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Abstract: The laser transmitter and photoelectric receiver are the core modules of the detector in a
laser proximity fuse, whose performance variability can affect the accuracy of target detection and
identification. In particular, there is no study on the effect of detector’s component performance
variability on frequency-modulated continuous-wave (FMCW) laser fuse under smoke interference.
Therefore, based on the principles of particle dynamic collision, ray tracing, and laser detection, this
paper builds a virtual simulation model of FMCW laser transmission with the professional particle
system of Unity3D, and studies the effect of performance variability of laser fuse detector components
on the target characteristics under smoke interference. Simulation results show that the difference in
the performance of the fuse detector components causes the amplitude variation and peak migration
of the beat signal spectrum, and the change in the visibility of the smoke can also affect the results,
which indicates that the factors affecting the signal-to-noise ratio (SNR) of the echo signal are related
to the smoke interference and performance variability of the detector. The proposed simulation
model is supported by experimental results, which reflect the reliability of the proposed findings.
Therefore, this study can be used for the optimization of the parameters in the laser fuse antismoke
interference to avoid false alarms.

Keywords: FMCW; laser fuse; smoke backscattering; characteristic simulation; particle system; ray
tracing; Unity3D

1. Introduction

As a control system for the terminal damage effectiveness of munitions, the laser
proximity fuse is a triggerless optical fuse that uses a modulated laser beam to detect
the target and detonate the weapon’s explosives, which has been widely used on various
weapon models and platforms [1]. However, in aerosol environments such as smoke, laser
fuse can be interfered with by suspended particles in the atmosphere at close range, causing
misjudgment and false alarms; so, accomplishing accurate target detection in a smoky scene
is one of the problems affecting a laser fuse to work properly under harsh surrounding
conditions [2]. Compared with pulsed laser detection systems, the frequency-modulated
continuous-wave (FMCW) laser is less affected by the time domain signal amplitude
and echo waveform, and has the advantage of high range accuracy and anti-interference
capability [3,4]. Under the smoke interference conditions, the laser beam will be affected
by the backscattering of aerosol particles; so, it is very hard to carefully study the echo
characteristics and extract the target distance information based on the actual measurement
data of the differential frequency signal [5].

The main methods for studying the scattering process of FMCW lasers in smoke
currently include experiment [6] and simulation [7,8]. In the case of the former method, it is
more restricted by factors such as test situations and conditions, resulting in poor operability
and repeatability of the method; so, it is generally used for comparative verification of
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results with other methods. For the simulation, especially the Monte-Carlo method, it
is not constrained by the situation and only needs theoretical modeling and computer
simulation, which can obtain reliable experimental data [9]. Therefore, the results of Monte-
Carlo simulation have a close agreement with the real situation [10–12] and can effectively
simulate multiple scattering of laser light in aerosol conditions [13,14], which has been
widely used to study the target characteristics of FMCW laser in smoke environment [15,16].

However, the Monte-Carlo simulation method is used to simulate the complete motion
process of photons in smoke by one-dimensional random sampling of the light range and
scattering direction of photons [17]. The simulation process does not fully consider the
influence of factors such as the physical properties of smoke particles [18], and ignores the
three-dimensional dynamic collision and motion processes between particles. Moreover, it
lacks the construction of the principal model of the virtual laser fuse, ignoring the simulation
of the photon emission and reception processes of the internal detector. This cannot truly
represent the three-dimensional dynamic collision and motion process of photons in the
smoke particle scene. Therefore, the above single and static random motion process
simulation is necessarily not able to fully reflect the complex, dynamic, nonrandom particle
collision situation. In particular, the simulation results will show significant deviations and
false alarms in the low-visibility smoke scene. At the same time, a large number of photon
simulations and parameter sampling can reduce the efficiency of simulation [19].

The root cause for the above problem is that the traditional simulation method can only
perform low-dimensional and superficial characterization of photon transport simulation
in smoke, and it is not efficient to achieve simultaneous cosimulation of multiple systems
among the smoke system, laser transmitting system, and laser receiving system. In order to
solve this problem, it is possible to integrate the advantages of virtual reality technology and
traditional simulation methods with each other based on the validity and reliability of deep
simulation with particle systems in a virtual reality approach [20,21]. As a result, based
on laser detection and Monte-Carlo principles, the three-dimensional dynamic and virtual
simulation model that meets the requirements of simultaneous multisystem cosimulation
can be built using a professional and virtual particle system, such as in Unity3D [22]. In this
way, not only can the deep correlation between the theoretical model and the real simulation
be realized, but the simulation method can also be transformed to a higher dimensional
and deeper level, which can significantly improve the reliability of the simulation results of
echo signals.

This paper is organized as follows. Section 2 introduces the FMCW laser detection
principle and the echo signal model. Section 3 describes the principle analysis of laser echo
signal simulation based on the 3D particle system in a smoke-free environment. Section 4
describes the principle analysis of laser echo signal simulation based on ray tracing in
smoke environment. Section 5 simulates and analyses the effects of three types of laser
fuse component differential factors on the target echo characteristics using the dynamic
particle collision-based laser echo characteristics simulation method, respectively. Section 6
provides validity experiment of the proposed simulation method. Section 7 summarizes
the work of this paper.

2. FMCW Laser Backscattering Signal Model

The block diagram of the FMCW laser detection principle is shown in Figure 1 [23].
The laser transmitter module divides the linear frequency-modulated (FM) signal into two
parts: one part of FM signal is used to modulate the laser light intensity, which is collimated
by the optical system and launched into the smoke to detect the target; the other part of
FM signal is used as the local oscillation signal, and the laser echo signal received by the
receiver module is mixed and low-pass-filtered to output a beat signal, which is processed
by the signal processing module to achieve the analysis of target characteristics and the
extraction of information such as distance and speed of the target. In signal processing
module, Fast Fourier Transform (FFT) is an efficient and fast computational method for
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Discrete Fourier Transform (DFT) in the field of signal processing, which can be combined
with high-speed hardware to achieve real-time processing of signals.

Figure 1. Block diagram of FMCW laser fuse detection process.

According to the FMCW laser detection principle, the values of the transmitted signal
ST(t) and the instantaneous frequency fT(t) of the laser detection system based on the
triangular wave FM method at a single FM period can be expressed as

ST(t) = P0 + PTcos(2π f0t + 2π( B
Tm

t2) + ϕ0), t ∈ [0, Tm], (1)

fT(t) = f0 + 2 B
Tm

t, t ∈ [0, Tm], (2)

where P0 and PT represent the DC and AC components of the laser power, f0 is the initial
frequency of the FM signal, B is the FM bandwidth, Tm is the modulation period, and ϕ0 is
the initial phase.

During laser transmission in a smoky environment, the motion of photons is divided
into two main types [8]: (1) They are received by the detector after being reflected from
the target surface. (2) They are received by the detector after being backscattered by the
smoke particles several times, and the schematic diagram of the collision scattering process
is shown in Figure 2. Therefore, the laser echo signal SR(t) can be expressed as

SR(t) = kt(t) · ST(t− τt) + kt(t) · ST(t− τs) + kn(t) · Sn(t), (3)

where kt(t) and ks(t) are the target reflectance and transmission attenuation coefficient,
respectively; τt and τt are the echo signal time delays of the two processes, respectively;
and Sn(t) is the random noise signal. The beat signal SB(t) is obtained by mixing ST(t)
with SR(t) and low-pass filtering; then, it is expressed as

SB(t) =
1
2

kt(t) · PT(t)cos(2π ftt + ϕt) +
1
2

ks(t) · PT(t)cos(2π fst + ϕs) + kn(t), (4)

where ft and fs denote the beat frequency generated by the target echo and smoke scattering
signal, respectively; φt and φs denote the phase delay between the target echo signal and
smoke scattering signal due to mixing, respectively. According to the frequency shift
property of the Fourier transform, the power spectral density expression of the beat signal
is expressed as

|SB(t)| =
1
4
|Kt( f − ft)|+

1
4
|Ks( f − fs)|+ |Kn( f )|, (5)

where Kt( f ) and Ks( f ) are the results of the fast Fourier transform (FFT) of kt(t) and ks(t),
respectively, corresponding to the amplitude of target echo signal and smoke scattering
signal spectrum. According to Equation (2) and Figure 3, it can be seen that the beat
frequency rate ft = kτ, the sweep slope k = 2B

Tm
, and the laser transmission time τ = 2R

c . fR
is expressed as the received frequency and shown as the dashed line in Figure 3. The target
distance can be calculated as [24]

R =
cTm

4B
ft, (6)
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where c and R are the speed of light and target distance, respectively. It can be seen that the
relationship between beat frequency and target distance is a bijection based on Equation (6).

Figure 2. Collision and scattering process of photons and smoke particles.

Figure 3. FMCW detection principle based on triangle wave frequency modulation.

3. Simulation Process Analysis of Laser Echo Signal Based on 3D Particle System in
Smoke-Free Environment

In order to obtain reliable laser echo characteristics in a smoky environment, it is
necessary to obtain reliable laser target echo data under smoke-free conditions and to
accurately calculate the actual distance of the target based on the beat frequency signal.
According to the FMCW laser detection principle of Section 1, the simulation process
of laser echo signal in smoke-free environment needs to completely simulate the spatial
motion process of photons, which mainly includes photon emission process simulation,
flight simulation, and reception simulation. Since the optical intensity of the FMCW laser is
obtained by modulation of the FM signal, the instantaneous optical power of the modulated
FMCW laser can be simulated by the number of emitted photons [15]. Therefore, based
on the principle of laser detection and Monte Carlo simulation, the FMCW laser echo
signal simulation process can be generally described as follows [15,16]: (1) The number
of photons emitted at each moment is determined according to the laser power emission
signal amplitude; in the range of the divergence angle of the laser source, photons are
sequentially emitted to the smoke scene in time order. (2) The final laser echo signal can be
obtained by counting the energy and flight time of all photons from the time of emission to
the reception.

For simulating realistic behavior in realistic scenes, particle systems are able to effec-
tively merge mathematical complexity with model accuracy. Therefore, they are some of
the most commonly used models in 3D dynamic simulations based on physical modeling,
and currently, the most popular model for multidomain dynamic simulation. As the core
unit in the particle system, the particle’s mass is usually concentrated in centroid, which not
only greatly simplifies the dynamics equations of particles, but also reduces the complexity
of solving the particle dynamics equations by applying all the interaction forces between
the particles to the centroids, effectively improving the speed of simulation [25,26]. During
the particle system simulation, all external forces applied to the particle are calculated
and integrated by counting the information of particle collisions during the simulation.
Then, the states at the initial and end simulation moments of the particle are used as the
upper and lower bounds of the integration condition, respectively, and the motion state
of the particle can be integrated numerically. In this way, basic dynamic simulation runs
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of particle systems can be implemented. The flow chart of the particle system dynamics
simulation is shown in Figure 4.

Figure 4. Flow chart of particle system dynamic simulations.

Moreover, in order to improve the simulation efficiency, the simulation process should
avoid solving a large number of complex kinetic equations. Based on the ability to ade-
quately simulate the behavior of FMCW laser detection systems, it is possible to simulate
photon motion processes using specialized particle systems with physical properties. As a
major implementation of virtual reality, Unity3D can make the simulation highly interactive
and realistic in 3D based on internal physics and optics engines, which provide conditions
for scientific simulation. In particular, based on these engines, Unity3D’s professional
particle system includes emitters, animations, and renderers for simulation, which can
create unique particle systems to meet the needs of smoke scenes. Thus, this paper uses the
professional particle system in Unity3D physics engine to build a realistic virtual environ-
ment that meets the test environment and various conditions [27]. The parameters of the
particle system in Unity3D engine, such as the attribute module, emission module, shape
module, and force and collision module, can be seen in Figure 5.

Figure 5. Particle system modules in Unity3D.

According to the FMCW laser detection process in the smoke-free environment, as
shown in Figure 6a, the photon emission process and reception process are simulated in a
Unity3D virtual scene with the professional particle system, respectively. As an example,
the distance between the laser detection system and the rigid target is set to 3 m, the
reflectivity of the rigid-body target is set to 0.3, and the laser beam divergence angle is set
to 5°; the virtual simulation process can be seen in Figure 6b,c. The sweep bandwidth B,
period Tm, and slope k are set to 100 MHz, 0.5 ms, and 600 GHz/s, respectively, and the
corresponding FMCW laser power emission signal model can be seen in Figure 7a. The
receiving field of view (FOV) is set to 45°, and the echo signal results at this time are shown
in Figure 7b. Thus, the beat frequency signal is obtained by mixing the laser emission signal
with the echo signal; then, the spectrum results can be obtained after FFT processing, as
shown in Figure 7c.
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(a)

(b) (c)

Figure 6. FMCW laser simulation process based on particle system in Unity3D: (a) laser detection
process, (b) emission process, (c) receiving process.

(a) (b) (c)

Figure 7. Laser emission signal, echo signal at a target distance of 3 m and beat signal spectrum:
(a) Laser emission signal, (b) echo signal, (c) beat signal spectrum.

In particular, considering that only preset targets exist in the smoke-free scene, the
spectrum peaks in Figure 7c also only represent the target echoes. At this time, the beat
frequency corresponding to the peak of the spectrum fb is 12 kHz, and the detection
distance D can be calculated as 3 m according to Equation (7), which is consistent with the
actual distance of the preset target. Therefore, it can be considered here that the simulation
of echo signal based on 3D particle system is feasible and effective, and the simulation
results are reliable enough, which provides the basis for the subsequent simulation of echo
characteristics in smoke scenes.

D =
Tm

2B
· c

2
· fb ≈

3× 108 m/s
2× 600 GHz/s

× 12 KHz = 3 m (7)

4. Simulation Process Analysis of Laser Echo Signal Based on Ray-Tracing Principle in
Smoke Environment

In the smoke environment, the simulation process of laser echo signal needs not only
to completely simulate spatial motion process of photons but also to reflect various physical
collision processes of photons in the motion process, especially the collision process of
photons with smoke particles and the collision process of photons with rigid body targets.
According to the simplifying property of the particle system to particle dynamics equation
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of Section 3, the dynamic simulation model based on particle system can effectively simulate
the motion and collision process of photons. Therefore, it is only necessary to replace the
smoke-free environment with smoke environment, and the simulation process of Section 3
can be followed to simulate the echo signal in a smoke environment. However, as the
number of photons emitted from the light source is extremely large, only a few photons are
received through scattering or reflection between the surfaces of the objects in the scene
and there is bound to be a large number of wasted photons in the simulation process,
which affects the operation efficiency of the simulation. If the number of photons emitted
is reduced, it will inevitably reduce the number of photons received after reflection by the
target, thus causing a reduction in the amplitude of target echo. Therefore, the factor affects
the reliability of simulation results.

In order to improve the authenticity of the simulation and also to reduce the emission
of useless photons, this paper is based on the reverse ray-tracing [28] approach to simulate
the echo signal of the laser beam emitted outward from the receiver module based on
the receiving field-of-view angle, and the simulation process is shown in Figure 8. The
simulation process can be described as follows: according to the ray-tracing algorithm,
the laser beam emitted from the receiver is decomposed into several independent rays
represented by photons, and each photon is tracked in the smoke particle environment until
it is received by the transmitter. Moreover, for an isotropic monochromatic light source,
each ray needs to carry a similar power, so that all emitted rays are distributed as evenly
as possible.

Figure 8. Photon motion process based on reverse ray-tracing.

In the transmission of laser in smoke environment, there will be a large number of
smoke particles with random locations due to the smoke scene, and multiple collisions
between the laser photons and smoke particles may happen at different locations. The
received echo signal is necessarily a mixture of multiple types of smoke echoes and target
echoes [8]. Based on the Fourier transform principle, any waveform can be represented by
a linear superposition of multiple sinusoidal functions, where each component function
has a corresponding frequency, phase, and amplitude [29]. The laser echo signal simulation
can be transformed into the process of obtaining the smoke echo signal and the target echo
signal separately and then superimposed.

During the process of emitting photons outward along each individual ray at the
receiving module, it is assumed that all linear distances between the initial position of
the photon and smoke particle or target surface can be detected by Unity3D as li, so that
all laser echo signals at different distances can be obtained. The time and amplitude of
these signals are, respectively, used as the number of emissions and photons for the photon
emission model of the receiving module, and the simulation is performed by emitting
photons outward from the receiver.

Considering that the premise of reverse ray-tracing simulation is that the receiver
module has received all the photons emitted from the transmitter and meets the reception
conditions at each moment, it can be assumed that the expression of the corresponding echo
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signal at each moment is known as Equation (8) based on Equation (3), and the purpose of
the simulation is to determine the parameter values of the final laser echo signal.

SRi (t) = ki(t) · [P0 + PTcos(2π f0(t− 2li
c ) + 2πB

Tm
(t− 2li

c )2 + ϕ0)] (8)

Thus, the simulation process only needs to calculate the total photon energy at each
emission moment when the photons are emitted from the receiver module until they are
received by the transmitter module. In this way, we only need to record the photon energy
to obtain the laser echo signal, and it is not necessary to record the flight time of photons in
the smoke scene. The final expression of the laser echo signal is shown in Equation (9).

SR(t) =
imax

∑
i=1

ki(t) · ST(t− 2li
c ) (9)

In the transmission process of photons, the collisional motion process of photons
can be divided into the collision process with the target surface and the collision process
with smoke particles. The direction of motion of photons after collision is determined
by force analysis at the collision cross section, and the energy after collision is calculated
according to the target reflectivity. When the photon falls into the receiving area, it can be
considered that the photon is received by the detector. The photon energy E at this point
can be calculated as [15]

Enr+ns = (rt)
nr · (rs)

ns · ra · E, (10)

where nr and ns are the number of photon collisions with the target and the number
of collisions with smoke particles, respectively; rt, rs, and ra are the coefficient of target
reflectivity, scattered energy loss, and atmospheric attenuation coefficient, respectively. rs
and ra can be calculated by [16,30]

rs =
γsca(x,m)

γext(x,m)
, (11)

ra = e−σL, (12)

where the smoke particle size parameter is x = 2πr
λ , r is smoke particle radius, λ is laser

wavelength, the particle complex refractive index is m = m1 − im2, σ is atmospheric
attenuation coefficient, L is photon transmission distance; scattering coefficient γsca(x,m)

and extinction coefficient γext(x,m) are calculated as [31]

γsca(x,m) = π
∫ rmax

rmin

Qsca(x, m) · n(r) · r2dr, (13)

γext(x,m) = π
∫ rmax

rmin

Qext(x, m) · n(r) · r2dr, (14)

where n(r) denotes the particle size distribution of the smoke particles, Qsca(x, m) and
Qsca(x, m) are scattering and extinction factors, respectively. The photon energy atten-
uation is influenced by the scattering factor Qsca and the extinction factor Qext, whose
approximated formula is calculated as [32]Qsca =1 + e−4xm2

2xm2
+ e−4xm2−1

8x2m2
2

Qext =2 + 4( cosθ
ρ )2cos2θ − 4e−ρtanθ · [ cosθ

ρ sin(ρ− θ)− ( cosθ
ρ )2cos(ρ− θ)]

(15)

where ρ = 2x(m− 1) and tanθ = m2
m1−1 . Therefore, during each launch moment, all the

photon energies received at the transmitter can be calculated according to Equation (10),
and the laser echo signal can be obtained. Then, the echo signal is mixed with the transmit
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signal and low-pass filtered to obtain the beat signal. After the FFT processing, it can extract
the target distance information from the spectrum of beat signal.

5. Simulation of Laser Echo Characteristics Based on Dynamic Particle Collisions

The actual performance parameters of the laser diode and photodiode, which are the
core components of the transmitter and receiver of the fuse prototype [33], are usually
inconsistent with the factory specifications, and the performance loss is unavoidable in
the process of actual use. Therefore, considering the uncertainties in the performance
and lifetime of the laser diode at the transmitter and the photodiode at the receiver of the
laser fuse prototype, the error factors of these prototypes should be incorporated into the
characteristic simulation, such as laser source emission power error, laser source divergence
angle error, and receiving FOV error. Only by analyzing the influence of these error factors
on the echo characteristics results can we ensure that the simulation results obtained are
more authentic and reliable.

5.1. Simulation Steps and Results

In the actual environment, as smoke is an aggregate with multiple particle sizes,
the particle size is mainly distributed between a few microns to tens of microns, and the
subsequent study of the effect of particle size on laser fuse detection performance is not
meaningful [34]. So, the particle size of the smoke in this simulation is set to the same
value, and sets the smoke scene only by controlling the smoke concentration. In particular,
considering that smoke visibility can be used to characterize the smoke concentration,
according to the expression of smoke visibility and smoke concentration [35]:

V = y

√
c0

mc
, (16)

where mc is smoke concentration in g/m3; V is smoke visibility in meters; c0 and y are
constants that depend on the type of smoke environment and their values are 37.3 and 1.07,
respectively. In this way, the correspondence between smoke visibility and concentration
can be obtained; thus, the number of simulated smoke particles at different smoke visibility
can also be determined. In order to reflect the complexity and uncertainty of the smoke, the
spatial position of smoke particles can be set by a random distribution. Therefore, based on
the simulation analysis in smoke-free and smoke environment from Sections 3 and 4, the
complete flow of proposed simulation method can be described as

1. Determine the smoke visibility and build the corresponding virtual smoke parti-
cle scene;

2. According to the preset distance information between the laser source and the target,
set up the virtual laser detection system and the target to be measured in the scene,
respectively;

3. Perform ray collision detection according to FOV of the receiver, obtain all the linear
distances li between the receiver and the smoke particles or the target, and determine
all the photon emission models based on the FMCW laser echo signal expression;

4. Based on the photon emission model, the receiving module fires the corresponding
number of spherical photons to the smoke particle scene in sequence with the initial
moment, and records the spatial position information of the current photons;

5. When the photons collide with the smoke particles, record the photon position and
update the flight path, and calculate the current photon energy after the collision by
Equation (10); When the photons collide with the target, record the photon position
and flight path, and calculate the current photon energy based on the target reflectivity;

6. After the photon flies out of the smoke scene, calculate all the photon energy received
by the transmitting module at the current moment. According to the moment order to
launch photons, count the total photon energy at each moment, and obtain the laser
echo signal;
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7. Repeat Steps 4–6 in this flow for all photon emission models and superimpose the
corresponding laser echo signals to obtain the final FMCW laser echo signal. The
beat signal and spectrum for extracting the distance information can be obtained after
frequency mixing and FFT processing.

In the virtual smoke scene, the distance between the target and the laser detector is
set to 3 m. Based on the theoretical model and simulation model of photon transmission
process, the echoes are simulated under the conditions of 5 m, 8 m, 12 m, and 15 m of
smoke visibility, and the atmospheric attenuation coefficient can be set to σ = 3.912

V by [36].
The main parameters of the echo signal simulation are shown in Section 3, the smoke test
scene and test flow diagram built in the Unity environment are shown in Figure 9, and the
simulation results of echo signal spectrum are shown in Figure 10.

Figure 9. Photon motion process based on reverse ray-tracing in Unity3D.

Figure 10. Spectrum of beat signal by proposed method at different smoke visibilities.

As can be seen in Figure 10, the echo signal contains smoke echoes and target echoes,
and the scattering of smoke particles at low visibility can cause multiple interfering echoes,
when the target echoes are drowned in the smoke noise. The mixing of smoke echoes and
target echoes causes an expansion of the beat frequency signal spectrum, which is consistent
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with the conclusion from [15]. Considering that the function of the signal-receiving module
is to detect the frequency corresponding to the peak of the beat frequency signal spectrum,
the signal-to-noise ratio (SNR) of the beat frequency signal in smoke can be defined as
shown in Equation (17), where ft and fs are the frequencies corresponding to peak of target
echo and smoke echo, respectively. With the increase in smoke visibility, the amplitude
of the target echo will gradually increase, and the SNR of beat signal spectrum will also
gradually increase. According to the calculation result from Equation (7), the target distance
can be calculated directly from the frequency corresponding to the extreme point of beat
frequency spectrum at the visibility of 15 m.

SNR = 10log10
K f ( ft)

Ks( fs)
(17)

5.2. Effect of Laser Source Emission Power Error on Echo Characteristics

Under different smoke visibility conditions, according to the above echo signal simu-
lation process, in order to describe the effect of laser emission power difference on the echo
characteristics, it is necessary to simulate the effect of photon emission error on the target
echo characteristics. The simulation parameters are still the same as those in Section 3,
and the number of photon emission errors is set to 0–90% of the initial value under the
smoke visibility conditions of 5 m, 8 m, 12 m, and 15 m. The amplitude and frequency
characteristics of beat signals are shown in Figure 11.

Figure 11. Amplitude–frequency characteristics of beat signals corresponding to photon emission
errors of laser source under different smoke visibility conditions.

As can be seen in Figure 11, the laser source emission power error will reduce the
laser emission energy and decrease the laser penetration ability in the smoke, which will
have an impact on the echo characteristics: (1) The peak migration will appear in the beat
signal spectrum. In lower smoke visibility conditions, such as smoke visibility of 8 m,
the photon emission error will not only cause a reduction in the beat signal spectrum
amplitude, but also make the spectrum peak migrate to a lower frequency band. (2) The
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peak migration of the beat signal spectrum is affected by the change of smoke visibility.
With the increase in smoke visibility from 8 m to 12 m, the trend of spectrum amplitude
relatively slows down, resulting in the peak migration caused by the photon emission error
value of 20% to change to 10%. At this time, the peak migration will gradually disappear,
but the photon emission error will be more sensitive to it. (3) Peak migration only occurs
in the low visibility of smoke conditions. In higher smoke visibility conditions, such as
smoke visibility increased to 15 m, the impact of photon emission error on the target echo
characteristics is only reflected in the change in amplitude, the spectral peak migration
no longer appears. (4) Only the smoke echo signal will present the peak migration of
the amplitude and frequency. When the peak migration appears, the target echo signal
amplitude will be greatly reduced. At the same time, the SNR of the beat signal spectrum
will be greatly reduced, and the target echo signal cannot be extracted from the echo signal
at this time, which is obviously not beneficial to target detection and identification.

5.3. Effect of Laser Source Divergence Angle Error on Echo Characteristics

Under different smoke visibility conditions, according to the above echo signal simula-
tion process, in order to describe the effect of laser divergence angle difference on the echo
characteristics, it is necessary to simulate the effect of divergence angle error on the target
echo characteristics. The simulation parameters are still the same as those in Section 3,
and the number of divergence angle error is set to 0–9 times of the initial value under the
smoke visibility conditions of 5 m, 8 m, 12 m, and 15 m. The amplitude and frequency
characteristics of beat signals are shown in Figure 12.

Figure 12. Amplitude–frequency characteristics of beat signals corresponding to the field of view
errors of photoelectric detector under different smoke visibility conditions.

In Figure 12, it can be seen that the laser source divergence angle error will reduce the
laser collimation effect, increase the irradiation area of the light source and enhance the
effect of smoke particle backscattering. Meanwhile, this can cause the energy dispersion
of laser source, and decrease the penetration ability of the laser in the smoke, which will
have an impact on the echo characteristics: (1) The peak migration will appear in the
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beat signal spectrum. The laser source divergence angle error will not only cause the beat
signal spectrum amplitude reduction, also make the spectrum peak migration to lower
frequency band. (2) The peak migration of the beat signal spectrum is not affected by
the change of smoke visibility. With the increase in smoke visibility, the amplitude of the
beat signal spectrum will change, but the thresholds of peak migration always remain the
same. (3) The effect of divergence angle error on the peak migration is related to the smoke
visibility. In low-visibility smoke scenes, a small divergence angle error will cause peak
migration; however, in high-visibility smoke scenes, only a large divergence angle error
can cause peak migration. (4) The effect of divergence angle error on the SNR of echo signal
is related to the smoke visibility. When the peak migration appears, the target echo signal
amplitude under the smoke visibility of 8 m will be significantly reduced, and the SNR of
the beat signal spectrum will be also reduced at this time. However, the target echo signal
amplitude under the smoke visibility of 12 m has no significant change. Considering the
reduction of the smoke echo signal amplitude, the SNR will increase at this time and the
target echo signal can be extracted from the echo signal.

5.4. Effect of Receiving FOV Error on Echo Characteristics

Under different smoke visibility conditions, according to the above echo signal sim-
ulation process, in order to analyze the effect of photodetector difference on the echo
characteristics, the effect of photon receiving FOV error on the target echo characteristics
is simulated here. The simulation parameters are still the same as those in Section 3, and
the number of FOV error is set to 0–90% of the initial value under the smoke visibility
conditions of 5 m, 8 m, 12 m, and 15 m. The amplitude and frequency characteristics of
beat signals are shown in Figure 13.

Figure 13. Amplitude–frequency characteristics of beat signals corresponding to divergence angle
errors of laser source under different smoke visibility conditions.



Materials 2022, 15, 4268 14 of 21

It can be seen that the receiving FOV error will narrow the photon reception area,
reducing the reception performance of the photodetector. The impact on the echo char-
acteristics are as follows: (1) The peak migration will appear in the beat signal spectrum.
Although the photodetector performance error will cause the peak of the beat signal spec-
trum to lower frequency band migration, it will not cause a significant reduction in the
amplitude. (2) The peak migration of the beat signal spectrum is not affected by the change
in smoke visibility, and the threshold at which the peak migration appears always remains
stable. Meanwhile, as the FOV error increases, the SNR of echo signals remains basically
unchanged. (3) The effect of photodetector performance difference on peak migration is not
related to smoke visibility. The peak migration phenomenon of the beat signal spectrum
only appears in low-visibility smoke conditions. Thus, the peak shift factor is dominated
by frequency change at low visibility, and the peak shift is dominated by amplitude change
at high visibility.

5.5. Effect Comparison of Error Factors on Echo Characteristics

According to the above analysis results, the laser source emission power error, laser
source divergence angle error, and receiving FOV error on the echo characteristics have
the peak migration phenomenon of beat signal spectrum. This will obviously cause the
reduction in the detection capability of the fuse prototype and the SNR of the echo signal,
which makes it difficult to extract the target echo signal effectively and is not beneficial for
extracting the distance information of the target.

In order to analyze the importance of the above error factors, it is necessary to compare
the effects of the above three types of error factors on the echo characteristics. Therefore,
according to the results in Figures 11–13, the average amplitude error results of each type
of error factor are calculated at different smoke visibilities. The comparison between this
average error result and the error-free result is made and the results with 2 KHz, 4 KHz,
6 KHz, 8 KHz, and 12 KHz are shown in Figure 14.

It can be seen that the laser source emission power error has the greatest impact on the
echo signal. As the visibility of smoke decreases, the degree of influence of laser divergence
angle error on the echo signal will gradually increase. On the contrary, as the visibility of
the smoke increases, the influence of the receiving FOV error on the echo signal gradually
increases. The reasons for the above situation are as follows: (1) The emission power
error directly decreases the number of photons emitted, causing an overall decrease in the
amplitude of the echo signal. The other two types of errors do not cause changes in the
number of photons emitted. Changes in the transmitting and receiving areas only cause
changes in the amplitude of the target echo signal or smoke echo signal alone; thus, they
affect the echo signal to a lesser extent. (2) The laser divergence angle is usually much
smaller than the received FOV, the effect of the same degree of error on the results depends
on the number of particles in the smoke scene. When the number of smoke particles inside
the scene is large, a large number of photons will be received by the detector after the
back forward scattering of smoke particles. Compared with the receiving FOV error, laser
divergence angle error will expand the photon movement area, which will cause a large
reduction in the number of photons received by the detector, resulting in a significant
change in the amplitude of smoke echo signal. However, when the number of smoke
particles inside the scene is small, many photons will be received by the detector after the
target reflection. Compared with the laser divergence angle error, FOV error will narrow
the scope of the receiving area, which will cause a reduction in the number of photons
received by the detector, resulting in a change in the target echo signal amplitude.
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Figure 14. Normalized amplitude result with different types of factors by the means of average.

6. Validity Experiment of Laser Echo Characteristic Simulation Method

Considering the validity and reliability of the Monte-Carlo simulation method, the
proposed simulation method is able to obtain correct and reliable results of the echo
characteristics in a smoke-free environment. By verifying the validity of the proposed
method in smoke environment, the reliability of results for simulating the laser echo
characteristics based on the principles of 3D particle system, ray-tracing, and Monte-Carlo
principle are demonstrated in this part. The specific method of validation is to compare
the correlation and difference between simulated and measured data under the same
visibility conditions. In particular, due to the absolute difference between the simulated and
measured echo signals under the same visibility conditions, the statistical-based similarity
verification of the echo characteristics results in one visibility range is used here, which
can reflect to some extent the consistency of the results of different methods in the overall
range of smoke visibility and the validity of the echo characteristics simulation methods.

The effectiveness validation of the proposed simulation method is accomplished by
comparing the measured and simulated target echo characteristics under different smoke
visibility conditions. According to the above analysis, the specific way is to compare
the actual measured data of the detector prototype with the simulated data for the echo
characteristics results in the same smoke visibility range. In order to obtain the measured
data of the detector prototype, based on the FMCW laser detection process in Figure 1,
by building a smoke test environment in the laboratory [37], the test parameters and
process are shown in Figure 15a. The modules involved mainly include the following:
(1) FMCW laser detection system module—its functions mainly include laser transmission
and reception, reception of echo signal, and acquisition of beat frequency signal; (2) Smoke
visibility test system module—its function is based on the laser power meter to obtain the
visibility in smoke scene [30]; (3) Smoke environment generation module—its function is to
generate smoke via the smoke device; (4) Monitoring module—its function is mainly to
determine whether the laser spot is completely on the target surface. In order to obtain the
simulation data based on the proposed method, according to the principle of 3D particle
system simulation in Section 3 and laser echo signal simulation process in Section 5, the
smoke device is used as an example to simulate the virtual smoke generation process, and
the simulation parameters are set to be the same as the actual test conditions. The smoke
test environment built in Unity3D and the simulation process are shown in Figure 15b.
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(a)

(b)

Figure 15. Setup and process of laser prototype test and virtual particle system simulation: (a) Laser
prototype test; (b) virtual particle system simulation.

Meanwhile, in order to show the advantages of the proposed simulation method
and differences of echo characteristics results, it is necessary to compare with target echo
characteristics results by the Monte-Carlo simulation method, where the simulation setup
conditions are consistent with the experimental test conditions. The purpose is to determine
whether the echo characteristic results improve the accuracy of real target identification
or eliminate the possible false identification of smoke pseudotargets. The Monte-Carlo
simulation method proposed by Zhang [15] has been used as the comparison here. By
setting the visibility to 1 km in smoke-free environment and a visibility range of 5 m–16 m
in the smoke environment, the measured beat signal spectrum and the variation pattern
with smoke visibility are shown in Figure 16, with the condition that the simulation setup
conditions are consistent with the actual test conditions. The 2D variation pattern is
obtained by direct projection of the 3D beat signal spectra onto the Frequency–Smoke
visibility plane.

Moreover, in order to show the difference in amplitude between smoke echo and
target echo to a certain extent and to reflect the change pattern, the detection distance
is calculated based on the frequency corresponding to the extreme of the beat frequency
spectrum to distinguish whether the identified target is a smoke pseudotarget or a real
target. In this way, it is possible to determine whether the echo characteristics are consistent.
From Figure 16a–c, the following can be observed: (1) They all have a positive correlation
between smoke visibility and amplitude of the target echo signal, and a basically negative
correlation between smoke visibility and amplitude of the smoke echo signal. (2) With the
increase in smoke visibility, the beat frequency amplitudes corresponding to target echo
signal all have a large growth rate, while the decay rates corresponding to the smoke echo
signal are all small. (3) The smoke echoes all have a large value in the low-frequency area of
the beat signals. (4) The smoke visibility threshold from the wrong to accurate identification
of the target are both present. Therefore, the two simulation methods obtained the same
data measurements in the variation pattern of beat frequency with smoke visibility.
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(a)

(b)

(c)

Figure 16. Results of beat signal spectrum and variation pattern with smoke visibility based on three
methods: (a) laser prototype test, (b) proposed method, (c) Monte-Carlo simulation.

Meanwhile, based on Equation (6), which shows the bijection relationship between
beat frequency and detection distance, the following can be seen from Figure 16: (1) When
the visibility of smoke increases from 5 m to 9 m, the detection distance is not always
equal to the actual distance of the target based on the frequency corresponding to the
extreme value of the beat frequency spectrum between simulations and actual measurement.
(2) When the visibility of smoke increases from 10 m to 14 m, the frequency corresponding
to the extreme value of beat frequency spectrum based on the Monte-Carlo simulation is
12 kHz, and the calculated detection distance by Equation (6) is equal to the actual distance
of the target; the real target can be identified at this time. However, the proposed simulation
method and measured data of beat frequency corresponding to spectrum extreme value
is not equal to 12 kHz; these two methods can only identify the smoke pseudotarget, and
cannot identify the real target. (3) When the visibility of smoke increases to 15 m, the actual
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distance of the target can be calculated directly based on the frequency corresponding to
the extreme value point of the spectrum of simulation and experiment, and the real targets
can all be identified accurately at this time.

In summary, under a certain smoke visibility range, whether the real target can be
identified or not, the proposed simulation method is not only consistent with the target
echo characteristics results obtained from the real test, also more consistent than the echo
characteristics results of the basic Monte-Carlo method, which indicates the validity and
reliability of the proposed echo characteristics simulation method. In addition, since the
virtual simulation conditions are not completely consistent with the experimental test
conditions, the SNR of the beat signal and the detection distance results in the local interval
obtained from the simulation will always have some differences. However, the correctness
of the above conclusions is not affected. By increasing the accuracy of the smoke simulation,
more precise conclusions can be extracted from the above findings.

Moreover, in order to objectively represent the similarity and difference of the echo
characteristics results between the two simulation methods and the actual results mea-
sured by laser prototype—especially the detection distance results, which are shown in
Figure 17—the following evaluation indicators are used here for characterization: The
correlation degree of distance results ρ based on the correlation coefficient, the difference
of distance results e based on the mean square error, the false alarm rate fc based on the
target misidentification, and the accuracy rate ac based on the real target identification.
The specific calculation formulas are shown in Equations (18)–(21), respectively, and the
calculation results are shown in Table 1.

Figure 17. Detection distance results.

For the correlation of detection results, the larger the value of ρ, the greater the
correlation between simulation and real measurement; the smaller the value of e, the greater
the correlation between simulation and real measurement. For the accurate identification of
the real target, a smaller value of fc indicates that the difference in target echo characteristics
between simulation and measurement is smaller, and the effectiveness of the simulation
method is better. A larger value of ac means that the difference between simulation and
measurement is smaller, and the validity of the simulation method is better at this time.
As can be seen in Table 1, compared with the basic Monte-Carlo simulation method, the
constructed optimization and simulation method based on the principle of 3D particle
system, ray tracing, and Monte-Carlo method has greater correlation with the measured
results. At the same time, the false alarm rate can be reduced under the condition of
consistent correctness, and the effectiveness of echo characteristic simulation method is
also better. In addition, ac of proposed simulation method is not improved because the
smoke environments in both methods are obtained based on smoke visibility simulation
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only. The indicator can certainly be improved by enhancing the simulation accuracy of the
smoke environment.

ρ =
∑max

V=5m(Rsimulation(V)− R̄simulation)(Rlasertest(V)− R̄lasertest)√
∑max

V=5m(Rsimulation(V)− R̄simulation)2
√

∑max
V=5m(Rlasertest(V)− R̄lasertest)2

, (18)

e =
1

13

max

∑
V=5m

(Rsimulation(V)− Rlasertest)
2, (19)

fc =
NumberMisidenti f ications

NumberTotalexperiments
, (20)

ac =
NumberAccurateIdenti f ications

NumberTotalexperiments
, (21)

Table 1. Results of evaluation indicators between Monte-Carlo simulation and proposed method.

Method ρ e fc ac

Monte-Carlo simulation 0.73 1.50 0.38 0.23
Proposed method 0.81 0.37 0.00 0.23

7. Conclusions

In this paper, based on particle dynamic collision, reverse ray-tracing, and FMCW
laser echo signal model, a new simulation model of FMCW laser transmission is built using
the professional particle system of Unity3D. In order to analyze and compare the effects of
performance variation on the echo characteristics, such as laser source transmit power error,
laser source divergence angle error, and received field of view error, the effect of laser fuse
detector component difference on the target echo characteristics is studied by simulation in
a smoke environment. It is found that all three types of errors cause the peak migration
phenomenon of the beat frequency spectrum: (1) Only the peak migration phenomenon of
the spectrum under laser source transmit power error is affected by the smoke visibility;
(2) only the laser source divergence angle error causes the peak migration phenomenon of
the spectrum in high visibility; (3) only the effect of received field-of-view error on the peak
migration phenomenon is independent of the smoke visibility. The results show that the
SNR of echo signals is not only related to the smoke visibility, the performance variation
of detector components also seriously reduces the SNR by peak migration. In particular,
based on the analysis of laser-source-emitted power error, it is the most disadvantageous
factor for the accurate identification of the target.

The effectiveness of the proposed simulation method is verified by comparing the
results of target echo characteristics obtained from the experiments and simulations. For
the identification of real targets, the proposed simulation method has the same echo charac-
teristic results as real measurement data by the prototype. It is reflected the reliability of
simulation results in the paper. Compared with the basic Monte-Carlo method, the false
alarm rate of laser echo characteristics simulation results is reduced by 38%, while main-
taining the same target identification accuracy. Moreover, based on the significant effect of
laser source emitted power error, it is indicated that laser fuse can be considered for multi-
ple laser emission structures for improving the target detection capability when the laser
source performance is likely to lose more than 30%. So, based on the simulation method
and results, the research on optimization of internal performance parameters and external
structure design of FMCW laser fuse antismoke interference should be further studied.
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