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Objective. Diabetic polyneuropathy (DPN) is one of the most prevalent diabetic complications. We previously demonstrated that
exendin-4 (Ex4), a glucagon-like peptide-1 receptor agonist (GLP-1RA), has beneficial effects in animal models of DPN. We
hypothesized that GLP-1 signaling would protect neurons of the peripheral nervous system from oxidative insult in DPN. Here,
the therapeutic potential of GLP-1RAs on DPN was investigated in depth using the cellular oxidative insult model applied to the
dorsal root ganglion (DRG) neuronal cell line. Research Design and Methods. Immortalized DRG neuronal 50B11 cells were
cultured with and without hydrogen peroxide in the presence or absence of Ex4 or GLP-1(7-37). Cytotoxicity and viability were
determined using a lactate dehydrogenase assay and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium inner salt), respectively. Antioxidant enzyme activity was evaluated using a superoxide
dismutase assay. Alteration of neuronal characteristics of 50B11 cells induced by GLP-1RAs was evaluated with
immunocytochemistry utilizing antibodies for transient receptor potential vanilloid subfamily member 1, substance P, and
calcitonin gene-related peptide. Cell proliferation and apoptosis were also examined by ethynyl deoxyuridine incorporation
assay and APOPercentage dye, respectively. The neurite projection ratio induced by treatment with GLP-1RAs was counted.
Intracellular activation of adenylate cyclase/cyclic adenosine monophosphate (cAMP) signaling was also quantified after
treatment with GLP-1RAs. Results. Neither Ex4 nor GLP-1(7-37) demonstrated cytotoxicity in the cells. An MTS assay
revealed that GLP-1RAs amended impaired cell viability induced by oxidative insult in 50B11 cells. GLP-1RAs activated
superoxide dismutase. GLP-1RAs induced no alteration of the distribution pattern in neuronal markers. Ex4 rescued the cells
from oxidative insult-induced apoptosis. GLP-1RAs suppressed proliferation and promoted neurite projections. No
GLP-1RAs induced an accumulation of cAMP. Conclusions. Our findings indicate that GLP-1RAs have neuroprotective
potential which is achieved by their direct actions on DRG neurons. Beneficial effects of GLP-1RAs on DPN could be related
to these direct actions on DRG neurons.

1. Introduction

Among many significant diabetic complications, diabetic
polyneuropathy (DPN) is one of the most prevalent

complications and causes nontraumatic amputations of
lower limbs [1]. Due to the lack of therapies to address the
etiology of neurodegeneration in the peripheral nervous sys-
tem (PNS) of diabetic patients, glucose-lowering therapy is
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the only effective therapy to prevent the onset and progres-
sion of DPN [2]. In the current study, we investigated the
beneficial effects of glucagon-like peptide-1 (GLP-1) signal-
ing in neurons of the PNS using an in vitro model of DPN.

GLP-1, an incretin hormone which lowers blood glucose
levels through enhancement of glucose-stimulated insulin
secretion (GSIS), also has pleiotropic effects. In nervous sys-
tems, GLP-1 has a regulatory effect on food intake through
the intermediary of the vagus nerve and the central nervous
system (CNS) [3–7]. It is known that GLP-1 activates adenyl-
ate cyclase and employs cAMP as a second messenger to
enhance GSIS in pancreatic beta cells [8, 9]. The cAMP sig-
naling has been proven to stimulate neurite outgrowth [10,
11] and antagonize apoptosis of PNS neurons or PC12 cells
[12]. In some kinds of nonneural cells including pancreatic
beta cells and cardiomyocytes, antiapoptotic effects of
GLP-1 receptor agonists (GLP-1RAs) have been also shown
[13–16]. Additionally, it has been reported that activation
of GLP-1 signaling modified cell fate and differentiation in
pancreatic beta cells [17, 18]. GLP-1 signaling induced
in vivo reprogramming of pancreatic exocrine cells into beta
cells [17] and in vitro differentiation of human embryonic
stem cells into insulin-producing cells [19].

Previously, we reported the beneficial effects of exendin-4
(Ex4) (also known as exenatide), a GLP-1RA, in the PNS of
diabetic mice [20]. In that prior study, we indicated the
improvement of DPN using an in vivo model but the mech-
anism of the favorable effects on the PNS has not yet been
identified. Although we have proven that the elongation of
neurite outgrowth using a tissue culture system of mouse
dorsal root ganglion (DRG) was accelerated by supplementa-
tion of Ex4 or GLP-1, detailed effects of GLP-1RAs in the
DRG should be still elucidated.

Among various mechanisms of pathogenesis in DPN,
chronic inflammation followed by oxidative stress has
been highlighted by several researchers [21, 22]. For
instance, cyclooxygenase-2-deficient mice were protected
from dysfunction of the PNS in experimental diabetes
[23]. Given that oxidative stress due to various biological
pathways, including chronic low-grade inflammation, has
been suggested as a pathogenesis and a therapeutic target
of DPN [21, 24, 25], we attempted to provide oxidative
stress in our culture system. However, it remains to be
clarified which factor is crucial in the pathology of DPN,
e.g., glucotoxicity, insulin resistance, or lipotoxicity [21].
Therefore, we provided oxidative insult by hydrogen per-
oxide, which is a widely used oxidant in experimental set-
tings and converts into the stronger oxidant hydroxyl
radical, in the cell culture system of the DRG neuron cell
line to reproduce DPN pathology in this study.

2. Materials and Methods

Unless noted otherwise, all reagents and materials were pur-
chased from Thermo Fisher Scientific (Waltham, MA, USA).

2.1. Cell Culture. The DRG neuronal cell line (50B11) estab-
lished and kindly provided by Dr. A. Höke (Johns Hopkins
University, Baltimore, MD, USA) [26] was incubated at

37°C under 5% CO2 in media consisting of Neurobasal™
medium supplemented with 5% fetal bovine serum,
2mML-glutamine, and B-27 supplement. 50B11 cells were
kept in uncoated plastic tissue culture dishes and regularly
passaged once a week with a 1 : 10-1 : 20 split ratio. For each
experiment as described in the sections, cells were treated
with Ex4 (0.1 nM, 1nM, 10 nM, and 100nM), human
GLP-1(7-37) (1 nM, 10nM), or 10μM forskolin. Oxidative
insult was induced by hydrogen peroxide (0.01mM,
0.05mM, and 0.1mM).

2.2. Cell Cytotoxicity Assay. Cells were seeded into 96-well
plates at a density of 1 × 104 cells/well in 100μl medium. Cell
cytotoxicity was assessed using lactate dehydrogenase (LDH)
assay (Cytotoxicity LDH Assay Kit-WST, Dojindo Laborato-
ries, Mashiki, Japan) following the manufacturer’s instruc-
tions. The absorbance at 490nm was measured on a
microplate reader (VersaMax, Molecular Devices, Sunnyvale,
CA, USA). Cytotoxicity was calculated by the following for-
mula: cytotoxicity % = sampleOD – low control OD /
high control OD – low control OD × 100 (OD: optical den-
sity). Each OD value was calculated by subtracting the back-
ground value from each absorbance value.

2.3. Immunocytochemistry. To exclude the possibility of alter-
ation in neuronal characteristics by GLP-1RAs which might
induce a reprogramming of cell fate, the characteristics as a
sensory neuronal cell were evaluated with the distribution
of neuronal markers: transient receptor potential vanilloid
subfamily member 1 (TRPV1), substance P, and calcitonin
gene-related peptide (CGRP). After a 36-hour culture with
or without 100nM Ex4 or 10 nM GLP-1, DRG cells were
fixed with 4% paraformaldehyde for 15 minutes. The cells
were blocked with 1% bovine serum albumin, and the follow-
ing primary antibodies were applied at 4°C overnight: rabbit
polyclonal anti-TRPV1 antibody (1 : 200; Neuromics, North-
field, MN, USA), goat polyclonal anti-substance P antibody
(1 : 200; Santa Cruz, Santa Cruz, CA, USA), and goat poly-
clonal anti-CGRP antibody (1 : 200; Santa Cruz). After wash-
ing, the following secondary antibodies were loaded for 1
hour at room temperature in a dark box: Alexa Fluor™
594-coupled goat anti-rabbit IgG antibody (1 : 500) or Alexa
Fluor™ 488-coupled donkey anti-goat antibody (1 : 500).
Images were captured by a charge-coupled device (CCD)
camera using a fluorescence microscope (IX73, Olympus
Optical, Tokyo, Japan).

2.4. Cell Viability Assay. To elucidate the effects of GLP-1RAs
in DRG neurons under oxidative stress, cell viability of DRG
neurons cultured with or without hydrogen peroxide in the
presence or absence of GLP-1RAs was assessed. A 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenenyl)-2-(4-
sulfophenyl)-2H-tetrazolium inner salt (MTS) assay, which
correlated mitochondrial activity, was employed to measure
cell viability in DRG neurons. Cells were seeded into 96-well
plates at a density of 1 × 104 cells/well in 100μl medium. Cell
viability was determined 24 hours after treatment using the
CellTiter96™AQueous One Solution Cell Proliferation Assay
(Promega Corporation,Madison,WI, USA), which employed
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tetrazolium compoundMTS, according to themanufacturer’s
protocol. The absorbance at 490nmwasmeasured on amicro-
plate reader (VersaMax).

2.5. Superoxide Dismutase- (SOD-) Like Activity. To evaluate
antioxidant activity, SOD-like activity was measured using
an SOD-like assay kit (Dojindo Inc., Kumamoto, Japan)
according to the manufacturer’s instructions [27]. Equal
amounts of protein, as determined using a bicinchoninic
acid protein assay (Wako Pure Chemical Inc., Osaka, Japan),
were applied. Cells were seeded into 96-well plates at a den-
sity of 1 × 104 cells/well in 100μl medium. After 24hours,
cells were supplemented with GLP-1RAs (10 nM GLP-1,
100nM Ex4) or left untouched. After 12 hours of treatment
with/without GLP-1RAs, the media were replaced with
media containing 0.1mM hydrogen peroxide. SOD-like
activity was determined 30 minutes after the exposure with
hydrogen peroxide.

2.6. Apoptosis Assay. For the apoptosis assay, 50B11 cells
were seeded into 24-well plates at a density of 5 × 104 cells/-
well. Apoptosis was induced by 0.1mM hydrogen peroxide.
The degree of apoptosis was assessed using the APOPercen-
tage assay (Biocolor, Belfast, Northern Ireland, UK), which
was performed according to the manufacturer’s instructions.
The APOPercentage assay is a dye uptake assay, which stains
only the apoptotic cells with a purple dye [28]. Apoptotic
cells were assessed after a 3-hour exposure to hydrogen per-
oxide with or without GLP-1RAs (GLP-1, Ex4) and forskolin.
Absorption was measured at 550nm using a microplate
reader (VersaMax).

2.7. Cell Proliferation Assay. An ethynyl deoxyuridine (EdU)
incorporation assay was performed using the Click-iT Plus
EdU Proliferation Kit (Life Technologies Inc., Gaithersburg,
MD). Cells were treated with 10μM EdU for 24 hours, then
harvested, and fixed with 4% paraformaldehyde for 20
minutes. For EdU detection, cells were incubated with
Alexa Fluor™ 488 Azide for 15 minutes and then counter
stained with 4′,6-diamidino-2-phenylindole (DAPI) [29,
30]. The rate of proliferating cells was determined by the
number of EdU-incorporating cells divided by that of
DAPI-positive cells.

2.8. Neurite Outgrowth Assay in 50B11 Cells. As it has been
verified that the 50B11 neuronal cell line can elongate neur-
ites by stimulation with forskolin, the neurite outgrowth
induced by GLP-1RAs was also examined to afford collateral
evidence of the neuroregenerative ability in DRG neurons.
50B11 cells were plated into 6-well plates at a density of 1
× 104 cells/well. Twenty-four hours after the passage of the
cells, cells were unexposed or exposed to the indicated com-
pounds for 24 h. Images of the cells were captured by a
contrast-phase microscope equipped with a CCD camera
and counted for neurite outgrowth which was defined as a
process equal to or greater than cell bodies in length [31].

2.9. Cyclic Adenosine Monophosphate (cAMP) Assay. Cellular
cAMP production was measured using an enzyme immuno-
assay kit (Cayman Chemical, Ann Arbor, MI, USA) [32, 33].

Cells were seeded into 6-well plates at a density of 5 × 105
cells/well. The media were aspirated 20 or 120 minutes
after exposure to test substances, and 250μl of 0.1N HCl
was introduced. After 20 minutes incubation at room
temperature, cells were scraped and centrifuged. The
supernatants were stored at -80°C until the time of mea-
surement. For the experiment with 120-minute exposure
to test substances, the medium contained 0.5mM 3-isobu-
tyl-1-methyl xanthine (IBMX), a phosphodiesterase inhibi-
tor, to inhibit cAMP degradation.

2.10. Statistical Analysis. All the group values were expressed
as means ± standard deviation. Data are representative of at
least three independent experiments. The normality of distri-
bution was tested by the Kolmogorov-Smirnov test using R
version 3.4.3 (http://www.r-project.org/, Vienna, Austria,).
Statistical analyses were made by Student’s t-test or one-
way ANOVA with the Bonferroni correction for multiple
comparisons using StatView version 5.0 (SAS Institute, Cary,
NC). The threshold of statistical significance was taken as a
value of p < 0 05. All analyses were performed by personnel
unaware of the identities of culture conditions.

3. Results

3.1. No Cytotoxicity Was Introduced by GLP-1RAs in DRG
Neurons. There was no significant cytotoxicity induced after
24 hour exposure to Ex4 (0.1mM, 1nM, 10nM, or 100 nM)
or GLP-1 (1 nM, 10 nM) (absorbance at 490nm: control
0 449 ± 0 023, 0.1 nM Ex4 0 414 ± 0 027, 1 nM Ex4 0 355
± 0 020, 10 nM Ex4 0 433 ± 0 129, 100 nM Ex4 0 444 ±
0 034, 1 nM GLP-1 0 408 ± 0 064, and 10 nM GLP-1 0 424
± 0 046) (Figure 1). Neurons were also exposed to an ade-
nylate cyclase activator, forskolin. The treatment with
10μM forskolin did not induce any significant difference
in cytotoxicity (10μM forskolin 0 371 ± 0 029).

3.2. Sensory Neuronal Characteristics in Protein Marker
Expressions Were Not Affected by GLP-1RAs. Ex4 or GLP-1
(data not shown) induced no evident changes in the distribu-
tion pattern of these sensory neuronal markers compared
with neurons without those treatments (Figure 2).

3.3. Cell Viability Was Enhanced in DRG Neurons Cultured
with GLP-1RAs. The cell viability of DRG neurons treated
with 0.1mM hydrogen peroxide for 4 hours was signifi-
cantly decreased compared with that of cells cultured with
no hydrogen peroxide (control 100 ± 8 1%, 0.1mM hydro-
gen peroxide 54 3 ± 2 1, p < 0 01) (Figure 3). However, the
treatment with Ex4 or GLP-1 significantly ameliorated cell
viability compared with cells with no treatment (0.1 nM
Ex4 85 1 ± 13 3, 1 nM Ex4 86 0 ± 6 4, 10 nM Ex4 86 9 ±
6 5, 100 nM Ex4 87 5 ± 3 2, 1 nM GLP-1 94 3 ± 11 7, and
10 nM GLP-1 92 6 ± 2 9). The supplementation with
10μM forskolin also inhibited the decrease of cell viability
(84 5 ± 2 6, p < 0 005).

3.4. SOD-Like Activity Increased in the Sensory Neurons
Supplemented with GLP-1RAs. Following exposure to oxida-
tive insult with hydrogen peroxide, SOD-like activity
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Figure 1: Cell cytotoxicity of GLP-1 receptor agonists (GLP-1RAs) in dorsal root ganglion (DRG) neurons. Cytotoxicity was determined 24
hours after treatment with GLP-1RAs or forskolin using LDH assay. No significant difference was detected between neurons treated with
GLP-1RAs or forskolin and those without treatment (control). Concentrations of GLP-1RAs; exendin-4: 0.1, 1, 10, and 100 nM; GLP-1: 1,
10 nM. Ctrl: control; Fskln: forskolin; error bar: standard deviation. n = 3 in each group.
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Figure 2: Distribution of sensory neuronal markers in the dorsal root ganglion (DRG) neuron cell line treated with exendin-4. Pictures on the
left side are neurons without any treatment. Pictures on the right side are neurons treated with 100 nM exendin-4 for 36 hours. TRPV1: red
(a), substance P: green (b), CGRP: green: DAPI (c), scale 100μm.
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increased in neurons supplemented with GLP-1 or Ex4
(cells with no hydrogen peroxide 40 4 ± 6 7%, 10 nM
GLP-1 with 0.1mM hydrogen peroxide 54 3 ± 5 8, and
100nM Ex4 with 0.1mM hydrogen peroxide 59 9 ± 8 4, p
< 0 001 versus cells with no hydrogen peroxide in each
GLP-1RA-supplemented group) (Figure 4).

3.5. Apoptosis Was Prevented in the Neurons Supplemented
with Ex4. Apoptosis evoked by 0.1mM hydrogen peroxide
was detected using the APOPercentage assay (Figure 5).
The degree of apoptosis was significantly decreased in the
neurons supplemented with 100nM Ex4 (absorbance at
550nm: control 0 304 ± 0 017, 100 nM Ex4 0 250 ± 0 014,
p < 0 0001) and 10μM forskolin (0 199 ± 0 016, p < 0 0001).
However, GLP-1 produced no significant change in the apo-
ptosis assay (0 299 ± 0 03, p = 0 623).

3.6. Cell Proliferation Was Suppressed by GLP-1RAs. The
EdU incorporation assay revealed a decrease of proliferation
rate of neurons cultured with 10 nM GLP-1 or 100nM Ex4
(control 87 7%±5 6%, GLP-1 75 5 ± 10 4, and Ex4 74 1 ±
14 4) (Figure 6). However, forskolin had no significant effect
on the proliferation rate (forskolin: 86 9 ± 6 2).

3.7. Neurite Outgrowth Was Induced with GLP-1RAs. The
percentage of neurons with neurite(s) increased in the neu-
rons cultured with Ex4 or GLP-1 compared with the control
(control 8 7%±5 1%, 100 nM Ex4 28 2 ± 4 0, and 10 nM
GLP-1 23 3 ± 6 5, p < 0 0001 for both cases versus control)
(Figure 7).

3.8. The Adenylate Cyclase/cAMP Pathway Was Not
Activated by GLP-1RAs in DRG Neurons. Cyclic AMP levels
after stimulation with GLP-1RAs and forskolin were
determined. After 20 minutes of stimulation with 10μM for-
skolin, cAMP had accumulated in the neurons (control: 5 3
± 0 3 pmol/ml, 10μM forskolin: 234 5 ± 6 3, p < 0 0001)
(Figure 8). However, no accumulation of cAMP was detected
in the neurons treated with Ex4 and GLP-1 (10 nM GLP-1:
3 3 ± 0 4, 100 nM Ex4: 4 0 ± 0 4). Longer exposure to GLP-
1RAs supplemented with a phosphodiesterase inhibitor also
generated no significant cAMP accumulation (Supplemental
figure available here).

4. Discussion

In this decade, drug development targeting GLP-1 signaling
has been considered as a prospective therapy of type 2 diabe-
tes. A novel GLP-1RA semaglutide which can be orally
administered would accelerate popularization of GLP-1RAs
in clinical settings [34]. Furthermore, the neuroprotective
effects of Ex4 have been already proven in one clinical trial
of Parkinson’s disease [35]. Therefore, if the neuroprotective
effects of GLP-1RAs are accepted amongst the scientific com-
munity, a drug repositioning strategy of GLP-1RAs targeting
other diseases will be promising, especially in diabetic com-
plications including DPN.

In the current study, we investigated the neuroprotective
effects of GLP-1RAs in the DRG neuronal cell line. First, we
examined the neurotoxicity of GLP-1RAs in the DRG neu-
rons. Second, we examined the effect of GLP-1RA on cell
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Figure 3: Cell viability in dorsal root ganglion (DRG) neurons treated with GLP-1 receptor agonists. Cell viability was quantified using
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viability, antioxidant enzyme activity, and apoptosis in the
DRG neurons. We confirmed enhanced cell viability,
increased activity of antioxidant enzyme SOD, and inhibition
of apoptosis with GLP-1RA supplementation. We then dem-
onstrated that treatment with GLP-1RAs reduced cell prolif-
eration and promoted neurite outgrowth of DRG neurons.
Although these significant changes were seemed to be evoked

by activation of the adenylate cyclase/cAMP pathway, no evi-
dent accumulation of intracellular cAMP was generated by
stimuli with GLP-1RAs.

GLP-1RAs have previously been shown to promote neur-
ite outgrowth in PC12 cells, a rat pheochromocytoma cell
type [36, 37]. However, no report has investigated the direct
pharmacological function of GLP-1RAs in the cells of the
PNS, e.g. DRG neurons, Schwann cells, vascular endothelial
cells in peripheral nerves. Some research studies, including
our previous study, have already reported in vivo beneficial
effects of GLP-1RAs in the disorders of the PNS [20, 38].
The current study would support these beneficial effects
through verification of the direct effects of GLP-1RAs on
DRG neurons.

A number of DPN pathogenesis mechanisms have been
postulated in experimental studies, including the polyol
pathway, advanced glycation end products, poly ADP-
ribose polymerase, the protein kinase C pathway, and oxida-
tive stress [39, 40]. In the current study, we chose oxidative
stress to represent an in vitroDPNmodel. To verify the novel
in vitro experimental system for investigation of DPN, we
confirmed the characteristics of a 50B11 cell line as DRG
neurons and induced oxidative insult on the cell line. After
the confirmation of no cytotoxicity of GLP-1RAs and forsko-
lin in 50B11, we evaluated the neuronal characteristics of the
cells. The markers of a primary sensory neuron including
TRPV1, substance P, and CGRP were expressed in 50B11
even after the treatment with GLP-1RAs. Furthermore, we
successfully performed the neurite outgrowth assay, which
is accepted as one of the crucial neuronal assays in a
sympathetic-like neuron cell line PC12 [31]. As oxidative
stress is one of the primary factors according to the prevailing
views of DPN pathogenesis [39], we attempted to produce
the pathogenesis utilizing hydrogen peroxide in the neuronal
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Figure 5: Apoptosis in dorsal root ganglion (DRG) neurons treated
with exendin-4. Apoptosis induced by 3-hour treatment with
0.1mM hydrogen peroxide was partially inhibited in the
neurons supplemented with 100 nM exendin-4 or 10μM forskolin.
∗p < 0 05 versus control; H2O2: hydrogen peroxide; PC: positive
control of apoptosis; GLP-1: glucagon-like peptide-1; Ex-4:
exendin-4. Error bar means standard deviation. n = 8 in each group.
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Figure 6: Proliferation rate of dorsal root ganglion (DRG) neurons
treated with GLP-1 receptor agonists. Proliferation rate assessed by
EdU assay revealed that both GLP-1 receptor agonists, exendin-4
and GLP-1, suppressed proliferation of DRG neurons. Ctrl:
control; Ex-4: cells supplemented with 100 nM exendin-4; GLP-1:
cells supplemented with 10 nM GLP-1; ∗p < 0 05 versus control;
error bar: standard deviation. n = 9 in each group.
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cell culture. Although, in clinical settings, several factors
including dyslipidemia, hyperglycemia, hypertension, and
smoking are considered to be risk factors of DPN [41], the

significance of each oxidation mechanism derived from glu-
cose, proteins, or lipids is unclear in the pathogenesis of
DPN. Therefore, we utilized hydrogen peroxide, which is
considered to be one of the most important reactive oxygen
species because it crosses membranes and yields hydroxyl
radicals via Fenton reaction in cells [42], as an oxidative
insult-mimicking oxidative stress in DPN. As a result, hydro-
gen peroxide provoked an increase of antioxidant SOD in
50B11 cells. These experiments verified our experimental
system as a novel approach to investigate DPN.

However, we must recognize some limitations of our
study. As it is known that the incretin/adenylate cyclase/-
cAMP pathway is critical for insulin secretion in pancreatic
beta cells [43] and neuroprotective effect in the CNS neurons
[9], we compared pharmacological effects of GLP-1RAs with
those of forskolin, an activator of adenylate cyclase, in DRG
neurons. We proved the antiapoptotic effect of Ex4 and for-
skolin and the decrease of cell proliferation by GLP-1RAs.
These findings were consistent with the previous report in
which liraglutide, another GLP-1RA, potentiated cell viability
andprevented apoptosis via cAMPsignaling in SH-SY5Yneu-
roblastoma cells [44]. Furthermore, neurite outgrowth was
induced by GLP-1RAs and forskolin. Given that background,
these changes appear to indicate the activation of intracellular
adenylate cyclase/cAMPsignalingbyGLP-1RAs aswell as for-
skolin. However, unexpectedly, cAMP accumulation was not
evident in the neurons cultured with GLP-1RAs for 20 or
120 minutes. This unexpected finding could be caused by the
experimental limitation that our cAMPmeasurement kit was
able to examine only the endpoint accumulation of cAMP.
The activation of adenylate cyclase induced by GLP-1RAs
might be more transient than we expected. Therefore, in the
future,wewould like tomeasure cAMPaccumulationutilizing
a real-time detection system.

Furthermore, we should consider scrutinizing other sig-
naling pathways which have been reported to be initiated
by GLP-1RAs. It is known that p44/42 mitogen-activated
protein kinase (also called ERK1/2) can be also activated by
GLP-1 in pancreatic beta cells [45]. It is also shown that the
antiapoptotic effect of GLP-1 is mediated by ERK1/2 activa-
tion in beta cells [46]. Therefore, the antiapoptotic effect
shown in the current study might be mediated by activation
of ERK1/2 signaling.

Another limitation is the immortalization of the neurons.
As the DRG neuronal cell line 50B11 cells are immortalized
neurons, the differences between nonproliferative neurons
collected from mammalians and the genetically engineered
neurons should be taken into account. It was reported that
an activation of phosphoinositide-3-kinase (PI3K) induced
by GLP-1 in the beta cell line accelerated mitosis of the cells
[47]. However, in this study, EdU incorporation was
decreased by administration of GLP-1RAs. To address this
conflict, in the future, we would clarify the involvement of
PI3K signaling in sensory neurons [45, 46, 48].

5. Conclusions

This study is the first report to investigate the neuroprotec-
tive effects of GLP-1RAs on DRG neurons. The beneficial
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Figure 7: Neurite outgrowth of dorsal root ganglion (DRG)
neurons. The ratio of neurite-positive neurons increased in cells
supplemented with GLP-1 receptor agonists, exendin-4 and GLP-
1, as well as cells which were supplemented with forskolin. Ctrl:
control; Ex-4: cells supplemented with 100 nM exendin-4; GLP-1:
cells supplemented with 10 nMGLP-1; forskolin: cells supplemented
with 10 nM forskolin; ∗∗p < 0 001 versus control; error bar: standard
deviation.n = 9or15ineachgroup.
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Figure 8: Intracellular cyclic adenylate monophosphate (cAMP)
accumulation in neurons treated with GLP-1 receptor agonists.
The cAMP accumulation was measured 20 minutes after exposure
to 100 nM exendin-4, 10 nM GLP-1, or 10 μM forskolin. Both
GLP-1 receptor agonists, exendin-4 and GLP-1, provoked no
significant cAMP accumulation. Ex-4: cells supplemented with
100 nM exendin-4; ∗∗p < 0 001 versus control; error bar: standard
deviation. n = 5 or 6 in each group.
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effects of GLP-1RAs in DPN might be attributable to the
direct neuroprotective effects of GLP-1RAs on DRG neurons
through protection from cellular oxidative insult.

At the same time, we successfully verified the novel
in vitro experimental system for investigation of DPN.
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