molecule TGF-β type I and type II
kinase inhibitor GW788388 [97] comparing control and FOP donors. Periodontal ligament
cells could give rise to osteoblast- and osteoclast-like cells in vitro [98] and respond effec-
tively to ectopic activin stimulation by increasing BMP receptor downstream targets [99].
A population of peripheral blood circulating endothelial cells, named endothelial colony
forming cells (ECFCs), has been recently characterized in FOP patients. ECFCs exhibit
aberrant phospho-SMAD1/5/8 activation in response to activin. Moreover, when cultured
under osteogenic conditions, these cells represent a functional model to analyse osteogenic
differentiation in FOP [12].

A remarkable advance in the development of in vitro research models for FOP has
been achieved through the generation of induced pluripotent stem-cell (iPSC) lines. iP-
SCs are somatic cells reprogrammed by the overexpression of four transcription factors
(octamer-binding protein 4 (OCT4), SRY-Box transcription factor 2 (SOX2), Kruppel-like fac-
tor 4 (KLF4) and MYC proto-oncogene (c-MYC); the so-called Yamanaka factors) [100,101].
Because of their pluripotency and unlimited ability to proliferate, iPSCs have multiple
medical applications including regenerative medicine, disease modelling, and drug discov-
ery using either iPSCs from healthy donors or patients [102,103]. To date, different somatic
sources (e.g., skin fibroblasts, SHED cells, renal cells, and periodontal ligament fibrob-
lasts) and reprogramming strategies have been used to obtain stable iPSC colonies with
pluripotent differentiation potential and unlimited doubling capacity [104–108]. Due to
the variability between differentiation batches, the use of isogenic rescued lines where the
ACVR1 mutation has been corrected by means of CRISPR/Cas9 is highly recommended.
This strategy has been recently followed to gain deeper understanding into the molecular
mechanisms driving FOP [54,109,110] but also to identify novel molecules with specific
activity against the mutant receptor [79]. Moreover, differentiation protocols can be op-
timized in order to faithfully resemble specific cell-type phenotypes in FOP, including
fibroadipogenic progenitor (FAP) cells [109].

Irrespective of the experimental model chosen, commonly used functional readouts in
these assays include phosphorylation of SMAD1/5, target gene expression (e.g., Inhibitor
of DNA-binding 1 (Id1), Id2, Id3) and/or transcriptional reporter assays containing BMP
SMAD responsive elements. TGF-β family members other than BMPs regulate bone growth
and homeostasis (e.g., TGF-βs, activins), and different branches of the TGF-β signalling
pathway tend to balance one another through positive and negative feedback mechanisms.
Furthermore, TGF-β signal transduction very often crosstalks to other signalling pathways
relevant in bone tissues (e.g., Wnt, Yes1 associated transcriptional regulator (Yap)/Tafazzin
(Taz), fibroblast growth factor (FGF)). In this sense, one should note that inflammatory
signalling plays a major role inducing episodes of genetic and trauma-induced HO [111].
In vitro models allow one to mimic a pro-inflammatory environment by, for example,
adding exogenously inflammatory cytokines (e.g., tumour necrosis factor [TNF]-α, inter-
leukin [IL]-1β)) to the cells in culture [12]. In order to elucidate the complex crosstalk and
feedback in FOP cells, it is therefore advisable to obtain comprehensive transcriptomics
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and (phospho)proteomics expression signatures in combination with functional studies
when investigating the effect of a particular gene or pharmacological treatment in FOP.

Enhanced BMP signalling also induces in vitro osteogenic differentiation of different
cell types including endothelial cells, myogenic cells, interstitial mesenchymal cells, and
likely FAPs and tendon-derived progenitor cells [60,72,93,112,113]. Therefore, functional
osteogenic (and chondrogenic) differentiation assays can be performed, preferably in cells
with endogenous expression of ALK2R206H, to test the effect of potential drugs or genes
in FOP.

In vitro models provide a relatively easy and simple methodology to identify and
select drug candidates with enhanced specificity and low cell toxicity. In the case of
repositioned drugs, pharmacokinetic characterization has been performed already and
normally compound libraries contain molecules with good drug-like properties (e.g.,
solubility, metabolic clearance). Subsequently, selected candidates are validated using
in vivo animal models of the disease, where, for example, the mobility of the animals is
studied and the effect of the drug on HO volume is monitored by histo-morphometric
techniques, including X-ray and/or micro-CT analysis. In the case of FOP, different models
have been published including BMP-induced ectopic ossification [114] and ALK2-mediated
HO, with either the transgenic mice bearing the constitutively active mutant receptor
ALK2Q207D [87,89] or the humanized ALK2R206H [115] expressed in an inducible and tissue-
specific manner [72,93,112].

In part due to the interplay and overlap between the ALK2 signalling pathway and
other signal transduction cascades, a number of novel pharmacological options to treat
ectopic bone formation in FOP have emerged in recent years from the repurposing of
existing medications.

4. Repurposed Drugs for FOP

As previously mentioned, it was shown that mutant receptor inactivation (by ei-
ther targeting its kinase activity or ligand interaction) successfully prevented osteogenic
differentiation in vitro and HO in animal models of FOP. Therefore, a number of aca-
demic and corporate teams have pursued the development of specific kinase inhibitors
for ALK2R206H, some of which have entered into clinical trials. However, due to the
high structural similarity in the kinase ATP pocket, especially among TGF-β, activin,
and BMP receptor kinases, it is challenging to identify specific molecules suitable for fur-
ther clinical investigation (reviewed in [88]). Alternatively, receptor inactivation may be
achieved by preventing ligand interaction and/or promoting receptor internalization, or
by inhibiting oligomerization with type 2 receptors. Of note, a humanized anti-activin
A neutralizing antibody (REGN2477) has recently progressed into Phase II clinical trials
(NCT03188666; NCT04577820), and an anti-ALK2 antibody toward mouse ALK2 extracel-
lular domain-Fc protein has recently been patented (Daiichi Sankyo/Saitama, US patent
application 10428148).

While we still wait for the outcome of these studies, a new class of drug candidates for
FOP has entered the race to become a valid therapy for FOP. Repurposed drugs arise from
the application of existing validated drugs to a different disease indication. In particular
for rare diseases such as FOP this appears an attractive option.

4.1. Drug Repurposing versus De Novo Drug Development

Compared to the development of new drugs, drug repurposing has a number of
advantages (summarized in Table 1). As less than 15% of new therapeutic compounds
reach approval [116], drug repurposing substantially reduces the risk of failure, whilst
also reducing costs in drug development and shortening the time to clinical implemen-
tation [117,118]. This is an attractive benefit for rare diseases such as FOP, with a very
limited market. There are multiple examples of drugs that have been repositioned for new
indications, including the hypertension drugs sildenafil [119] and minoxidil [120], which
have new indications in erectile dysfunction and hair growth, respectively. Thalidomide
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was repositioned from the treatment for morning sickness to multiple myeloma [121].
Rituximab used for treatment of various cancers was repurposed for Rheumatoid arthri-
tis [122] and use of imatinib for therapy of BCR-ABL-positive cancers was expanded to
c-KIT gastrointestinal cancers [123]. More recently, remdesivir (a broad spectrum antiviral)
was repurposed for treatment of COVID-19 [124]. There are several drug repurposing
chemical libraries that have been described in literature that include (pre)clinical com-
pounds. An example of such a drug-repurposing library is one from the Broad Institute
that holds 5685 small molecule therapeutics [125]. These are compounds with safety data
that have excellent pharmaco-dynamic and -kinetic profiles that can be readily tested in
animal (disease) models and rapidly developed for clinical use in a new indication.

Table 1. Drug repurposing in rare diseases.

Drug Repurposing in Rare Diseases
Benefits Disadvantages

Lower investment required Patent already filed, might require negotiation
Possibility of synergistic effect by targeting

different pathways simultaneously
Drug candidates may not be clean and have

additional unwanted targets
Compound libraries commercially available
Drug-like properties already characterized

Lower number of patients in trials
Shorter development time

Limited risk of failure

When high-throughput screens are conducted for a certain target or biological pheno-
type, the target may be different from the one previously described (so-called off target).
The identification of off-target protein binding can be performed for example by mass-
spectroscopy-based thermal proteomic profiling [126]. If a drug is available for the newly
identified target, then this can be compared side by side with the hit compound from the
repurposing library. In addition, the compound can be chemically modified, and inhibition
and selectivity optimized for the newly identified target. As patent protection can likely be
obtained, the latter approach may also increase the enthusiasm from industry to invest and
develop the modified compound for the desired clinical indication.

During recent years, a number of repositioned drugs have been demonstrated to make
effective treatments for FOP at preclinical stages, and recently some of them have entered in
human clinical trials. We will briefly discuss some of these examples, including compounds
in a preclinical stage and dedicate a special focus on saracatinib and rapamycin (Figure 2).

4.2. Preclinical Candidates

Years of intense basic and clinical research in FOP have led to the identification of major
cellular and molecular processes essential for the progression of HO. Therefore, available
drugs able to target these pathways became appropriate candidates for further preclinical
research. In addition to the aforementioned drugs designed to target ALK2 or its ligands,
several repurposed drugs emerged as new potential therapies for FOP and are currently in
preclinical development. FOP progression was rapidly associated to inflammatory events.
Therefore, one of the first approaches envisaged was to reduce the immune response and
inflammation. In fact, corticosteroids are currently a main therapeutic strategy to manage
flare-ups [127]. In addition to anti-inflammatory steroids, from distinct NSAID molecules
tested, celecoxib has been shown to reduce HO after trauma in a rat tenotomy model,
and the COX-2 inhibitors celecoxib and etoricoxib partially prevented HO after total hip
replacement [128–131]. However, there is still a lack of evidence that chronic treatment
with NSAIDs prevents flare-ups in FOP patients.
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Figure 2. Repositioned strategies for FOP. The mutant ALKR206H bone morphogenetic protein (BMP) type I receptor has
been associated with FOP. Compared to the wild-type allele, ALKR206H exhibits leaky responses to BMP ligands as well as
neofunctional responses to activin. Binding of BMPs or activins leads to overactivation and phosphorylation of SMAD1/5/8
canonical signalling and non-canonical pathways, which all contribute to HO in bone progenitor cells. Based on this
knowledge, a number of targeted therapeutical approaches (depicted in grey) are currently under investigation. Broad-
spectrum anti-inflammatories are prescribed to limit the expression of activin in HO lesions. Anti-Activin antibodies (or
ligand traps) and anti-ALK2 antibodies are being evaluated to prevent ligand-receptor interaction and/or activation of
ALKR206H. ALK2 kinase inhibitors aim to block the intracellular kinase activity of ALKR206H. In the past recent years,
alternative drugs have emerged from drug-repositioning strategies (depicted in bold). Saracatinib inhibits the kinase
activity of ALKR206H. Rapamycin inhibits mTOR signalling, while alpelisib may inhibit mTOR and SMAD1/5/8 activation
simultaneously. Palovarotene inhibits the expression of SMAD1/5/8. HIF1α inhibitors partially block osteo/chondrogenic
differentiation transcriptional programs.

It has been shown that hypoxia promotes FOP, partially by prolonging BMP signal
duration, and becomes indispensable for early chondrocyte differentiation [132,133]. In ac-
cordance, several hypoxia-inducible factor (HIF)1α inhibitors, such as PX-478, apigenin,
or imatinib strongly prevented HO in mouse models of FOP by inhibiting the formation
of mesenchymal condensations [134,135]. From these molecules, imatinib, developed
for treatment of chronic myeloid leukaemia, has a long-standing record of minor side
effects in adults and children [136]. Imatinib was originally designed as a tyrosine kinase
inhibitor of the BCR-ABL fusion protein. Later, it has been demonstrated to also affect
multiple pathways that are important in the inflammatory and early hypoxic stages of FOP.
For instance, it inhibits the HIF1α, platelet-derived growth-factor receptor (PDGFR), KIT
Proto-oncogene, receptor tyrosine kinase (c-KIT), and multiple MAPKs, thereby playing
immunosuppressive effects in lymphocytes, macrophages, and mast cells [137]. Based on
this evidence, imatinib was prescribed in an off-label basis at a non trial setting in seven chil-
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dren with continuous flare-ups, who were refractory to standard-of-care treatments [138].
All six patients that took imatinib regularly reported decreased intensity in their flare-ups.
Since the study relied on retrospective anecdotal reports, there is no conclusive evidence of
the beneficial effects of imatinib. Future clinical trials should provide such evidence about
the usefulness of imatinib in preventing HO.

The anti-anginal agent perhexiline was found in a screening of FDA-approved drugs
for their ability to block Id1 induction upon ALK2R206H activation [139]. However, although
perhexiline was able to induce a slight reduction in BMP-induced HO in a murine model,
an open-label study with five patients could not demonstrate the efficacy of oral perhexiline
administration in the prevention of HO in FOP [140].

Palovarotene is a highly specific retinoic-acid receptor (RAR)-γ agonist which has been
under clinical investigation for several conditions (e.g., emphysema [141–143], hereditary
multiple exostoses NCT03442985). Later studies highlighted a potential application of
this molecule to inhibit HO in FOP, by directly targeting endochondral ossification and
SMAD1/5 expression [144,145], which led to the initiation of clinical trials in FOP. Currently,
the beneficial effect of palovarotene in FOP is under investigation by the authorities
(see below).

Recently, it has been found that inhibitors of phosphatidyl-inositol 3-kinase alpha
(PI3Kα) could become a useful therapy for patients suffering from FOP. PI3Kα inhibitors
likely target different cell types required for HO lesion progression. PI3K/AKT was shown
to be a potent target to down-regulate mast cell function and, in turn, reduce the severity
of mast cell-dependent diseases [146]. Alpelisib (also known as BYL719 and marketed
as Piqray™) prevented HO in vivo in a murine model of FOP and inhibited canonical
and neomorphic ALK2R206H responses in murine pluripotent cells and iPSCs from FOP
patients [80]. Alpelisib was recently approved by the FDA for treatment of patients with
hyperactive PI3K (PIK3CA)-altered solid tumours [147]. In addition, it has been shown to
be clinically effective in patients with PIK3CA-related overgrowth syndrome (PROS) [148].
The recommended dose of alpelisib approved by the FDA for oncological purposes is 300
mg daily. Daily oral doses of 400 mg of alpelisib were well tolerated by patients in a phase III
study in PIK3CA-altered solid tumours [149] whereas PROS patients, after eighteen months,
are still being treated daily with 250 mg of alpelisib [148]. In these studies, the most frequent
adverse effects were hyperglycaemia and rash, an expected effect of PI3Kα inhibition that
could be managed by concomitant metformin or preventive anti rash treatments [149].
Alpelisib reduces chondrocyte and osteoblast commitment of mesenchymal stem cells and
mice deficient for PI3Kα in osteoblasts develop osteopenia [150]. Furthermore, expression
of activated AKT in transgenic mice promoted chondrocyte differentiation, whereas a
dominant-negative form delayed this process [151]. Angiogenesis also requires PI3Kα

activity to control endothelial cell migration [152], therefore alpelisib may prevent vascular
recruitment within HO lesions. Mechanistically, PI3Kα inhibitors can negatively target
ALK2 kinase activity [153] and increase SMAD1/5 degradation by affecting of GSK3
activity, reducing BMP transcriptional responses [154]. Moreover, because GSK3-regulated
cellular levels of β-catenin are controlled through a coordination of PI3K and WNTs
signalling, we can speculate that canonical WNT responses may be also blunted by alpelisib.
In addition, mTOR, also downstream of PI3K/AKT, has been shown to be an important
pathway for FOP and nongenetic HO (see below) [78,155]. Therefore, targeting PI3Kα/AKT
has the potential to suppress HO by the inhibition of SMAD, mTOR, and WNT signalling
pathways, which are essential for the early inflammatory and the late osteogenic phases.
Although these data are encouraging, to set a solid base for a clinical treatment, further
studies are required to optimize alpelisib treatment in both episodic and spontaneous HO
in FOP.

4.3. Saracatinib

Saracatinib (AZD0530) is a small-molecule kinase inhibitor developed by AstraZeneca
UK Limited. Originally identified as a selective dual inhibitor of the Src/Abl kinases for
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indications in oncology, saracatinib shows excellent pharmacokinetic properties with good
oral bioavailability and a half-life of ~40 h [156]. As such, saracatinib has been investigated
in over 30 phase I and II clinical trials involving the dosing of over 700 patients. In phase I
trials, saracatinib showed a maximum tolerated repeat dose of 250 mg [157] and tolerability
up to 125 mg for longer-term chronic dosing [158]. It was subsequently investigated in
phase II trials for conditions including ovarian cancer [159,160], small-cell lung cancer [161],
prostate cancer [162], colorectal cancer [163], and pancreatic cancer [164]. However, to date
these trials have reported insufficient efficacy for saracatinib to be investigated further in
phase III as a treatment option in oncology.

In a pioneering initiative, rather than abandoning this asset, AstraZeneca established
collaborations with the Medical Research Council in the United Kingdom, Europe’s Inno-
vative Medicines Initiative and the National Center for Advancing Translational Sciences
of the National Institutes of Health in the United States to make this and other investiga-
tional drugs available to academics for grant-funded experimental medicine studies [165].
Through such partnerships, phase II studies were recently conducted using saracatinib as a
Src inhibitor for the treatment of lymphangioleiomyomatosis (NCT02737202) [166] and as
a Fyn kinase inhibitor for the treatment of Alzheimer’s disease (NCT02167256) [167]. Both
studies used a lower daily dose of 100 to 125 mg saracatinib as a tolerated drug regime for
treatment over a longer period of 9 to 12 months.

The potential for saracatinib to be used as a treatment for FOP was uncovered recently
by two independent studies [79,168]. Williams et al. [168] performed an in vitro screen of
150 clinically tested kinase inhibitors to identify those compounds binding to the recombi-
nant ALK2 kinase domain. Saracatinib was identified as the most potent ALK2 inhibitor
in the screen (IC50 = 6.7 nM) and was found to be relatively selective for ALK2, ABL,
and Src family kinases when screened against a larger panel of 252 human kinases [168].
Approved drugs based on the same quinazoline scaffold, such as gefitinib [169], showed
little-to-no ALK2 binding suggesting that the pendant moieties in the derivative saracatinib
were particularly compatible with ALK2. This was confirmed by the crystal structure of
ALK2 bound to saracatinib (PDB ID: 6ZGC) which showed the expected binding of the
quinazoline to the ATP-binding pocket of the ALK2 kinase domain as well as favourable
hydrophobic interactions for its pendant chlorobenzodioxole moiety [168]. In cellular
reporter assays, saracatinib showed selectivity for inhibition of BMP over TGF-β signalling
consistent with its selectivity for ALK2 over ALK5. The neoactivity of mutant ALK2
signalling in response to activin A was also inhibited. Based on these in vitro results,
saracatinib was tested as a prophylactic treatment in two Cre-inducible mouse models
expressing ALK2Q207D [87,170] or ALK2R206H, respectively [71]. In both cases, saracatinib
prevented the development of HO and preserved the range of motion with no detected
effect on neonatal growth [168].

The second study by Hino et al. [79] identified saracatinib from a library of 5000 com-
pounds using a cell assay based on the induction of alkaline phosphatase activity following
expression of ALK2R206H in the chondrogenic cell line ATDC5. An orthogonal cell assay
in FOP patient-derived iPSCs further showed that saracatinib could suppress chondro-
genesis upon activin A stimulation. The compound was then tested in three different
mouse models of HO, including cardiotoxin-induced injury in a transgenic mouse model
expressing ALK2R206H, [78] a BMP7-induced model [78], and a humanised FOP model
using FOP-iMSC’s and activin-A-expressing cells transplanted into mice [54]. In all models,
saracatinib was found to suppress HO formation compared to controls [79].

An academic investigator led the phase II trial to determine the safety and efficacy of
saracatinib in FOP patients was launched in 2020 funded by Europe’s Innovative Medicines
Initiative (IMI2). The STOPFOP trial (NCT04307953) will test saracatinib in adult FOP
patients through a 6-month double-blind randomised control study followed by an open
label extension phase. Patients will be monitored via low-dose whole-body CT to evaluate
the total change in heterotopic bone volume.
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4.4. Rapamycin

Rapamycin is an approved drug, and its safety has been shown after nearly 20 years
of use. Rapamycin was first isolated from the actinomycete Streptomyces hygroscopicus in
the soil of Easter Island [171]. Although it was initially used as an antifungal drug, it
was later found to have strong immunosuppressive and anti-proliferative effects and is
now used to prevent transplant rejection and lymphangioleiomyomatosis. Inhibition of
mTOR signalling has been identified as the main molecular mechanism underlying its
preventative action. Indeed, the name mTOR directly refers to this effect: mechanistic
target of rapamycin (originally, the “m” stood for “mammalian”).

Rapamycin has been recently identified as a potential drug for the treatment of FOP.
An in vitro screening model was established by generating isogenic iPSCs from FOP fibrob-
lasts, which were subsequently differentiated into mesenchymal cells (MSCs) [107,108].
This model was used to screen for chemical compounds to suppress the enhanced chondro-
genesis of FOP and rescued iPSC-MSCs, by testing an original drug repurposing-focused
library, which contained approximately 7000 small-molecule compounds. Rapamycin was
identified as a candidate drug that suppresses the enhanced cartilage formation [78].

Rapamycin has been reported to suppress trauma-induced and constitutively active
ALK2Q207D-induced ectopic bone formation [135]. The proposed mechanism suggests
HIF1α inhibition, which leads to the down-regulation of SRY-Box transcription factor 9
(Sox9), the master transcription factor of cartilage. Activin A abnormally transduces BMP
signalling through mutant ALK2 receptors and induces the expression of ENPP2 to activate
mTOR signalling and thus abnormal chondrogenesis [54,78]. In this FOP iPSC-based
model, the expression level of HIF1α was up-regulated during chondrogenesis. However,
it remained similar between FOP iPSC-derived cells and genetically rescued iPSC-derived
cells, suggesting that HIF1α up-regulation is a common feature of chondrogenesis and that
this is not a FOP-specific phenomenon.

Notably, mTOR signalling is multifunctional and controls many molecular and cellular
events besides HIF1α translation [171]. For example, mTOR signalling activates T and
B cells, which may be associated with the early phase of the FOP pathology. It induces
cell proliferation through the promotion of mRNA splicing and lipid synthesis and also
suppresses autophagy. Cell proliferation is a phenomenon observed in the early stages
of ectopic ossification, and its suppression by rapamycin may reduce the FOP pathology.
These anti-inflammatory effects of rapamycin have been reported previously in clinical
trials, including in children [172,173]. Nevertheless, studies have revealed a number of
potential side effects too, which may need to be carefully monitored in FOP patients.
Following these promising results, an academic-initiated phase 2 clinical trial for a 6-month
randomized placebo-controlled study and subsequent open-label extension study began in
September 2017, including 20 FOP patients in Japan (UMIN000028429).

5. Conclusions and Perspectives

FOP is an ultrarare congenital disease that progressively debilitates affected individu-
als and puts them under high risk of life-threatening complications. In the last decades,
enormous advances have been achieved, such as the identification of the causative gene
and certain underlying molecular mechanisms, the proper characterization of the disease
progression through natural history studies, the development of in vitro and in vivo mod-
els resembling specific features of FOP, and the identification of specific cell types involved
in HO and potential molecules with therapeutic potential. However, despite these efforts,
to date there is no validated cure or biomarker for this terrible disease.

A number of potential treatments are currently under investigation (www.ifopa.org).
Palovarotene (Ipsen) is at this moment in a phase III clinical trial (MOVE: NCT03312634).
After phase II study (NCT02190747) showed a decrease in flare-ups and HO, the MOVE trial
was initiated. Unfortunately, the phase III study was temporarily interrupted in January
2020 due to lack of efficacy and potential side effects reported in a new juvenile mouse
model of FOP [174–176]. REGN2477 is an antihuman activin-A-neutralizing antibody,

www.ifopa.org
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also known as garetosmab (Regeneron), investigated for its efficacy and safety for the
treatment of FOP in a phase II randomized, placebo control trial (LUMINA-1: NCT03188666;
NCT04577820). After reporting encouraging results of the phase II trial in the beginning
of 2020, the phase II LUMINA-1 trial was paused due to reports of fatal serious adverse
events in the trial during the open-label extension [175]. Results from a phase I trial
testing an orally available ALK2 specific inhibitor KER-047 (Keros Therapeutics) were
recently reported [176]. KER-047 induced a robust iron mobilization, suggesting a potential
application in anaemia. Alternative ALK2 kinase inhibitors are still under early clinical
investigation (e.g., BCX9250, BioCryst Pharmaceuticals; BLU-782, Ipsen; Saracatinib, see
above), as well as an ALK2-specific neutralizing antibody (Daiichi Sankyo/Saitama, US
patent application 10428148). Whether these or other pharmacological strategies for FOP
may successfully prevent HO, it remains a risk that toxic side effects will appear. To avoid
those, the particular mechanisms mediating the aberrant function of the mutant ALK2
receptor and its functional interaction with activin must be well dissected and targeted
specifically, thereby avoiding potential effects compromising the physiological functions of
ALK2 (and related TGF-β/BMP receptors) and activins.

One possibility might be to reduce the exposure to these newly developed molecules,
by for example, lowering the dose and/or time of administration, while combining drugs
to achieve a synergistic effect. Interestingly, molecules (some of them obtained by drug
repurposing) have already been developed targeting different steps within the HO pathway
(see Figure 2), thereby favouring this approach. Furthermore, one should not forget that
safe therapies for FOP may be repurposed to other disease indications as well, thereby
increasing their market value. For example, nonhereditary forms of HO or disorders of
exacerbated calcification may benefit from FOP-targeting agents.

As the case in FOP, toxicity issues have emerged for several drugs with promising
results in preclinical studies and phase I-II clinical stages. Since FOP causes a deep muscu-
loskeletal alteration, the primary aim of drug development has traditionally focused on
normalize bone overgrowth in suffering patients. However, FOP involves a number of sec-
ondary symptoms, such as brain alterations and cardiovascular complications, which may
underlie the severe adverse events observed in late clinical study phases, when individuals
are exposed chronically to a drug under investigation. We suggest that the evaluation
of drug toxicity in FOP needs to be examined from early preclinical phase studies, using
relevant models with patient-derived cells or transgenic animal models. With this regard,
the establishment of FOP iPSCs and development of protocols of cell-type differentiation,
in combination with advanced in vitro culture systems resembling 3D organ architecture
and the contribution of multiple cell types, represent promising tools to identify novel safe
and effective FOP drug candidates.

In summary, FOP exemplifies how advances in basic biomedical research pave the
road for novel therapeutic approaches. The field is rapidly evolving and new targetable
pathways in HO are being discovered. Existing (pre)clinically advanced and approved
drugs represent a useful repository of compounds to test in relevant models of FOP.
Furthermore, repurposed drugs represent a way to speed up and lower the cost of clinical
studies, which are key limiting steps in the market of ultrarare diseases.
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