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Network Meta-analysis on Disconnected

Evidence Networks When Only Aggregate
Data Are Available: Modified Methods to

Include Disconnected Trials and Single-Arm

Studies while Minimizing Bias

Howard Thom , Joy Leahy, and Jeroen P. Jansen

Background. Network meta-analysis (NMA) requires a connected network of randomized controlled trials (RCTs)
and cannot include single-arm studies. Regulators or academics often have only aggregate data. Two aggregate data
methods for analyzing disconnected networks are random effects on baseline and aggregate-level matching (ALM).
ALM has been used only for single-arm studies, and both methods may bias effect estimates. Methods. We modified
random effects on baseline to separate RCTs connected to and disconnected from the reference and any single-arm
studies, minimizing the introduction of bias. We term our modified method reference prediction. We similarly modi-
fied ALM and extended it to include RCTs disconnected from the reference. We tested these methods using con-
structed data and a simulation study. Results. In simulations, bias for connected treatments for ALM ranged from
20.0158 to 0.051 and for reference prediction from 20.0107 to 0.083. These were low compared with the true mean
effect of 0.5. Coverage ranged from 0.92 to 1.00. In disconnected treatments, bias of ALM ranged from 20.16 to
0.392 and of reference prediction from 20.102 to 0.40, whereas coverage of ALM ranged from 0.30 to 0.82 and of
reference prediction from 0.64 to 0.94. Under fixed study effects for disconnected evidence, bias was similar, but cov-
erage was 0.81 to 1.00 for reference prediction and 0.18 to 0.76 for ALM. Trends of similar bias but greater coverage
for reference prediction with random study effects were repeated in constructed data. Conclusions. Both methods
with random study effects seem to minimize bias in treatment connected to the reference. They can estimate treat-
ment effects for disconnected treatments but may be biased. Reference prediction has greater coverage and may be
recommended overall.
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Highlights

� Two methods were modified for network meta-analysis on disconnected networks and for including single-
arm observational or interventional studies in network meta-analysis using only aggregate data and for
minimizing the bias of effect estimates for treatments only in trials connected to the reference.

� Reference prediction was developed as a modification of random effects on baseline that keeps analyses of
trials connected to the reference separately from those disconnected from the reference and from single-arm
studies. The method was further modified to account for correlation in trials with more than 2 arms and,
under random study effects, to estimate variance in heterogeneity separately in connected and disconnected
evidence.

� Aggregate-level matching was extended to include trials disconnected from the reference, rather than only
single-arm studies. The method was further modified to separately estimate treatment effects and
heterogeneity variance in the connected and disconnected evidence and to account for the correlation
between arms in trials with more than 2 arms.

� Performance was assessed using a constructed data example and simulation study.
� The methods were found to have similar, and sometimes low, bias when estimating the relative effects for

disconnected treatments, but reference prediction with random study effects had the greatest coverage.
� The use of reference prediction with random study effects for disconnected networks is recommended if no

individual patient data or alternative real-world evidence is available.
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Introduction

Network meta-analysis (NMA) is a method endorsed by
the UK National Institute for Health and Care Excel-
lence (NICE) and international scientific societies for
estimating relative treatment effects between interven-
tions based on randomized controlled trials (RCTs) in
which each study compares a subset of the interventions
of interest.1,2 NMA requires treatments to be connected
by a network of RCTs to benefit from randomization
and minimize the risk of biased relative to treatment
effect estimates.3 Disconnected networks are common in
rare diseases, for which RCT recruitment is challen-
ging.4–6 Disconnected networks can also arise if analyz-
ing rarely reported outcomes or splitting treatments by
doses or time points. Furthermore, traditional NMA is
restricted to RCTs and cannot incorporate single-arm
observational or interventional studies, which are again
common in rare disease or in cases in which a control
arm would be unethical or there has been a breakthrough

in treatment efficacy and RCTs are not judged neces-
sary.7–9 Single-arm studies and disconnected RCT net-
works are illustrated with examples from the literature in
Figure 1.

There are many methods available to overcome dis-
connected RCT networks or to incorporate single-arm
studies, and these have been described in a recent thor-
ough review.5 Real-world evidence, such as registry or
insurance claims data, can be used to fill RCT evidence
gaps and connect networks or to replace the RCT net-
work entirely, as has been done in hip replacement sur-
gery.10,11 Real-world evidence is not always available, is
likely focused on only established treatments, and may
be subject to implicit bias.12 If individual patient data are
available from all RCTs and single-arm studies, propen-
sity matching or regression adjustment techniques could
be used to conduct comparisons.13 Even if individual
patient data are available from only 1 RCT or 1 single-
arm study, matching-adjusted indirect comparison, simu-
lated treatment comparison, and multilevel network
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meta-regression could be used to conduct unanchored
indirect comparisons on disconnected networks.14,15

However, individual patient data from commercial RCTs
or single-arm studies are frequently not available to aca-
demics or to authors of national clinical guidelines.
Furthermore, it should be stated that these methods are
not as reliable as connected networks of RCTs are.15

If only aggregate data are available, methods are still
available to connect networks. Model-based NMA mod-
els dose-response relationships and can be used to con-
nect disconnected networks if studies on multiple doses
are available and if the dose-response relationship can be
correctly specified.16,17 A class effect NMA can be used
to connect networks if disconnected treatments have a
similar mechanism of action or molecular structure to a
connected treatment.5 If interventions in a disconnected
network are composed of common components, com-
ponent NMA has been proposed to reconnect
networks.18,19 Modeling the relation between treatment
effects on different scales, multiple outcomes NMA can
leverage connected networks on 1 outcome to connect
disconnected networks, or strengthen sparse networks,

on another outcome.20 All of these rely on special cir-
cumstances and strong assumptions.

Random effects on baseline can be used to connect a
disconnected network when only aggregate data are
available.4 Random effects on baseline assumes the
response to control treatments are exchangeable across
studies and thus removes the need for a connected net-
work with the price of interfering with randomization in
RCTs already connected to the intervention of inter-
est.21–23 Another method termed aggregate-level match-
ing (ALM) can include single-arm studies by matching
them with an arm of a selected RCT that is connected to
the intervention of interest, creating a new RCT. How-
ever, this method has not yet been extended to RCTs dis-
connected from the intervention of interest.24

We first introduce the standard method of contrast-
based NMA with independent baselines in the next sec-
tion (‘‘Contrast-Based Network Meta-analysis Model for
a Connected Network with Independent Baseline’’)
before giving more detail on the issues with random
effects in subsequent section (‘‘Network Meta-analysis
Model with Random Effects on Baseline and Its

Figure 1 Example of single-arm studies in a network meta-analysis in pulmonary arterial hypertension from Thom in 20154 and
of a disconnected network of randomized controlled trials in multiple myeloma from Schmitz in 2018.6
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Problems’’). In the ‘‘Modified Evidence Synthesis Models
for Disconnected Networks with Aggregate-Level Data’’
section, we present our modified methods for the analysis
of disconnected networks using only aggregate data and
prevent bias in the RCTs already connected to the target
comparator. We test these on an artificially disconnected
network based on a real literature review in atrial fibrilla-
tion and in a simulation study in the sections ‘‘Assess-
ment by Constructed Data’’ and ‘‘Assessment by
Simulation Study,’’ respectively.25,26 We close by drawing
conclusions and making methodology recommendations.

Existing Evidence Synthesis Models

Contrast-Based Network Meta-analysis Model for a
Connected Network with Independent Baseline

We consider only NMA on binomial data with a logistic
link function, but the methods we present can be applied
to any generalized linear model for any type of data.

If each arm k of trial i reports rik events out of nik

patients, and patients on this arm receive treatment tik ,
the likelihood is binomial

rik ; Binomial pik, nikð Þ

The probability of event pik is modeled via

logit pikð Þ=mi + dik

The log odds of an event on the baseline treatment ti1 in
trial i is modeled as mi. If using random study effects, the
treatment effect dik is modeled as

dik ; Normal dti1tik ,s
2

� �

The s2 is some estimated heterogeneity variance s2 rep-
resenting variation in treatment effects across trials. If
using fixed effects, the relation is

dik = dti1tik

The dtibtik are related to the basic parameters

dti1tik = d1tik � d1ti1

The treatment denoted 1 is the so-called ‘‘reference’’
treatment, which is common across the network of evi-
dence and relative to which the basic log odds ratios d1x

for all treatments x are defined. This reference treatment
is distinct from the baseline treatment ti1 in study 1.

The baseline effects mi are nuisance parameters that
must be canceled out and on which we assume a vague
prior

mi ; N 0, 102
� �

They are thus assumed to be independent of each other,
so information on the relative treatment effects dti1tik is
coming only within and not across trials.

This independent baseline model preserves randomiza-
tion within trials. Comparison of any 2 treatments x and
y is through the consistency equation

dxy = d1y � d1x

However, this requires a connected network of RCT evi-
dence between treatments x and y. Also, as treatment
effects are estimated only relative to an RCT-specific
baseline, single-arm evidence cannot be used.

Under random effects in which dik ; Normal

dti1tik ,s
2ð Þ, trials with more than 2 arms have more than

1 dik , and they are correlated as they are both relative to
the same baseline arm in trial i. The correction for this is
described in the Appendix.

Network Meta-analysis Model with Random Effects on
Baseline and Its Problems

The model described by Thom et al.4 and Beliveau
et al.22 and generally called the ‘‘random effects on
baseline’’ puts a random effect model on reference treat-
ment 1:

m1, i ; N m1,sm

� �

This models the log odds of the event on the reference
treatment, even in trials that do not include the reference
treatment. For any arm of a connected RCT, discon-
nected RCT, or single-arm study, the probability is mod-
eled as

logit pikð Þ=m1, i + dik

The treatment effects dik for treatment tik are relative to
overall reference treatment 1 rather than to trial-specific
baseline treatment ti1. Depending on the fixed or random
study effects, we therefore use either

dik = d1tik

or
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dik ; Normal d1tik ,s
2

� �

This thus allows the inclusion of RCTs disconnected
from the reference or single-arm studies. Unlike the inde-
pendent baseline model, this approach assumes exchan-
geability of reference log odds m1, i across trials. Arm-
based NMA is similar but models all arms independently
and thus breaks randomization, but we do consider this
method further.

The downside to using random effects on baseline is
that treatment effects dik in RCTs already connected to
the reference are biased by the across-study information
on m1, i.

27,28 For example, a common finding across clini-
cal areas is that response on placebo, often the reference
treatment in NMA, is improving over time, commonly
called ‘‘placebo creep.’’21 This would suggest greater m1, i

the later RCT i was conducted. Allowing later RCTs to
influence the placebo effect in earlier RCTs would pull
placebo effects up in these earlier RCTs, thus biasing
against treatments studied in such RCTs and vice versa
for the impact on later treatments in later RCTs. This
would bias treatment effects on treatments 2, 3, and 4 in
Figure 2. This bias has been discussed at length in the lit-
erature in the context of arm-based NMA, which models
all RCT arms independently and breaks randomiza-
tion.28,29 Recent work has shown this bias to be limited,

but its potential to cause problems remains, as not every
scenario has been explored in simulation or practice.22

Typically, for random effects models, the same hetero-
geneity variance s2 is used for the RCTs connected and
disconnected from the reference, but this could lead to
influence of the latter on s2 and thus interfere with ran-
domization in the RCTs connected to the reference.

Modified Evidence Synthesis Models for

Disconnected Networks with Aggregate-Level

Data

We propose modifications and extensions of random
effects on baseline and ALM to minimize bias when ana-
lyzing disconnected networks using only aggregate data.

Reference Prediction

Our method of reference prediction predicts outcomes on
the reference treatment in RCTs disconnected from the
reference and single-arm studies. This involves two modi-
fications of random effects on baseline. The first is to
analyze RCTs connected to the reference separately from
those disconnected from the reference and from single-
arm studies. We also modify the model under random
study effects to correctly account for RCTs with more
than 2 arms and to estimate the heterogeneity variance
separately in RCTs connected to the reference and those
disconnected from the reference. In the section titled
‘‘Reference Prediction with Covariates,’’ we further mod-
ify the method to include covariate effects and improve
the prediction of the reference response.

To avoid interfering with randomization in RCTs con-
nected to the reference, we propose splitting them into
i= 1, . . . , ns RCTs that are connected to the reference
and i0= 1, . . . , n0s RCT that are disconnected from the
reference. The total number of RCTs is ns + n0s, and the
method is identifiable so long as ns � 2 and n0s � 1. We
furthermore label i00= 1, . . . , n00s with n00s � 1 as single-
arm (observational or interventional) studies. We model
the trials i= 1, . . . , ns using standard contrast-based
NMA with independent baselines

logit pikð Þ=mi + dik

mi ; N 0, 102
� �

However, we make a second use of the nref
s , where

nref
s � ns, RCTs that include the reference treatment as
one of their arms. We use these RCTs i= 1, . . . , nref

s to
build a separate random effects meta-analysis model,

Figure 2 Using random effects on baseline to predict response
on reference treatment A using studies that included A.
However, the random effects on baseline model interferes with
randomization in randomized controlled trials on treatments
2, 3, and 4.
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with identifiability requirement nref
s � 2, of outcomes on

the reference treatment arms

r
ref
i1 ; Binomial p

ref
i1 , nref

i1

� �

logit p
ref
i1

� �
=m

ref
i

m
ref
i ; N m1,sm

� �

We importantly note that there is no link in the model
between m

ref
i and either mi or any of the arm-specific

treatment effects di, bk, although the n
ref
i1 = nik and

r
ref
i1 = rik if tik = 1; the connected network is thus not
biased by this meta-analysis. In the OpenBUGS imple-
mentation provided in the Appendix, we achieve this by
duplicating the data. This is the same approach as is
often taken to generate absolute (e.g., probability) out-
comes for cost-effectiveness models.30

This meta-analysis model is then used to generate pre-
dictions of the log odds of response on reference treat-
ment 1 in RCTs disconnected from the reference i0

m1, i0 ; N m1,sm

� �

logit pi0, kð Þ=m1, i0 + di0k for all ti0k

The meta-analysis is therefore called a ‘‘reference predic-
tion’’ model. As in random effects on baseline, the di0k

are relative to overall reference treatment 1 rather than
trial-specific baseline ti01. Similarly, in single-arm studies
i00 where di00 is relative to reference treatment 1, we use

m1, i00 ; N m1,sm

� �

logit pi00ð Þ=m1, i00 + di00

As in the independent baseline model, fixed or random
effects can be used for the treatment effect di0, k or di00, k .
However, under random effects, it is desirable to avoid
the influence of the RCTs disconnected from the refer-
ence or single-arm studies on the heterogeneity variance
s2 of the RCTs connected to the reference, as otherwise
effects of treatments only in the latter RCTs will have
biased estimates. Our second modification to previously
published random effects on baseline models is to sepa-
rate the s2 in the RCTs connected to the reference from
s2

0
in the RCTs disconnected from the reference and s2

00

in the single-arm studies. We further use s as an informa-
tive prior on s0 or s00, as there are often too few studies
in the network from the reference to adequately estimate
a separate heterogeneity variance. This prior is a normal

centered on s, standard deviation equal to that of the
Markov Chain Monte Carlo samples of s from the inde-
pendent baselines NMA and truncated below at 0.

Finally, the reparameterization of di0, 1k in RCTs dis-
connected from the reference to be relative to the refer-
ence treatment, and not the baseline b, requires a
modified adjustment for multiarm trials under random
study effects. We describe this novel modification in the
Appendix.

Reference Prediction with Covariates

A further modification for reference prediction models is
to include covariates. We assume we have some vector of
length nc of covariates xik for RCTs to the reference, x

0

i0k

for RCTs disconnected from the reference, and x
00
i00 for

single-arm studies. These can be used in the reference pre-
diction model

r
ref
i1 ; Binomial p

ref
i1 , n

ref
i1

� �

logit p
ref
i1

� �
=m

ref
i

m
ref
i ; N m1 +bxref

i ,sm

� �

The b is a vector of nc regression coefficients each with
vague priors

bl ; N 0, 102
� �

Where l= 1, . . . , nc

Although the bl are fixed, there is still a random effect
distribution on the m

ref
i with standard deviation sm and

centered on m1 +bxref
i . Note the identifiability con-

straint that nref
s � 2+ nc so regression on covariates may

not always be feasible. The distribution on m
ref
i is then

used to improve prediction of the reference response for
the RCTs disconnected from the reference

m1, i0 ; N m1 +bx0i0k,sm

� �

logit pi0, kð Þ=m1, i0 + di0, k for all ti0k

For single-arm studies, we use

m1, i00 ; N m1 +bx00i00 ,sm

� �

logit pi00ð Þ=m1, i00 + di00

Note that we still assume independent mi in the RCTs to
the reference with no use of the covariates, preserving
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randomization. Because of the potential for overfitting
and convergence challenges, we recommend models with-
out covariates a priori. Covariate-adjusted models should
be used only if model fit statistics, such as Bayesian resi-
dual deviance or deviance information criterion (DIC),
are substantially lower than models with no covari-
ates.31,32 The rule of a �5-point difference in DIC being
substantial has been recommended in the literature.33

Modified ALM

Our modification to ALM extends the method to include
RCTs disconnected from the reference. As for reference
prediction, we also modify the method to keep the RCTs
connected to the reference separate from those that are
disconnected from the reference and from single-arm
studies, thus minimizing the introduction of bias. Finally,
we modify ALM on random study effects to correctly
account for RCTs with more than 2 arms.

ALM, under contrast-based NMA with independent
baselines, instead uses a mmatched

i from a selected RCT as
a prediction of response on that RCT’s baseline treat-
ment ti1. The selected connected RCT is that with most
similar patient and design characteristics to the discon-
nected RCT i0 or single-arm study i00. The ALM estima-
tor can also be viewed as a ‘‘plug-in’’ estimator as the
mmatched

i is plugged in to the disconnected RCT or single-
arm study.

We model RCTs disconnected from the reference as

logit pi0, kð Þ=mmatched
i + di0k for all ti0k

This ensures that the same mmatched
i is used in connected

RCT i and disconnected RCT i0. The relative treatment
effects are relative to the matched study’s baseline treat-
ment ti1, so di0k ; Normalðd1ti0k � d1ti1 ,s

2
0
Þ or

di0k = d1ti0k � d1ti1 , depending on random or fixed study
effects, respectively. The disconnected RCT specific het-
erogeneity variance s2

0
is again potentially using s2 as

an informative prior. There is no influence on mmatched
i or

on s2 for random study effects models, from the discon-
nected RCT, so randomization in connected RCT i is
preserved. This procedure is therefore not equivalent to
merging the connected and disconnected RCTs into a
single RCT connected to the reference. Also, because the
matching is performed at the level of the model, there is
no multiple use of data from the RCT i as in reference
prediction.

As the di0k are relative to ti1 and not the baseline of i0,
the correlation correction for RCTs with 3 or more arms
under random study effects must be modified. We com-
plete this modification in the appendix.

Similarity could be measured by the Euclidean dis-

tance
Pnc

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�l � x

0

il �l

q� �2

over covariates l = 1, . . . , nc,

perhaps standardized by standard deviations to account
for different scales, although any preferred distance mea-
sure can be used. Matching should also take account of
similarity of endpoint definition, follow-up, permitted
concomitant treatments, and other design characteristics,
as in matching-adjusted indirect comparison.34,35 The
same approach should be taken when matching RCTs
already connected to the reference to single-arm studies.

ALM has been previously applied to single-arm stud-
ies.7 As illustrated in Figure 3, the approach to single-
arm studies i00 with the probability pi00 is similar, and we
model as

logit pi00ð Þ=mmatched
i + di00

The connected RCT should have baseline characteristics
xi�, with � indicating an average overall arms k, most simi-
lar to the x

0
i0 �, again averaged over all arms, of the discon-

nected RCT.
Unlike reference prediction, ALM requires only a sin-

gle RCT connected to the reference to be identifiable,
although more are recommended to ensure a sufficiently
similar study is used for matching.

Assessment by Constructed Data

Methods of Constructed Data Example

Our constructed data example was created by artificially
disconnecting a network drawn from a systematic litera-
ture review and contrast-based NMA on a connected
network comparing treatments for the prevention of
stroke, while minimizing the risk of clinically relevant
bleeding, in atrial fibrillation.25,36 The advantage of arti-
ficially disconnecting a network is that we can compare
the estimated of reference prediction and ALM to the
results of the ‘‘true NMA’’ based on RCTs. Aligning
with the methods presented in the sections ‘‘Existing Evi-
dence Synthesis Models’’ and ‘‘Modified Evidence Synth-
esis Models for Disconnected Networks with Aggregate-
Level Data,’’ we analyzed the binomial outcomes with a
logistic link function. The NMA compared coumarin
(international normalized ratio target range 2–3) with the
oral anticoagulants apixaban (twice-daily 5 mg), dabiga-
tran (twice-daily 150 mg), edoxaban (once-daily 60 mg),
and rivaroxaban (once-daily 20 mg). This consists of 12
RCTs on 13 interventions reporting stroke and 17 RCTs
on 24 interventions reporting clinically relevant bleeding.
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We artificially disconnected the trials on dabigatran
from those on other treatments in the evidence networks
on stroke and clinically relevant bleeding. In the stroke
network, there was 1 RCT on dabigatran, whereas in
clinically relevant bleeding, there were 3 RCTs (details
are given in the Appendix). In the first scenario, the cou-
marin arm was removed from the dabigatran trials, giv-
ing a disconnected network of 1 RCT on dabigatran 110
mg versus 150-mg doses in ischemic stroke and 3 RCTs
on 9 different doses of dabigatran in clinically relevant
bleeding. The second scenario consisting of splitting
the RCTs on dabigatran into single-arm studies and
excluding the coumarin control arms, giving 2 for
ischemic stroke and 12 for clinically relevant bleeding.
These disconnections are illustrated for ischemic stroke
in Figure 4.

We then applied the reference prediction and ALM to
these disconnected networks in an attempt to reproduce
the results of the original connected network, the true
NMA. For reference prediction, we used meta-regression
to explore which, if any, of mean age, proportion male,
and CHA2DS2-VASc score should be included in the
baseline response model. Covariates were centered at the
across-study mean, and missing values for individual stud-
ies were set to the mean (i.e., zero in the regression due to
centering). All 3 covariates, with no standardization, were
used to calculate the Euclidean distance ALM, with miss-
ing values omitted from the summation.

Results of the Atrial Fibrillation Constructed
Data Example

The random effects model with no covariates was
selected as the regression model for reference prediction
on ischemic stroke, because it had good total residual
deviance (11.9 v. 11 data points), and its DIC of 67.14
was not substantially improved by including covariates
(the DIC of the covariate models ranged from 66.96 to
67.93). All fixed effects had poor residual deviance (rang-
ing from 68 to 79.8, which was substantially greater than
the 11 data points) and worse DIC (ranging from 119 to
127.1) than the random effects models did. The same
conclusions held for clinically relevant bleeding.

The ischemic stroke results for the methods with ran-
dom study effects are presented in Figure 5 and those for
the fixed study effects are shown in Figure 6. The tabu-
lated results are provided in the Appendix.

Using both the fixed and random study effects, we
observed that the reference prediction and ALM repro-
duced the results of the true NMA (i.e., independent
baselines using all RCTs) in the connected portion of the
network. For example, the log odds ratio for edoxaban
(30 mg every day) was 0.36 (95% credible interval [CrI]:
20.94, 1.64) using true NMA, 0.36 (20.92, 1.63) using
reference prediction, and 0.36 (20.93, 1.61) using ALM.

For the reference prediction on RCTs disconnected
from the reference and single-arm studies, the point esti-
mates were close to those of the true NMA. For example,
if in an RCT disconnected from the reference, the log
odds ratios for dabigatran (150 mg) were 20.28 (21.55,
0.99) under true NMA, 20.19 (21.98, 1.71) using refer-
ence prediction, and 20.21 (21.36, 0.94) using ALM.
The 95% CrIs were similar under the random study
effects but much wider under the fixed study effects;
however, in both cases, they overlapped with the point
estimate of the true NMA. ALM had poor performance
under fixed study effects with different point estimates
and narrow 95% credible intervals, which did not always
overlap with the true NMA estimate; for example, if in
RCTs disconnected from the reference dabigatran (110
mg), the log odds ratios were estimated as 0.13 (20.11,
0.37) using true NMA and 0.22 (21.34, 1.91) using refer-
ence prediction, but 0.66 (0.35, 0.96) using ALM. Under
random study effects for single-arm studies, the point
estimates appeared to be more different from the true
NMA than the reference prediction but similar on the
RCTs from the reference. The 95% CrIs also depend
greatly on the matched study with, sometimes very wide
CrIs; for example, in RCTs disconnected from the refer-
ence, ALM estimated the log odds ratio for dabigatran
(110 mg) to be 20.0065 (219.59, 19.68) but the true

Figure 3 Using aggregate-level matching to connect a single-
arm study to randomized controlled trials (RCTs) with similar
design and patient characteristics. In this case, the baseline
odds of RCT A is used to match to RCT I.
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NMA estimated 0.13 (21.14, 1.39) and reference predic-
tion 0.23 (21.70, 2.24).

Random study effects models for clinically relevant
bleeding were less reassuring (results are given in the
Appendix). Both reference prediction and ALM had
95% CrIs that often did not overlap with the true NMA
effect for the PETRO study, which reported clinically
relevant bleeding but not ischemic stroke, so only in the
former outcome network. This is likely because PETRO
was a small study with only 70 patients on coumarin,

whereas RE-LY, in both outcome networks, included
6022 patients taking coumarin. Both methods performed
better for dabigatran doses studied in RE-LY. In the dis-
connected RCTs scenario, ALM had point estimates
closer to the truth than the reference prediction. Conver-
sely, ALM estimates were further from the truth, and
with 95% CrIs not overlapping the truth, for the single-
arm scenario. Reference prediction appears to be ‘‘safer’’
in general. Again, fixed study effects models performed
poorly.

Figure 5 Comparison of the estimated log odds ratios using the true method (all randomized controlled trials), reference
prediction, and aggregate-level matching under random study effects for the ischemic stroke outcome. Point estimates are means,
and uncertainty intervals are 95% credible intervals.

Figure 4 Disconnecting the ischemic stroke atrial fibrillation network. Twelve randomized controlled trials (RCTs) on 13
interventions are changed to either 1 RCT connected to the reference and 11 RCTs connected to the reference or to 2 single-arm
studies and 11 RCTs to the reference.
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Assessment by Simulation Study

Methods of Simulation Study

We used a simple simulation study to assess the bias and
coverage of treatment effect estimates of ALM and refer-
ence prediction in the scenarios of disconnected RCTs
(i.e., where there are RCTs disconnected from the refer-
ence) and single-arm studies. Methods with lower bias
and greater coverage are preferred.

We merged all covariates for matching and regression
in ALM and reference prediction, respectively, as a sin-
gle covariate. We explain below how this does not reduce
the generality of the simulations. We assumed the covari-
ates were not treatment effect modifiers. Effect modifiers
are a problem for both connected and disconnected net-
works, and our methods do not purport to overcome the
imbalance in effect modifiers.

The basic geometry of all of our simulations is illu-
strated in Figure 7. The performance of ALM and refer-
ence prediction depend on the quantity of the connected
evidence and not on the disconnected evidence. We there-
fore varied only the number of RCTs connected to the
reference and always included only 5 RCTs disconnected
from the reference or 10 single-arm studies. The number
of 2-arm and 3-arm RCTs to the reference was gradually
increased, with scenarios described in Table 1. Simula-
tions were conducted twice, once with the number of
patients in trials fixed at 100 on each arm and again with
1000 patients. The patient number simulations were kept

separate, and our primary case included 100 patients per
arm.

Our simulated data followed the setup of the binomial-
logistic NMA example that has been used throughout.
The number of events on arm k of study i was simulated
as

rik ; binomial pik, nikð Þ

The probability of event pik was modeled as

logit pikð Þ=mi + d1k

For numerical stability, we forced any arms with zero
events (r = 0) to have at least 1 event (r = 1). The log
odds ratios d1k for tik relative to reference ti1 = 1 were
simulated as d1k ; N 0:5, 1ð Þ for each treatment. This
arbitrary choice of distribution determined the scale for
other model parameters.

The model we used to simulate the log odds for study
s was

mi ; Normal m+Xib+ Ii= discg, sd = 1ð Þ

We simulated the across-study mean from m ; N

0:5, 1ð Þ. The covariate effect Xi represents variation in
prognostic factors across studies and was simulated from
Xi ; N 0:5, 1ð Þ. b represents the strength of influence of
Xi, and we considered scenarios with weak and strong

Figure 6 Comparison of the estimated log odds ratios using the true method (all randomized controlled trials), reference
prediction, and aggregate-level matching under fixed study effects for the ischemic stroke outcome. Point estimates are means,
and uncertainty intervals are 95% credible intervals.
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covariates simulated with b ; N 0:1, 1ð Þ and b ; N 1, 1ð Þ,
respectively. A stronger influence suggests more data for
the reference prediction model or value of matching on
Xi for ALM.

Ii= disc is an indicator for i being a disconnected RCT
or a single-arm study, whereas g represents additional
variation in baseline response in such studies. Together,
these represent differences in prognostic variables between
RCTs connected to the reference and either the RCTs
from the reference or single-arm studies. A nonzero g

implies that reference prediction and ALM will be biased;
thus, we considered scenarios g = 0 and g ; N 0:5, 1ð Þ.
This model for mi implies that the contrast-based NMA
and the ALM and reference prediction models that match
it on connected networks were misspecified for nonzero b

and g, as the NMA model assumes that mi was not sys-
tematically different between trials.

As noted above, we considered only a single prog-
nostic factor Xi, and this is without loss of generality.
Unaccounted extras would be represented by scenarios
with larger variation in m or a larger magnitude of g,
while accounted extras would just be represented by a
stronger b.

We applied contrast-based NMA, reference predic-
tion, and ALM for all modeled scenarios and compared
their treatment effect estimates to the ‘‘truth’’ in the (for
reference prediction and ALM only) components con-
nected to or disconnected from the reference. As we ran
these for both fixed and random effects, and for 100 and
1000 patients per study arm, there were 96 scenarios in
total:

Fixed effects

Random effects

� �
3

Disconnected RCTs

Single� arm studies

� �

3
100 patients per arm

1000 patients per arm

� �
3

b weak

b strong

� �

3
g zero

g strong

� �
3

5 connected RCTs

15 connected RCTs

50 connected RCTs

0
B@

1
CA

The 12 scenarios across assumptions on b, g, and the
number of RCTs connected to the reference are listed in
Table 2. For all simulations, we calculated the bias and
coverage probability for log odds ratios for connected
treatments (d12 and d13) and disconnected treatments (d14

and d15). The bias and coverage probability are explicitly

Figure 7 Network geometries considered in the simulation study. Either 5 randomized controlled trials (RCTs) from the
reference or 10 single-are studies were considered. The number of RCTs to the reference was varied.

Table 1 Number of Randomized Control Trials (RCTs) in 3 Simulation Studies with 5, 15, and 50 RCTs Connected to the
Referencea

Treatments
to Compare

Total RCTs

Connected
to the Reference

Treatment 2 v.

Treatment 1
(Reference)

Treatment 3 v.
1 (Reference)

Treatments 3

and 2 v. 1
(Reference)

RCTs Disconnected
from the Reference

(on Treatment 5 v.
Treatment 4)

Single-Arm

Studies on
Treatment 4

Single-Arm

Studies on
Treatment 5

No. of RCTs 5 2 2 1 5 5 5
15 5 5 5 5 5 5
50 20 20 10 5 5 5

aThe number and treatment arms of the RCTs disconnected from the reference and single-arm studies were the same in all simulations.
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defined in the Appendix. Also in the Appendix is a for-
mal sample size calculation indicating that 100 simula-
tions is sufficient to estimate the coverage probability to
within a sufficiently small Monte Carlo standard error of
0.047 (i.e., within 4.7%).37 The Monte Carlo standard
error of the bias is estimated to be 0.015, which is suffi-
cient for estimating log odds ratios with distribution
d1k ; N 0:5, 1ð Þ.

Results of the Simulation Study

Estimated bias and coverage probabilities across all
methods and all scenarios for random study effects mod-
els in which RCTs have 100 patients are illustrated in
Figure 8 and where RCTs have 1000 patients in Figure
9. Bias is interpreted in comparison with the mean treat-
ment effect of 0.5 (i.e., the mean of log odds ratio d1k).
Numerical results and full results for fixed study effects
models are provided in the Appendix.

Estimated Bias

On the component of the network connected to the refer-
ence, the bias of ALM ranges from 20.0158 to 0.051, for
reference prediction from 20.0107 to 0.083, and for
NMA based only on RCTs from 20.011 to 0.030. This
suggests the bias is lower for NMA only but is similar
between ALM and reference prediction and in any case
low (usually less than 10%) compared with the true treat-
ment effect.

In RCTs disconnected from the reference and in
single-arm studies, the bias is much higher, ranging from
20.1 to 20.4 when disconnected studies are not

systematically different (g = 0) and from 20.2 to 0.2
when they are systematically different (g 6¼ 0). These are
substantial compared with the true mean treatment
effect. Across scenarios, the bias of ALM ranges from
20.101 to 0.36 with 5 RCTs connected to the reference
and from 20.040 to 0.392 with 50 RCTs, whereas that of
reference prediction ranges from 20.102 to 0.400 with 5
RCTs and from 20.049 to 0.354 with 50 RCTs, suggest-
ing no relation between bias and number of connected
RCTs. Similarly, there is no clear trend with the strength
of covariate effects (b). The bias of ALM ranges from
20.076 to 0.36 under weak covariate (b) effects and from
20.16 to 0.392 under strong covariate effects, while that
of reference prediction ranges from 20.049 to 0.40 under
weak effects and from 20.102 to 0.310 under strong
effects. There is a marginal trend that a greater number
of patients leads to lower bias for both methods. The bias
of ALM ranges from 20.069 to 0.36 with 100 patients
and from 20.117 to 0.173 with 1000 patients, while the
bias of reference prediction ranges from 20.102 to 0.40
with 100 patients and 20.056 to 0.354. Overall, there is
no trend of the bias being different between methods,
with the bias of ALM ranging from 20.16 to 0.392 and
that of reference prediction from 20.102 to 0.40.

Estimated Coverage

In the component of the network connected to the refer-
ence, the coverage of all methods was similar but greatest
for NMA using only RCTs. The coverage ranged for
ALM from 0.92 to 1.00, for reference prediction from
0.92 to 1.00, and for NMA using only RCTs from 0.95
to 1.00.

Table 2 List of Scenarios Used in the Simulation Studya

Scenario
No.

Number of RCTs
Connected to the Reference

Effect of Covariate Used in
Regression or Matching b

Effect of Covariate Not Used
in Regression or Matching g

1 5 RCTs Weak effect: b ; N 0:1, 1ð Þ g = 0
2 5 RCTs Strong effect: b ; N 1, 1ð Þ g = 0
3 15 RCTs Weak effect: b ; N 0:1, 1ð Þ g = 0
4 15 RCTs Strong effect: b ; N 1, 1ð Þ g = 0
5 50 RCTs Weak effect: b ; N 0:1, 1ð Þ g = 0
6 50 RCTs Strong effect: b ; N 1, 1ð Þ g = 0
7 5 RCTs Weak effect: b ; N 0:1, 1ð Þ g ; N 0:1, 1ð Þ
8 5 RCTs Strong effect: b ; N 1, 1ð Þ g ; N 0:1, 1ð Þ
9 15 RCTs Weak effect: b ; N 0:1, 1ð Þ g ; N 0:1, 1ð Þ
10 15 RCTs Strong effect: b ; N 1, 1ð Þ g ; N 0:1, 1ð Þ
11 50 RCTs Weak effect: b ; N 0:1, 1ð Þ g ; N 0:1, 1ð Þ
12 50 RCTs Strong effect: b ; N 1, 1ð Þ g ; N 0:1, 1ð Þ
aEach is used under the assumption of fixed or random study effects and with either randomized controlled trials (RCTs) disconnected from the

reference or single-arm studies, giving 48 scenarios in total.
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Figure 8 Simulation study estimated bias and coverage of each method in the connected and disconnected evidence scenarios.
Random study effects of 100 patients per arm. Scenarios: scenario 1 = 5 randomized controlled trials (RCTs), b weak, g = 0;
scenario 2 = 5 RCTs, b strong, g = 0; scenario 3 = 15 RCTs, b weak, g = 0; scenario 4 = 15 RCTs, b strong, g = 0; scenario

5 = 50 RCTs, b weak, g = 0; scenario 6 = 50 RCTs, b strong, g = 0; scenario 7 = 5 RCTs, b weak, g 6¼ 0; scenario 8 = 5
RCTs, b strong, g 6¼ 0; scenario 9 = 15 RCTs, b weak, g 6¼ 0; scenario 10 = 15 RCTs, b strong, g 6¼ 0; scenario 11 = 50 RCTs, b

weak, g 6¼ 0; scenario 12 = 50 RCTs, b strong, g 6¼ 0. The b represents the impact of covariates included in aggregate-level
matching (ALM) and reference prediction (RP) regression. g represents the impact of the covariates not included in the ALM or
RP regression. Scenarios are an analysis on RCTs only using single-arm studies (single) and RCTs from the reference
(disconnected).
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In RCTs disconnected from the reference and in
single-arm studies, reference prediction has a coverage
ranging from 0.64 (1000 patients, disconnected RCTs, 15

connected RCTs, b weak, g = 0) to 0.94 (100 patients,
single-arm studies, 50 connected RCTs, b weak, g 6¼ 0).
ALM has worse coverage, ranging from 0.30 (1000

Figure 9 Simulation study estimated bias and coverage of each method in the connected and disconnected evidence scenarios.
random study effects of 1000 patients per arm. Scenarios: scenario 1 = 5 randomized controlled trial (RCTs), b weak, g = 0;
scenario 2 = 5 RCTs, b strong, g = 0; scenario 3 = 15 RCTs, b weak, g = 0; scenario 4 = 15 RCTs, b strong, g = 0; scenario 5
= 50 RCTs, b weak, g = 0; scenario 6 = 50 RCTs, b strong, g = 0; scenario 7 = 5 RCTs, b weak, g 6¼ 0; scenario 8 = 5 RCTs,
b strong, g 6¼ 0; scenario 9 = 15 RCTs, b weak, g 6¼ 0; scenario 10 = 15 RCTs, b strong, g 6¼ 0; scenario 11 = 50 RCTs, b weak,
g 6¼ 0; scenario 12 = 50 RCTs, b strong, g 6¼ 0. b represents the impact of covariates included in aggregate-level matching (ALM)
and reference prediction (RP) regression. g represents the impact of the covariates not included in ALM or RP regression.
Scenarios are an analysis on RCTs only, using single-arm studies (single), and RCTs from the reference (disconnected).
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patients, single-arm, 50 connected RCTs, b weak, g = 0)
to 0.82 (100 patients, disconnected RCTs, 5 connected
RCTs, b weak, g 6¼ 0).

ALM appeared to perform worse for single-arm stud-
ies than for RCTs disconnected from the reference, with
coverage on single-arm studies ranging from 0.26 to 0.69
and on disconnected RCTs from 0.60 to 0.86. Coverage
of all methods appeared to decrease with increasing num-
bers of patients, going from a range of 0.42 to 0.95 on
100 patients to a range of 0.26 to 0.92 on 1000 patients.
This may occur when there are systematic differences in
prognostic factors between RCTs connected to the refer-
ence and single-arm studies or RCTs disconnected from
the reference treatment (i.e., g 6¼ 0), as ALM and refer-
ence prediction would become closer to the systemati-
cally different connected evidence. In this scenario, the
coverage of all methods does indeed reduce from a range
of 0.48 to 0.94 on 100 patients to a range of 0.36 to 0.92
on 1000 patients.

Fixed Effects Results

Fixed study effects results are presented in the Appendix.
Bias was generally similar to the random study effects
case in both the components connected to and discon-
nected from the reference for all methods and scenarios.
The coverage probabilities were lower for reference pre-
diction on disconnected treatments and ranged from 0.81
to 1.00. Coverage probabilities were so low, ranging from
0.18 to 0.76 for disconnected treatments across all sce-
narios, for ALM that the method could not be recom-
mended with fixed study effects. It is worth recalling
from above that coverage was worst for ALM under ran-
dom effects (from 0.30 to 0.82).

Discussion

We have presented 2 modified methods for including
RCTs disconnected from the reference, or any interven-
tion of interest, or single-arm studies in contrast-based
NMA when only aggregate data are available. Reference
prediction is a modification of random effects on base-
line with RCTs connected to the reference and RCTs dis-
connected from the reference kept separate, different
heterogeneity variances used for random study effects
models, and a corrected adjustment for multiarm studies.
We modified ALM to allow the inclusion of RCTs from
the reference, used different heterogeneity variances for
RCTs connected to and disconnected from the reference,
and corrected the adjustment for multiarm studies. These
methods give similar point estimates and 95% CrIs to
the independent baseline contrast-based NMA, which

suggests that we have minimized the introduction of
bias. Fixed study effects models performed poorly, with
point estimates far from the truth and 95% CrIs that did
not include the truth; this was matched by the simulation
study in which fixed study effects had high bias and low
coverage. The low coverage was a result of fixed effects
being less ‘‘lenient’’ to poorly matching studies or to dif-
ferent populations than random effects. In the con-
structed data example, the performance of ALM was
found to greatly depend on the matched study, illustrat-
ing the importance of choosing an appropriate study.
The performance of reference prediction depended
greatly on the similarity of the connected and discon-
nected evidence. This was confirmed by the simulation
study in which coverage of both methods was worse
when there were systematic differences in prognostic fac-
tors between connected and disconnected studies. This
illustrates the importance of assessing whether these
methods are appropriate in each specific circumstance.
In both the constructed data and simulation study, refer-
ence prediction was found to have lower bias and greater
coverage than ALM and could be viewed as the ‘‘safer’’
option for inference on disconnected networks.

There are many possible extensions to our methodol-
ogy. Aggregate- or individual-level real-world evidence
in the form of registries or cohort studies could be used
to build the reference prediction models or control arm
data for ALM.11 This could allow predictions to be tai-
lored to specific populations, rather than relying only on
what has been studied in an RCT. Both methods could
be used to incorporate single-arm studies on treatments
already in the RCTs connected to the reference; hierarch-
ical models could be used to keep effects separate or
informative priors used to minimize any bias from
single-arm studies on RCT data.7,38 The high uncertainty
in the effect estimates of random study effects reference
prediction or ALM suggests that these may be better sui-
ted to uncertainty quantification for input in value-of-
information analyses using economic models.39 This
could provide an upper bound on the value of studying
disconnected treatments in new head-to-head RCTs.

Equally, there are many limitations to our methods
and assessments. Reference prediction, despite having
good coverage and low bias, can provide highly variable
and almost noninformative treatment effect estimates.
Our constructed data situation was based on an example
in atrial fibrillation and is unlikely to be generalizable to
other clinical areas; that single-arm studies and RCTs
from the reference were based on RCTs connected to the
reference also means they are likely to be more similar in
prognostic factors than a real scenario. Our constructed
data example and simulation study have shown only that
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there are no problems in specific situations, and there
may be cases in which both reference prediction and
ALM lead to serious bias. We also restricted our analysis
to binomial outcomes. Extension to count or continuous
outcomes would be straightforward as similar general-
ized linear models for NMA on single time points exist.1

However, time-to-event outcomes NMA such as frac-
tional polynomials NMA, common in oncology, would
require more significant modification.40

We have presented methods that aim to get as close as
possible to the results of a fully connected contrast-based
NMA with independent baselines. However, we would
term these as ‘‘last resort’’ methodologies for when net-
works are disconnected or if the RCT evidence is so lim-
ited as to be uninformative. If individual patient data are
available from some or all trials, methods such as multile-
vel network meta-regression, propensity score reweight-
ing, matching-adjusted indirect comparison, or simulated
treatment comparison are recommended instead. If high-
quality nonrandomized comparative evidence is available,
this should instead be used through hierarchical models
or informative priors. If only aggregate data from RCTs
are available, and multiple outcomes, class effects, or
dose-response modeling are not appropriate, reference
prediction and ALM could be considered for health care
decision making, as long as the limitations are recognized.
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