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A B S T R A C T

Background: The ophthalmology field was among the first to adopt artificial intelligence (AI) in medicine. The
availability of digitized ocular images and substantial data have made deep learning (DL) a popular topic.
Main text: At the moment, AI in ophthalmology is mostly used to improve disease diagnosis and assist decision-
making aiming at ophthalmic diseases like diabetic retinopathy (DR), glaucoma, age-related macular degenera-
tion (AMD), cataract and other anterior segment diseases. However, most of the AI systems developed to date are
still in the experimental stages, with only a few having achieved clinical applications. There are a number of
reasons for this phenomenon, including security, privacy, poor pervasiveness, trust and explainability concerns.
Conclusions: This review summarizes AI applications in ophthalmology, highlighting significant clinical consid-
erations for adopting AI techniques and discussing the potential challenges and future directions.
1. Introduction

As artificial intelligence (AI) technologies develop, ophthalmology
has thrived partly due to its dependency on image-based clinical
decision-making and investigations.1 Deep learning (DL) played a key
role in this progress, which has led to breakthroughs in information
technology via the utilization of tools for feature extraction.2 Recently,
many AI researchers in ophthalmology used medical images to construct
deep learning models to perform high-dimensional analyses. They have
been used to automate screening and diagnosis of common
vision-threatening diseases with expert-level accuracy, including dia-
betic retinopathy (DR),3 glaucoma,4 age-related macular degeneration
(AMD),5 cataract and other anterior segment disease,6 with high accu-
racy. As deep learning technologies are maturing, researchers start trying
to achieve disorder detection beyond the established scope of early--
stage7 and prognosis prediction.8

Due to the broadness of AI research in ophthalmology, experts are
increasingly agreeing that consolidating data foundation and adopting
standardized reporting and regulatory guidelines are needed to enhance
explainability, repeatability, security and ethical compliance.9–11 Even if
the deployment of AI systems remains limited, this trend is expected to
continue with the implementation of these frameworks to reduce in-
consistencies among different studies. The development of
high-performance DL systems alone is not sufficient to ensure eventual
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clinical translation of AI research, which poses a difficult conundrum to
the clinical success of AI research. A wide range of factors must be
aligned to achieve it, including algorithm development, clinical indica-
tion, security and public acceptance.12 As such, to successfully implement
AI in ophthalmology, clinicians need to develop a deep understanding of
the interactions among these factors to formulate a clear lab-to-clinic
strategy.

In this study, we aim to review the current status and future prospect
of AI in ophthalmology by analyzing a variety of issues such as the
development of AI in ophthalmology, the challenges for its application
and potential future directions.

2. Development of AI in ophthalmology

Table 1 sums the performance of AI algorithms, data size and di-
versity, etc. for each ophthalmology diseases.
2.1. Diabetic retinopathy

It's a globally recognized strategy for preventing blindness to
screening for DR and prompt referral for treatment. The screening pro-
cess can be conducted by a variety of medical professionals, including
ophthalmologists, optometrists, general practitioners, screening techni-
cians, and ophthalmologic technologists. The use of AI-assisted screening
ool of Medicine, 88 Jiefang Road, Hangzhou, 310000, China.
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Table 1
Summary of representative works of AI in ophthalmology.

Year Reference Topic Dataset AUC SE SP

2016 Abramoff et al.14 DR CFPs, 1748 images 0.980 96.8% 87.0%
2017 Gargeya et al.15 DR CFPs, 75,137 images 0.97 94% 98%
2017 Ting et al.16 DR, glaucoma, and AMD CFPs, 494,661 images 0.931–0.958 90.5%–

100%
87.2%–

91.6%
2020 Pan et al.17 DR lesions classification FFAs, 4067 images 0.870–0.965 79.7%–

98.0%
82.7%–

99.5%
2022 Gao et al.18 DR grading FFAs, 11,214 images 0.922–0.994 / /
2020 Varadarajan

et al.20
DME OCT-grading CFPs, 7072 images 0.89 85% 80%

2019 Liu et al.23 Glaucoma CFPs, 274,413 images 0.996 96.2% 97.7%
2021 Sun et al.28 Glaucoma OCTs, 777 sets 0.957 89.6% 95.2%
2020 Thompson et al.29 Glaucoma OCTs, 20,806 images 0.96 81% 95%
2019 Phene et al.33 Glaucoma CFPs, 86,618 images 0.945 80.0% 90.2%
2019 Asaoka et al.34 Glaucoma OCTs, 4316 images 0.937 82.5% 93.9%
2019 Wen et al.37 Forecast future Visual Fields VFs, 32,443 VFs / / /
2022 Huang et al.38 Glaucoma visual field grading VFs, 16,356 VFs 0.93 / /
2017 Burlina et al.39 AMD CFPs, 213,997 iamges 0.96 88.4% 94.1%
2019 Peng et al.40 AMD grading CFPs, 59,302 images 0.94 59.0% 93.0%
2020 Yan et al.42 AMD progression prediction CFPs, 31,262 images 0.85 / /
2018 Kermany et al.43 AMD OCTs, 207,130 images 0.999 97.8% 97.4%
2020 Erfurth et al.45 Quantification of Fluid Volumes to AMD OCTs, 24,362 images / / /
2021 Yan et al.47 AMD OCTs, 56,091 images 0.940–0.992 80.0%–

96.5%
/

2021 Zhang et al.48 Detect and quantify geographic atrophy OCTs, 5049 images / / /
2021 Xu et al.50 AMD,PCV CFPs and OCTs, 1099 CFPs, 821

OCTs
0.939 88.8% 95.6%

2022 Jin et al.51 Identification of choroidal neovascularization activity in
AMD

OCTs and OCTAs, 462 image pairs 0.980 89.6% 95.6%

2011 Chueng et al.52 Cataract Slit-lamp photographs, 5547 images / / /
2021 Li et al.54 Keratitis Slit-lamp photographs, 6567 images 0.998 97.7% 98.2%
2021 Ye et al.55 Myopic maculopathy OCTs, 2342 images 0.927–0.974 73.9%–

92.8%
84.8%–

94.0%
2019 Yoo et al.56 Identify candidate patients for corneal refractive surgery Multi-instrument data, 13,201

subjects
0.983 / /

2020 WANG et al.57 Eyelid malignant melanoma Pathological patches, 225,230
images

0.989 94.7% 95.3%
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and staging of DR based on fundus images is currently among the most
promising AI applications in clinical medicine. Recent studies have
shown that such systems can reliably match experts' performance and, in
some cases, perform better than themwhile being a more cost-effective13

and broader-reaching way to the traditional screening programs.
Abramoff et al. implemented a DL model to screening DR, which

achieved an area under the curve (AUC) of 0.980, a sensitivity of 96.8%
and a specificity of 87.0%.14 Gargeya et al. also used a DL system to
detect DR15 using a publicly available dataset including 75,137 color
fundus photographs (CFP) of diabetic patients to train and test the model
to distinguish between healthy fundus images and DR images. The model
achieved a sensitivity of 94% and a specificity of 98%, indicating that the
AI-based algorithm could reliably perform screening of fundus photo-
graphs. Ting et al. published a clinically acceptable DRZ diagnostic sys-
tem developed and tested based on 10 external datasets from the
Singapore Integrated Diabetic Retinopathy Program, which ran over a
period of 5 years in 6 different countries or regions, including Singapore,
China, Hong Kong, Mexico, the United States and Australia. Their model
demonstrated an AUC, sensitivity, and specificity of 0.936, 90.5% and
91.6%, respectively, achieving reliable diagnosis in multiple ethnic
groups.16 Althoughmost studies have developed robust DLmodels for DR
screening and diagnosis based on CFP or optical coherence tomography
(OCT) images, some studies focused on automatic DR lesion detection in
fundus fluorescein angiography (FFA) images. Multi-label classification
of non-perfusion areas, vascular leakages and microaneurysms were
automatically classified based on DL models17 to construct an end-to-end
DL system for staging DR severity.18 Further, DL technologies have also
been used to determine the prevalence and related systemic cardiovas-
cular risk factors for DR19 and predict diabetic macular edema (DME)
severity based on OCT (AUC of 0.89, sensitivity of 85% and specificity of
80%) from two-dimensional fundus images.20 Furtherly, commercial
2

products for DR screening have been developed, since American Food
and Drug Administration (FDA) approved IDx-DR as the first automated
AI diagnostic system21 and then the EyRIS SELENA22 received the
permission for clinical use in the European Union.

2.2. Glaucoma

Glaucoma patients may lead to irreversible visual field (VF) loss un-
less the patients receive an early diagnosis and prompt intervention. This
represents a well-defined clinical need that could benefit from AI use.
Although AI research in glaucoma has faced several limitations, such as a
lack of multimodal assessment and long-term natural progression, sub-
stantial progress has beenmade. Many researchers have successfully used
AI for diagnosing glaucoma via structural changes, including retinal
fundus photos16,23–27 and OCT.28–30 Zangwill et al. reported high accu-
racy in identifying glaucoma using an SVM classifier.31 Burgansky et al.
used five classifiers such as SVM and machine learning analysis of OCT
image data to assist in diagnosing glaucoma.32 Li et al. trained a
machine-learning algorithm to detect glaucoma-like optic disc by
defining the optic disc with a vertical cup-to-disc ratio of 0.7 on fundus
photos, similar to glaucoma-like optic disc. The results showed that the
algorithm could detect glaucoma optic neuropathy with considerable
sensitivity (95.6%), specificity (92%) and AUC (0.986).4 In another
study, Phene et al. built a DLmodel trained on over 80,000 CFPs to screen
referable glaucoma with an AUC of 0.945. Besides, its performance was
proved when applied to two other independent datasets and the AUC
performance declined slightly to 0.855 and 0.881, respectively.33 Asaoka
et al. reported a DLmodel trained for detecting early glaucomawith 4316
OCT images, which achieved an AUC of 93.7%, sensitivity of 82.5%, and
specificity of 93.9%.34 Using over 4000 Anterior segment OCT (AS-OCT)
scans, Xu et al. detected gonioscopic angle closure and primary angle
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closure disease (PACD) based on fully automated analysis with the AUC
of 0.928 and 0.964.35

VF assessment plays a significant role in the clinical diagnosis and
management of glaucoma. VF provides multiple validated parameters
that could be useful to develop a DL system. Elze et al. developed an
unsupervised algorithm to classify glaucomatous vision loss with 17
prototypes.36 They found that the unsupervised algorithm was useful in
detecting VF loss in early glaucoma. DL models have been used to predict
glaucomatous progression in the VF. Wen et al. trained a DL system that
could generating a point-wise VF prediction for up to 5.5 years into the
future, with a correlation of 0.92 between the MD of predicted and actual
future HVF and an average difference of 0.41 dB37. The complexity of
clinical situations requires fine-grained grading and comprehensive
evaluation in order to provide an accurate diagnosis and management.
Huang et al. proposed a DL system to grade VF of glaucoma with a high
accuracy for data from two devices (Humphrey Field Analyzer and
Octopus).38 This tool could be used by glaucomatous patients for
self-assessment as well as promote telemedicine.

2.3. Age-related macular degeneration

Age-related macular degeneration is a main cause of irreversible
vision loss in the elderly population. CFP is the most widely used
screening method, which can identify drusen, geographic atrophy,
retinal hemorrhage, and other lesions. Due to its fast, noninvasive and
low-cost advantages, CFP plays a very important role in screening AMD
populations. A DL algorithm based on CFP was able to fully automatically
diagnose and grade AMD with an accuracy comparable to ophthalmol-
ogists. In 2018, Burlina et al. developed a DL algorithm in which feature
extraction and classification were automatically completed on more than
130,000 CFP datasets. When compared with previous methods on the
binary classification task, their DL algorithm demonstrated greater
prospects for application in clinical practice.39 Meanwhile, Grassmann
et al. defined a 13-category AMD fundus photography dataset, which
included 12 AMD severity and one case that couldn't be graded because
of poor image quality. They trained six advanced DL models and finally
proposed an ensemble network on an untrained independent test set.5

Peng et al. used a DL algorithm called DeepSeeNet integrated by 3 seed
networks to identify AMD severity-related characteristic lesions at the
single eye level and could provide a final score combined with binocular
severity at the patient level.40 In addition to diagnosing AMD based on
CFP, some AI research has been focused on predicting the risk of disease
progression. In 2019, Burlina et al. not only explored the diagnostic effect
of the DL algorithm on the 4 and 9 classifications of AMD severity but also
experimentally used a DL-based regression model to give patients a
5-year risk score for their estimated disease progression to advanced
AMD, which further expands the application scope of the DL algorithm.41

In 2020, Yan et al. performed a study that combined CFP and patients'
corresponding AMD-related genotypes and could predict the risk of
advanced AMD progression based on DL algorithms.42

OCT can display the status and lesions of the macular region of the
retina. In 2018, Kermany et al. used a transfer learning method that only
used a small part of the data of traditional DL methods for training and
applied it to an OCT dataset for choroidal neovascularization (CNV) and
other three classifications. Their model achieved an accuracy of 96.6%,
sensitivity of 97.8% and specificity of 97.4%, reaching the level of senior
ophthalmologists.43 Recently, more and more studies are focusing on the
quantitative analysis of OCT images using AI algorithms. Schlegl et al.
developed a DL network which could automatically identify and quantify
subretinal fluid (SRF) and intraretinal fluid (IRF) on OCT images and
reported that their results were very close to expert annotations.44

Erfurth et al. also used a DL algorithm to identify and quantify retinal
effusions, including SRF, IRF and pigment epithelial detachment, and
explore the relationship between the amount of effusion and visual
function after intravitreal injection in AMD patients.45 The quantitative
study of OCT volume mode by Moraes et al. was not limited to retinal
3

effusion but also used biomarkers such as hyperreflective foci and sub-
retinal hyperreflective material on OCT images, which demonstrated
results that were closely related to the treatment decision of AMD pa-
tients in follow-up reviews and demonstrated a high clinical application
value.46 Yan et al. used an attention-based DL algorithm to interpret the
activity of CNV on OCT images to assist doctor to diagnose AMD.47 In
addition to wet AMD, Zhang et al. quantified geographic atrophy (GA) on
OCT images using a DL model for determining retinal pigment epithe-
lium loss, photoreceptor degeneration, and hyperprojection.48 Liefers
et al. also quantified multiple key features on OCT images of early and
late AMD patients as biomarkers associated with disease progression.49

The combined application of multiple modalities was shown to be closer
to clinical practice implementation and is one of the hotspots in medical
AI research. Xu et al. combined CFP and OCT images to diagnose AMD
and polypoidal choroidal vasculopathy (PCV) and achieved an 87.4%
accuracy, 88.8% sensitivity and 95.6% specificity.50 Jin et al. determined
the effictiveness of a multimodal DL model using OCT and optical
coherence tomography angiography (OCTA) images to assess CNV in
neovascular AMD.51 The DL system reached an accuracy of 95.5% and an
AUC of 0.9796 on multimodal data inputs, which was comparable to
retinal specialists.

2.4. Cataract and other ophthalmologic diseases

AI research in ophthalmology used to pay more attention to the
screening and diagnosing fundus diseases. The fact shows that AI has the
potential for the diagnosis and management of various diseases, such as
automated diagnosis and severity grading of cataracts based on slit-lamp
or fundus photographs. AI agents have demonstrated good-to-excellent
overall diagnostic performance in classifying different types of cata-
racts, with high AUC (0.86–1.0), accuracy (69.0%–99.5%), sensitivity
(60.1%–99.5%), and specificity (63.2%–99.6%).52 Long et al. used a DL
model to develop an artificial intelligence management application for
congenital cataracts involving 3 functions: a congenital cataract
screening network in the population, a risk stratification network for
congenital cataract patients, and assisting a network of strategies for
ophthalmologists to make treatment decisions.53 Li et al. improved the
performance of a DL algorithm for diagnosing anterior segment diseases
in slit-lamp images such as cataracts, keratitis and pterygium through
segmenting the anatomical structures and annotating pathological le-
sions.6 Another DL system exhibited considerable performance auto-
matically classifying keratitis, other cornea abnormalities, and normal
cornea in slit-lamp images captured by the different devices and a
smartphone with the super macro mode (all AUCs>0.96).54 The sensi-
tivity and specificity of AI in keratitis detection were found to be com-
parable with experienced cornea specialists. Ye et al. developed a DL
system for detecting and classifyingmyopic maculopathy in patients with
high myopia. Their model achieved sensitivities equal to or even better
than junior ophthalmologists.55 Yoo et al. combined preoperative data
and compiled a machine learning model from 10,561 eye images and
showed that their model could predict suitability for refractive surgery
achieving an accuracy of 93.4% and an AUC of 0.97 in external valida-
tion.56 For ocular tumors, a large-scale statistical analysis of epidemio-
logical and clinicopathological characteristics was performed in
combination with public medical databases and multicenter clinical data
to develop a set of convolutional neural networks for identifying malig-
nant tumors. The DL diagnosis system for melanoma visualization could
distinguish between benign and malignant tumors with an accuracy of
94.9% and a sensitivity of 94.7%.57

3. Challenges in the application of AI

3.1. Consolidate the data foundation

A major challenge of current DL models is that their training requires
a large amount of data because insufficient data may decrease the
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performance of DL models.58 Thus, for some rare eye diseases, their low
incidence makes it difficult for researchers to collect enough data for AI
research.59 Some multimodal and longitudinal cohort studies have high
requirements for patient data, and researchers need to collect data pro-
spectively, which is very time- and energy-consuming. Hence, dealing
with the limited amount or even no data in certain conditions still re-
quires further attempts and efforts. Currently, most of the AI algorithms
successfully applied in the field of ophthalmology use a fully supervised
learning model which requires doctors to perform high-standard data
annotation on the original data according to specific tasks. Medical data
labeling is difficult to obtain because it's time-consuming and
labor-intensive. Further, the gaps in labeling standards and levels among
labelers should also be considered.

With the advancement of computer science, weakly supervised
learning models that require only a small amount of annotation, semi-
supervised learning models or even unsupervised learning models that
do not require annotation have been proposed and applied in
ophthalmology.60–62 It could reduce dependence on data labeling in a
way, however the fact can't be ignored that various image-related factors
have been shown to play more predominant parts than technical factors
in determining the performance of AI models, suggesting DL training and
application in real-world scenarios require robust training and testing
datasets.63,64

3.2. Reporting guidelines

A computational perspective on AI often overlooks clinically relevant
details that clinicians believe are essential to determining effectiveness.
For example, the criteria for participant recruitment, demographics, risk
control and other abilities to administer the trail. Therefore, to better
reflect the specific requirements for AI implementation, it is necessary to
update some of the widely accepted international reporting protocols
using extant evidence-based clinical trial workflows.65 In recent decades,
many standardized reporting protocols have arisen, of which CON-
SORT-AI,66 STARD-AI,11 SPIRIT-AI67 and TRIPOD68 are among the most
extensively applied. These protocols aremainly differentiated by the type
of research and setting in which they are applicable and offer a list of
items grouped according to different article sections. CONSORT69 was
one of the first protocols and was introduced in 1996. It was updated in
2001 and 2010 to specify reporting guidelines for parallel-group ran-
domized controlled trials. STARD70 was developed in 2000 to stan-
dardize studies comparing new or alternative diagnostic tests with
defined reference standards. SPIRIT,71 which arose in 2007, covers
general clinical intervention trials and incorporates some of the features
of CONSORT by farther emphasizing the significance of pre-registration
trials to reduce reporting selectivity and encourage transparency.72 In
spite of the propagation of reported protocol expansions addressing AI in
medicine, it should be acknowledged that AI is a fast developing tech-
nique, and the range of potential application would multiply in the
not-too-distant future.73 Therefore, it is expectable that these protocol
extensions would be updated while AI-specific protocols for clinical
decision-making may be formalized in the future.

3.3. Security

Medical AI research should be performed on multicenter datasets;
otherwise, the generalization of the proposed AI models might not be
difficult. Data from a single-center database could be biased by factors
such as patients' race and image equipment. Data transfers between
research collaborators, especially for international collaborations, are
often limited because of patient privacy and data security.74 Thus, the
management of data from multicenter research centers in different
countries is also a major challenge. One of the key shortcomings of the DL
algorithm is its inexplicability.75 From the perspective of medical
personnel, it is impossible to understand how DL models make decisions
and predictions for specific tasks because existing methods such as
4

heatmaps are inadequate to fully explain them. Therefore, the AI models
should provide a certain degree of transparency to justify their medical
diagnosis, treatment decisions and risk predictions so that medical
personnel can fully trust them to further generate new clinical insights.
Xu et al. proposed a possible approach to enhance the interpretability by
comprehensively simulating the diagnostic thinking of human experts
that they establish a hierarchical deep learning system that includes
pre-diagnosis module, image segmentation module, and final diagnosis
module and makes the AI diagnosis of glaucoma a visualized interactive
process.27 Although DL models have achieved performance close to or
even surpassed ophthalmologists in specific medical tasks, the real
practical application of AI systems in complex ophthalmology clinics is
still far from being achieved.12,76 Its problems include a relatively narrow
range of disease spectrum applications, doctors’ interpretation of DL
model results, integration of software systems and hardware devices,
resistance to malicious attacks, and approval by relevant policies.

3.4. Ethics

As AI is gradually being integrated in clinical practice and medical
professionals are getting used to it, there is also a growing trend for an
ethical framework to guide the real application of DL systems. The
concern roots in the possibility that AI could lead to discrimination
against patients or worsen health inequalities. For example, vulnerable
groups with complicated health problems may lose their priority if an AI
health system is purely focused on maximizing efficiency.77 Psychosocial
factors may also influence the acceptance and trust in AI-involved
healthcare.78 Once AI systems turn into the gateway to healthcare, this
could be disadvantageous for patients who don't trust this technique or
can't operate it. Beyond access, we must also recognize the fundamental
biases in AI systems.79 For instance, if an AI algorithm is trained or tested
on a dataset in which only certain groups in the population are repre-
sented, the algorithm may perform poorly on other groups. Health in-
equalities can be exacerbated if AI system performance metrics are too
strictly defined to ignore its impacts on ethnic minorities. As such risks
seem difficult to mitigate, potential ethical frameworks for guiding
consent and incorporation into DL datasets must be carefully considered.
Models for informed consent for AI research in medicine have been
proposed,80 and when balanced with the actual problem of managing
large AI data, dropout models seem to be preferred.

4. Future directions

Recent achievements using ophthalmology-based AI will facilitate
more research and clinical translation efforts. To increase the chance of
success for DL systems in the future, several elements should be simul-
taneously considered. In terms of development, the systems should be
guided to consider unmet clinical demands. Issues like ill-considered
indications, doubtful methods, and unsuitable AI platforms should be
addressed before full development. Additional focus directions include
multiclass and multimodal AI networks for disease diagnosis, progression
prediction, or treatment decision-making. The sensitivity and specificity
of DL are both very important in ophthalmology and medical diagnosis.
In disease screening and early diagnosis, the sensitivity of AI systems
would be deemed more important sometimes. There is a definite unmet
clinical need to improve diagnostic capabilities of these procedures,
including improving test sensitivity and specificity. These may involve
evaluating the optic nerve head using optic discs or fundus photographs
to screening a variety of optic neuropathy in mydriatic or non-mydriatic
conditions,81 prediction of myopia progression in kids, and the use of
combined automatical detection and management of glaucoma VF.
Advanced segmentation networks would also improve the localization of
anatomical structures and identification of pathological features,
enhancing the robustness of the AI systems.

While many diagnostic AI algorithms proposed before shows prom-
ising performances, it's worth noting that most of them were trained on
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small samples, and few algorithms have been tested in real clinical set-
tings. Patient heterogeneity can lead to less accurate AI algorithms when
tested in real-world settings. Additionally, considering the effects of
reporting bias, algorithms with unsatisfactory performance are more
likely to be rejected to be reported. These issues should be adequately
handled before AI technologies can be translated into real-world appli-
cations. As eye diseases become more prevalent, such as cataracts and
glaucoma, there is a wealth of patient data available for training, testing,
and validating AI models, which were ideally derived from multi-ethnic
patient cohorts to enhance algorithms. In addition to diagnostic accu-
racy, the effectiveness of AI tools should also be assessed whether it can
improve patient outcomes by prospective clinical trials. The challenge is
to democratize this technology for stakeholders when clinically proven
and implement robust AI algorithms. As AI technologies may pave the
way for a “smart” healthcare model before long, it has been recently
highlighted that agreed-on international reporting guidelines for AI-
related interventions are needed.63 Thanks to these guidelines, Report-
ing will become more consistent and transparent, while regulators and
relevant stakeholders will also be able to assess the cost and effectiveness
of the AI-related interventions more confidently. Other potential chal-
lenges, such as the “AI black box”, the explainability of AI by medical
professionals, and forensic and regulatory challenges, should be carefully
addressed prior to applying AI techniques to clinical settings.

5. Conclusions

Although medical AI research has attained many milestones and
achieved breakthroughs in the field of ophthalmology, it also faces many
difficulties and challenges. The emergence of the period of big data, the
development of medical electronics, and people's demand for high-
quality medical services are all driving AI systems to maximize their
potential in improving clinical medical workflows, patient care and
assessing patient prognosis. Ophthalmic medical workers and AI re-
searchers should work closely with computer scientists to apply cutting-
edge AI concepts and technologies to solve ophthalmic clinical problems,
and should also pay more attention to the translation of the research
results. Developments in digital ophthalmology could solve issues such as
unbalanced medical resource allocation in countries like China, heavy
workload of professional ophthalmologists and challenges in popular-
izing high-quality medical services. The future of AI interventions in
ophthalmology seems promising, but there is still a long way to go prior
to their wide clinical application.

Method of literature search

The literature search for this review was conducted in PubMed and
Google Scholar from January 2016 to June 2022. The search terms
combined a set of keywords from the medical field (ophthalmology,
retina, diabetic retinopathy, glaucoma, age-related macular degenera-
tion, cataract, anterior segment disease) and the machine learning field
(artificial intelligence, deep learning, machine learning, and convolu-
tional neural network). Term from each set was independently combined
with term from the other set. A total of 800 studies assessed as eligible by
inspecting the titles and abstracts were reviewed. The main inclusion
criterion is that the researches must focus on artificial intelligence in
ophthalmology with perceived quality. Several selected typical articles
before 2016 and some researches with closely related topics were
included as well. Most of the papers were in English. For non-English
articles, only their abstract was considered.

Study approval

This study was approved by the Medical Ethics Committee of the
Second Affiliated Hospital, Zhejiang University, and complied with the
Declaration of Helsinki.
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