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Abstract
Diabetic retinopathy (DR) is a chronic eye condition that is rapidly growing due to the prevalence of diabetes. There are 
challenges such as the dearth of ophthalmologists, healthcare resources, and facilities that are unable to provide patients 
with appropriate eye screening services. As a result, deep learning (DL) has the potential to play a critical role as a powerful 
automated diagnostic tool in the field of ophthalmology, particularly in the early detection of DR when compared to tradi-
tional detection techniques. The DL models are known as black boxes, despite the fact that they are widely adopted. They 
make no attempt to explain how the model learns representations or why it makes a particular prediction. Due to the black 
box design architecture, DL methods make it difficult for intended end-users like ophthalmologists to grasp how the models 
function, preventing model acceptance for clinical usage. Recently, several studies on the interpretability of DL methods used 
in DR-related tasks such as DR classification and segmentation have been published. The goal of this paper is to provide a 
detailed overview of interpretability strategies used in DR-related tasks. This paper also includes the authors’ insights and 
future directions in the field of DR to help the research community overcome research problems.
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1 Introduction

DR is an eye disorder that develops over time as a result 
of diabetes. It is the most common cause of retinal visual 
impairment. It causes capillary leakage and obstruction in 
the retinal capillaries. DR is a form of silent disease that the 
patients become aware of when they experience vision loss. 
With an increase in diabetes patients’ life expectancy, the 
prevalence of DR has grown. Diabetes is one of the most 
pressing issues in today’s field of healthcare [1]. Over the 
next 25 years, the WHO predicts that the number of indi-
viduals with diabetes would rise from 130 to 350 million [1].

The treatment for DR is becoming more complex. [2]. 
Based on the presence of retinal lesions and retinal vessel 
variations, DR is divided into two categories: non-prolif-
erative diabetic retinopathy (NPDR) and proliferative dia-
betic retinopathy (PDR) [3]. One of the most important and 

efficient ways to track the progression of DR is through 
eye screening. It helps professionals to recognize the early 
signs and symptoms of DR, as well as treat and prevent the 
disease’s progression and vision loss. However, providing 
patients with eye screening services is a challenge. The main 
problem is the scarcity of experienced ophthalmologists, 
as well as healthcare resources and facilities [4]. Because 
the doctor-to-patient ratio is so skewed, manually analyz-
ing fundus photographs is becoming increasingly difficult 
[5]. Furthermore, because this form of image-based diag-
nosis necessitates daily practice, training new staff for it is 
a lengthy procedure [6].

DL, a subfield of machine learning, is concerned with 
algorithms inspired by the structure and functions of the 
brain and could be used as a diagnostic tool for DR. For 
DR classification, DL approaches, particularly convolutional 
neural networks (CNNs), have lately been applied with 
promising results. These DL models adaptively develop the 
best representation using raw image data as input rather than 
depending on human feature extraction. Mateen et al. [7] 
adopted a VGG-19 CNN model to detect the DR lesions in 
fundus images with an accuracy of 98.34%. In another study, 
Gulshan et al. [8] developed a CNN model to detect DR and 
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diabetic macular edema (DME) using fundus images. Their 
diagnostic result was 96.1% sensitivity and 93.9% specific-
ity, respectively.

DL models, on the other hand, are known to be “black 
boxes” [9–11]. CNN models make no attempt to explain 
what representations have been learned or why a certain 
prediction is generated. One fundamental shortcoming of 
CNN models, according to Gulshan et al. [8], is that the 
neural network only receives the input image and associated 
true class. No precise definitions of the characteristics that 
would explain the medical diagnostic exist. As a result, after 
grading, the prediction of a DR diagnosis can be phrased as 
a classification issue; thus, the diagnostic process is a “black 
box.” This lack of interpretability may make it difficult for 
target end-users, such as ophthalmologists, to comprehend 
how the models function, preventing model acceptance for 
clinical application. As a result, DL-based diagnosis sys-
tems have an impact on not only information on ethics but 
also responsibility, safety, and industrial liability because of 
their “black box” design architecture and absence of human 
verification [12].

There is not much debate about the interpretability of 
these CNN models: where did the networks look for discrim-
inative characteristics when diagnosing DR? While classifi-
cation accuracy is critical in automated diagnosis activities, 
understanding the reasoning behind the computer-assisted 
conclusion has become increasingly important and valued. 
As a result, the goal of this review paper is to examine the 
current state of interpretability strategies used in DR-related 
tasks. This review paper’s aim is to identify the benefits and 
drawbacks of DL interpretability techniques in DR-related 
activities. The purpose of this review paper is to inform 
readers about the limitations of interpretability methodolo-
gies so that future research areas to improve the interpret-
ability of DL models can be presented.

The remainder of the paper is laid out as follows. The 
selection criteria for the reviewed articles are explained in 
Sect. 2. The overall DL pipeline adopted in the reviewed lit-
erature is briefly explained in Sect. 3. The available state-of-
the-art interpretability techniques for DR diagnosis are high-
lighted in Sect. 4. The merits and drawbacks of the identified 
interpretability strategies will be explored in Sect. 5. Finally, 
in Sect. 6, we conclude the review study by summarizing the 
most important findings from the state-of-the-art analysis 
and discussing the future research directions.

2  Articles selection criteria

Figure 1 depicts the overall selection criteria for the reviewed 
publications in this paper. Despite the fact that this review 
paper is not a systematic review paper, the overall procedure 
is very similar to that of a systematic review paper.

To begin, a keyword search was conducted in two aca-
demic databases with our review goal in mind. The uni-
versity’s e-library database and Google Scholar are the two 
academic databases. The primary review objective was cho-
sen using five filters. The following five filters were used to 
pick articles: (i) target keywords, (ii) publication year, (iii) 
article title, abstract, and keyword screening for article selec-
tion, (iv) cross-checking references of selected publications, 
and (v) final quality rating of the selected article. The target 
keywords were searched using the “AND” Boolean opera-
tor and included “deep learning.” “fundus images,” “dia-
betic retinopathy,” “diabetic eye disease,” “diabetic retinal 
disease,” “deep learning interpretability,” “deep learning 
explainability,” “post hoc interpretability,” “explainable 
artificial intelligence,” and “explainable AI”. Articles pub-
lished between 2017 and 2021 were considered eligible for 
this study due to the rapid advancement in the field. After the 
selection process, duplications of articles were filtered out. 
In addition, we also studied the bibliography and citation of 
the selected articles. Finally, a quality assessment of filtered 
articles was carried out.

3  Overview of deep learning pipeline 
in DR‑related tasks

The DL pipeline identified in the selected reviewed literature 
can be generalized as depicted in Fig. 2. To improve the 
image quality and features, a series of image preparation 
processes is first established. Geometric and photometric 
perturbations are two types of picture preprocessing meth-
ods. Image resizing, cropping, and flipping are examples 
of geometric perturbations, whereas modification of image 
color, brightness, and contrast are examples of photomet-
ric perturbations. We discovered that not all authors went 
through the image preprocessing phase such as [13–15]. 
Authors from [16–18] on the other hand, preprocess the 
fundus photos before starting model training. Some other 

Fig. 1  Overview of selection criteria of literature
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authors [19–23] partially utilized geometric or photometric 
perturbation to preprocess the fundus images.

The classification model is trained using the preproc-
essed input photos. Different authors have used different 
CNN models to train their networks. Instead of adopting 
state-of-the-art models, some writers prefer to develop their 
own CNN model to integrate flexibility [15, 19–21]. Some 
people choose to use cutting-edge models like Inception-v3, 
Inception-v4, and DenseNet [13, 14, 22, 24]. Others choose 
to use data science competition-winning models [16, 18], 
while others prefer ensemble models [17]. Table 1 sum-
marizes the image preprocessing strategies and the adopted 
model architectures from all selected papers.

4  Deep learning interpretability techniques 
for DR

Interpretability approaches for DL are tools that aid in 
understanding the reasoning behind a neural network’s pre-
dictions. In recent years, a number of strategies have been 
proposed. The importance of DL model interpretability and 
the taxonomy of interpretability methodologies have been 
carefully reviewed in a number of published review articles 
[9–11]. In this section, we will go through the many sorts 

of interpretability strategies used in DR-related tasks. The 
identified interpretability techniques that are adopted in DR-
related tasks include occlusion, sensitivity analysis, class 
activation map (CAM), gradient-weighted class activation 
map (Grad-CAM), layer-wise relevance propagation (LRP), 
and integrated gradient (IG).

A. Occlusion Occlusion is a perturbation technique. The 
perturbation technique involves removing, masking, or 
changing a set of input features, then executing a second 
forward pass on the input features and assessing the effect 
on the output [25]. Given a scenario, when an image is cor-
rectly classified; a natural concern arises as to whether the 
model is accurately recognizing the object in the image. The 
occlusion technique answers this question by systematically 
replacing different regions of the image with a gray square 
and monitoring the model’s output. When the gray square 
covers the object in the image, the probability of the correct 
class drops significantly. Zeiler and Fergus [26] reported that 
the significant drop in probability indicates that the model is 
correctly detecting the object in the image.

In DR-related tasks, Grassmann et al. [17] adopted 
the occlusion technique by randomly masking 10,000 
100 × 100 pixel fields in each 512 × 512 fundus image. 
The occlusion technique was used to successfully occlude 

Fig. 2  Overview of deep learn-
ing pipeline in DR-related tasks

Table 1  Comparison table of recently published DR-related papers that adopt interpretability techniques

Author (year) Image pre-processing CNN architecture Interpretability techniques

Geometric perturba-
tion

Photometric pertur-
bation

Kermany et al. [13] ✗ ✗ Inception-v3 Occlusion
Grassmann et al. [17] ✓ ✓ Ensemble Network Occlusion
Kumar et al. [21] ✓ ✗ CNN CAM
Tu et al. [15] ✗ ✗ CNN CAM
Wang and Yang [23] ✓ ✗ Net-4, Net-5 CAM
Gargeya and Leng [20] ✓ ✗ CNN CAM
Gondal et al. [16] ✓ ✓ o_O network (Antony and 

Brüggemann 2015)
CAM

Jiang et al. [24] ✓ ✓ RestNet50 Grad-CAM
Pratt et al. [14] ✗ ✗ DenseNet-121 Sensitivity analysis, CAM
Sayres et al. [22] ✓ ✗ Inception-v4 Integrated gradient
Quellec et al. [18] ✓ ✓ o_O network (Antony 

and Brüggemann 2015), 
AlexNet

Layer-wise relevance propagation

de La Torre et al. [19] ✓ ✗ CNN Layer-wise relevance propagation
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essential age-related macular degeneration (AMD) char-
acteristics and allow assessment of their relevance. They 
noted a considerable decline in prediction scores as the 
slider went through the occluded zone. As indicated by 
the significant drop in prediction scores, the occluded 
region was identified as being a critical component for 
their CNN model to label a particular fundus image for 
a specific class.

B. Sensitivity analysis Sensitivity analysis (SA) is one of the 
first methods to be adopted in the DL domain [27]. Attribu-
tions explain individual predictions by assigning weights to 
each input characteristic based on how much it influences 
the outcome positively or negatively. They are constructed 
by taking the absolute value of the partial derivative of the 
target class score Sc with respect to the inputs xi:

The SA works by taking the absolute value of the gradi-
ent, which indicates which input features (e.g., input pixels 
or tabular data) may be perturbed the least in order for the 
target output to change the most while eliminating any infor-
mation regarding the change’s direction [27].

In a DR-related task, Pratt et al. [14] employed SA to 
provide insight into the features that were detected utilizing 
ground truth and input fundus images. They claimed that 
by employing the SA method, they were able to pinpoint 
pixels (features) that aided in diagnosis. Numerous types of 
lesions, such as hemorrhages and microaneurysms, can be 
seen all over the vascular structure. The SA can recognize 
lesions in instances classified as proliferative. Although SA 
is a good performer, it is affected by noisy gradient, thus 
noisy visualization.

C. Class activation map The CAM technique inspects a 
new input image and determines which parts or pixels of 
the image have contributed most to the model’s final out-
put. Formally, CAM interprets a CNN by linearly combin-
ing activation maps from the last fully-connected layer, 
together with its last layer’s fully connected weights that 
correspond to a target class [28]. In other words, a class 
activation map of a particular class indicates the discrimi-
native image regions used by the CNN to identify that 
class [29].

Formally, let I(x, y) be a given image. In the last convolu-
tion layer, the activation of a node k is fk(x, y) . Then, for unit 
k , the result of performing global average pooling is 
Fk =

∑
(x,y) fk(x, y) . Thus, the softmax for a given class c is 

Sc =
∑

k w
c
k
Fk where wc

k
 is the weight corresponding to class 

c for unit k . Next, Pc =
expSc

∑
c=0 exp

Sc
 is then generated as the 

softmax output.

Rc
i
(x) = |

�Sc(x)

�xi
|

By connecting Fk =
∑

(x,y) fk(x, y) into the class score, Sc , 
CAM can be defined as below:

Unique network architecture is required for the 
CAM approach, which includes a global average 
pooling layer after the last convolutional layer and 
a linear (dense) layer after that. As a result, existing 
networks that lack this structure cannot use the CAM 
approach.

Pratt et al. [14] used the CAM technique (Fig. 3) to vis-
ualize the learned features and their locations in order to 
figure out how the CNN model arrives at its prediction and 
how that relates to manual feature-based grading. The CAM 
visualization directly relates to the prediction score of the 
class. Similarly, Gargeya and Leng [20] adopted the CAM 
approach to emphasize the locations that were critical to 
their model's prediction. The highlighted regions, according 
to the authors, represent essential aspects that ophthalmolo-
gists employ to reach a diagnosis, and the highlighted region 
supports their model’s domain-guided learning method. 
Other notable papers have also adopted the CAM method to 
visualize the regions that are important for the CNN model’s 
prediction [16, 20, 21, 23].

Although the CAM method can qualitatively highlight 
the learned features and their respective location in an 
input image, there is no quantitative metric to evalu-
ate the highlighted learned features that are true to the 
prediction.

D. Gradient‑weighted class activation map The Grad-CAM 
technique is an extension of the CAM technique. The Grad-
CAM technique differs from the CAM technique in that it 
integrates gradient information. It employs the gradients of 
any target concept (for example, logits for the “cat” category 
if the input data is an image), flowing into the final convo-
lutional layer to produce a coarse localization map high-
lighting the important regions in the image for predicting 
the concept. The Grad-CAM follows the same procedure as 
CAM, with the addition of computing the weighted sum of 
the activations and then upsampling the result to the image 
size before plotting the original image with the visualization 
(heatmap) [30].

Formally, assumed that the output map of the last con-
volution layer was denoted as Ak, where k is the number of 

(1)Sc =
∑

k

wc
k

∑

x,y

fk(x, y)

(2)Sc =
∑

x,y

∑

k

wc
k
fk(x, y)

(3)CAMc =
∑

x,y

wc
k
fk(x, y)
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these output maps. The final Grad-CAM can be calculated 
as follows:

where yc signifies the class c score before the softmax and 
Ak is W × H in size. wc

k
 is derived as the map Ak for class c, 

using a differential operation of yc with regard to Ak , and Z is 
the normalization factor. An activation function of the recti-
fied linear unit (ReLU) was implemented after completing a 
weighted summation of map Ak.

Recently, Jiang et al. [24] proposed a novel approach to 
simultaneously complete DR classification and detection 
tasks based on multi-label and Grad-CAM. Different DR 
lesions were treated as different labels for DR fundus pic-
tures, removing the requirement for annotation experts to 
provide the exact location of lesions on the fundus image, 
which not only saved time but also reduced incorrect or 
omitted to the label of lesions. Grad-CAM was also used to 
show the precise location of lesions in order to explain the 
categorization results.

E. Layer‑wise relevance propagation LRP is an interpretabil-
ity technique that uses input variables to explain individual 
DL model predictions. It assigns each of the input variables 
a score (relevance) for each input and the model’s predic-
tion, indicating how much they contributed to the prediction. 
In other words, the LRP technique requires modification to 

wc
k
=

1

Z

∑W

i=1

∑H

j=1

�yc

�Ak
ij

Ic
Grad−CAM

= ReLU
∑K

k=1

(
wc
k
∙ Ak

)

the back-propagation rules so that a back-propagated signal 
is weighted by the activations and weights of convolution 
layers. Furthermore, the LRP technique employs heuristic 
propagation rules that apply to each layer of a network to 
reverse-propagate the prediction via the network [31].

The LRP technique embodies a core principle which is 
total relevance. For example, the activation strength of an 
output node for a given class is conserved per layer; each 
of the nodes in layer l that contributed to the activation of a 
node j in the subsequent layer l + 1 is given a certain share 
of that node’s relevance Rj

l+1
 . Overall, the relevance of all 

nodes i contributing to neuron j in layer l must add up to 
R
j

l+1
 , preserving the overall relevance per layer:

de La Torre et al. [19] applied LRP on the last layer in 
order to find the optimal number of components that maxi-
mize the classification capabilities using features with 
smaller dimensions. de La Torre et al. [19] modified LRP in 
such a way that reducing it to only three components is pos-
sible to achieve almost 99% of the evaluation metric. Such 
value experimentally proves that the principle component 
analysis (PCA)—a strategy for reducing the dimensional-
ity of a large dataset by converting a larger collection of 
variables into a smaller set that retains the majority of the 
information in the larger set, has been able to extract all the 
crucial elements required for the classification.

F. Integrated gradient IG is an attribution method 
that was proposed by Sundararajan et al. [32]. It is an 

∑

i

R
i→j

l,l+1
= R

j

l+1

Fig. 3  An illustration of the class activation map [29]
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interpretability technique that visualizes the importance 
of input features that contribute to the model’s prediction. 
The attribution of each input to the output neuron is cal-
culated by looking at the change of this neuron when the 
input shifts from the baseline input to the target input of 
interest. Formally, let x represent the input of interest, x′ 
represent the baseline input, and F(∙) represent the neuron 
of interest. Then, the IG for the ith input variable x , can 
be approximated by

The number of steps utilized to approximate the integral 
is denoted by m . The baseline x commonly used as a zero-
based input sequence.

Quellec et  al. [18] conducted a study using DL to 
detect lesions or other biomarkers of DR and provide 
interpretation at the image and lesion level using visu-
alization methods. Their model achieved 0.97 AUC with 
94 and 98% sensitivity and specificity, respectively, on 
fivefold cross-validation using their local dataset. They 
stated that heat maps produced tend to contain false arti-
facts caused by the CNN architecture. Thus, the authors 
proposed reducing those unwanted artifacts through joint 
optimization of the CNN predictions and the produced 
heat maps. Specifically, they reduced those unwanted 
artifacts, modifying the sensitivity analysis algorithm by 
forcing local changes to preserve the hue. By doing this, 
the modified sensitivity analysis can focus on pattern 
enhancement. Quellec et al. [18] also stated that it tends 
to increase the influence of other lesions near the correct 
lesions. This limitation was due to the downsampling 
effect, which occurred in pooling or convolution layers 

IntegreatedGrads
approx

i
(x) =

xi − x�
i

m

m∑

k=l

�F
(
x
)

�xi
, x = x� +

k

m

(
x − x�

)

with strides greater than one. To mitigate this problem, 
the authors used a brute-force solution for reducing these 
artifacts by introducing additional regularization to the 
loss function.

In summary, the aforementioned interpretability tech-
niques have their own merits and drawbacks. Table 2 
summarizes the limitations of each interpretability 
technique. While these aforementioned interpretability 
techniques were applied in DR-related tasks, they also 
can be adopted in other biomedical tasks. In the midst 
of the COVID-19 pandemic, [33] used machine learn-
ing to guide diagnosis from lung ultrasonography. The 
authors adopted the CAM approach to identify patterns 
that influenced the model’s judgment on whether bac-
terial or viral pneumonia was present in the lungs. [34] 
used the IG technique to illustrate model attribution in 
the biomedical field of a breast cancer diagnosis. They 
claimed that models with more segmentation channels 
were better at focusing on specific parts of the image 
containing abnormal cells.

5  Discussion

Table  1 summarizes the recently published DR-related 
papers with the adoption of deep learning interpretability 
techniques. The table includes a number of factors that we 
believe are important to diagnose DR. The factors are the use 
of image pre-processing, the type of CNN architecture, and 
importantly the adopted interpretability techniques. Table 2 
summarizes the limitations of the adopted interpretability 
techniques in DR-related tasks.

Table 2  The limitations of interpretability techniques adopted in recently published DR-related papers

Author (Year) Limitation

Kermany et al. [13] ■ Diabetic macular edema and choroidal neovascularization did not highlight a clear point of interest
■ Requires additional mode training with occluded fundus image to monitor the classification score of a particular class

Grassmann et al. [17] ■ The accuracy of identifying the disease can be improved by including additional disease features
■ Requires additional mode training with occluded fundus image to monitor the classification score of a particular class

Kumar et al. [21] ■ Highlight on the neovascularization of the optic disc is absent
■ Visualization (CAM) on lesions areas may not be accurate as there is no pixel-level ground truth presented

Tu et al. [15] ■ Minority of the important lesion areas are highlighted as low impact after lesions regularization
Wang and Yang [23] ■ Fails to highlight the correct lesions that correspond to a class
Gargeya and Leng [20] ■ Visualization (CAM) on lesions areas may not be accurate as there is no pixel-level ground truth presented
Gondal et al. [16] ■ Lesion, specifically red small dots did not detect and highlight accurately
Jiang et al. [24] ■ Visualization (CAM) on lesions areas may not be accurate as there is no pixel-level ground truth presented
Pratt et al. [14] ■ Visualization (CAM) on lesions areas may not be accurate as there is no pixel-level ground truth presented
Sayres et al. [22] ■ Visualizing lesions in misclassified cases may cause over-diagnosis
Quellec et al. [18] ■ Poor quality of visualization of lesions (hemorrhages and microaneurysms) in AlexNet
de La Torre et al. [19] ■ Noisy visualization of lesions
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6  Image manipulation

Fundus images play an essential role in diagnosing DR. 
Ophthalmologists analyze fundus images by identifying 
retinal lesions or the variations of vessel structure [35]. 
Therefore, the quality of fundus images is essential [36]. 
Fundus images may contain artifacts such as noise and 
varying contrast levels caused by the environment set-
tings and use different models of cameras. Pre-process-
ing fundus images help to overcome these issues and 
allows the retinal lesions to become more prominent, and 
make it easier for CNNs to extract the features in the 
fundus images.

According to Table 1, most of the studies applied geomet-
ric perturbations to the fundus images before model training 
occurred. The common geometric perturbations applied to 
fundus images are image resize, image crop, image flip, and 
image rotation. Applying these geometric perturbations to 
fundus images also benefits from avoiding model overfit-
ting [37].

On the other hand, only three studies adopted photogenic 
perturbations. Grassmann et al. [17] and Quellec et al. [18] 
normalized the color balance and local illumination of 
each fundus image by using Gaussian filtering to subtract 
the local average color. Gondal et al. [16] transformed the 
fundus images by manipulating the color, brightness, and 
contrast of the fundus images. Implementing photogenic per-
turbations to fundus images can increase the CNN model’s 
performance and correctly detect the lesions present in fun-
dus images. Lin et al. [38] transformed the fundus images 
by computing spatial entropy to preserve vital characteris-
tics of lesions in the background of fundus images for CNN 
training.

7  CNN architecture

Various CNN model architectures were adopted in diagnos-
ing DR, as shown in Table 1. Without reinventing the wheel, 
pre-trained CNN architectures such as AlexNet, DenseNet, 
and Inception-v4 have been adopted to diagnose DR. Choos-
ing the appropriate CNN model may benefit the interpret-
ability of the CNN model. Quellec et al. [18] reported that 
the visualization of lesions in fundus images did not perform 
well in the AlexNet CNN model. They claimed that choos-
ing a CNN model that achieves good image-level perfor-
mance is preferable to ensure good detection performance 
at the lesion level. This is true as Gondal et al. [16] adopted 
an award-winning CNN model architecture o_O network, 
which performed well in detecting lesions, but had limited 
capability to detect smaller subtle lesions such as small red 
dots.

In addition, due to the CNN model architecture where 
downsampling of features occurred in the convolution lay-
ers, information may be a lost, resulting in information loss 
for very small lesions. Quellec et al. [18] experienced the 
same phenomena as Gondal et al. [16]. A method proposed 
by García et al. [39] can be a plausible solution to reduce 
information loss when downsampling. The authors proposed 
a heuristic method that identifies zones that are potentially 
likely to disappear and gives them more importance when 
filtering. As a result, they are preserved after subsampling.

8  Interpretability techniques

The most commonly adopted interpretability technique in 
DR-related tasks is the CAM method, as shown in Table 1. 
The CAM method is popularly adopted due to the use of 
Global Average Pooling (GAP). The benefit of using GAP is 
that it acts as a CNN structure regularizer that prevents over-
fitting during training. Moreover, the GAP explicitly enables 
a CNN model to have a localization ability despite being 
trained only on image labels. However, the CAM method 
has limitations when adopted in DR diagnosis. Although 
the CAM method was able to highlight areas in the fundus 
image that contributes to the prediction, the question still 
arises as to whether the highlighted areas can be trusted. 
Kumar et al. [21] reported that the CAM method failed to 
highlight the correct lesions for the misclassified case of 
mild diabetic retinopathy. Furthermore, Pratt et al. [14] 
argued that visualization on important lesions areas may 
not be accurate as there is no pixel-level ground truth used 
to strengthen the claim. The authors further elaborated that 
the CNN model is only provided the grades (e.g., classes 0, 
1, 2, 3, and 4), not a combination of features and grades, thus 
deemed unfair that the CNN is expected to precisely high-
light the important areas in the fundus image that contribute 
to the prediction.

In contrast, the occlusion method requires additional 
model training to observe the diminishing classification 
score of a particular class. This requirement of re-training 
a trained model is taxing. To verify the interpretability of 
the trained CNN model, Kermany et al. [13] and Grassmann 
et al. [17] systematically blocked different regions of the 
fundus image with a small gray square box (gray mask) 
and monitored the output of the classifier, for example, the 
results in [13] and [17].

Gradient-based interpretability methods such as saliency 
map, integrated gradient, and layer-wise relevance propa-
gation have their respective limitations as well. The attri-
bution values (heat map) generated using the saliency map 
method are strongly affected by noisy gradients [25]. While 
most attribution mass is assigned to the area of the fundus 
image with the main subject, which seems reasonable, the 
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generated heat map is assigned to individual pixels which 
were affected by high-frequency variations, with neighbor-
ing pixels often being assigned very different attributions. 
Furthermore, a study conducted by Adebayo et al. [40] 
assessed different gradient-based interpretability techniques 
to see which visual assessment can be misleading. The strat-
egy appears to rely on the trained model’s weights and the 
link between training instances and their labels, according 
to the authors.

9  The need for quantitative evaluation

All reviewed literature shows that there are generated heat 
maps that visually highlight (qualitative) the areas in the 
fundus image that contribute to the CNN model’s predic-
tion. These heat maps act as a medium to allow end-users 
to understand what discriminative representations the CNN 
model has learned and how the CNN model makes a predic-
tion. However, we argue that although these generated heat 
maps can be visually appealing, we still question accurate 
they are. The evidence shows that many interpretability tech-
niques fail to highlight the correct lesions in a particular 
class [14–16, 20, 21, 23]. In a classification problem, typi-
cally the CNN is trained by only using the fundus images 
and its respective class labels as input data. There are no 
explicit lesion features that are fed into the CNN. In addition, 
the lack of reliable ground-truth medical images is still an 
open issue in research, thus impeding significant research 
outcomes [41]. As a result, rigorous quantitative evaluations 
have not been achieved.

Table 3 summarizes studies that have adopted quantita-
tive evaluation to strengthen the qualitative visual explana-
tions. The CAM interpretability technique lacks quantitative 
evaluation [14–16, 20, 21, 23]. As the CAM method can 
localize the discriminative lesion in the fundus image, there 
should be a quantitative evaluation of the localized area in 
the fundus image. For instance, scoring unit interpretability 
called intersection over union (IoU) or Jaccard index metric 
can be adopted to quantify the localized area in the fundus 
image [42]. Zhou et al. [43] proposed a method to quan-
tify the interpretability of any given CNN. This proposed 
method quantifies the interpretability of any given network 
by measuring the degree of alignment between the unit acti-
vation and the ground truth label. This proposed method 
can be a plausible solution to evaluate the CAM heat maps 
quantitatively.

10  Conclusion

It is increasingly vital to comprehend and explain sophisti-
cated machine learning models. While various interpretabil-
ity techniques for DR-related tasks have been adopted, the 
medical industry’s adoption of these techniques continues 
to be questioned, and research challenges still remain in the 
scientific community.

To conclude, in this review paper, we examined six inter-
pretability techniques that were adopted for DR-related 
tasks. The theoretical properties of these techniques have 
been examined, and it has been demonstrated that, despite 
their seemingly disparate formulations, they are inextrica-
bly linked. In addition, the strengths and limitations of each 
interpretability technique have been analyzed. The findings 
have sparked a number of debates in the hopes of spurring 
more research into new ways for creating explainable deep 
neural network models.
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