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Stroke ranks among the leading causes for morbidity and mortality worldwide. New and continuously improving
treatment options such as thrombolysis and thrombectomy have revolutionized acute stroke treatment in recent
years. Following modern rhythms, the next revolution might well be the strategic use of the steadily increasing
amounts of patient-related data for generating models enabling individualized outcome predictions. Milestones
have already been achieved in several health care domains, as big data and artificial intelligence have entered every-
day life.
The aim of this review is to synoptically illustrate and discuss how artificial intelligence approaches may help to
compute single-patient predictions in stroke outcome research in the acute, subacute and chronic stage.Wewill pre-
sent approaches considering demographic, clinical and electrophysiological data, as well as data originating from
various imaging modalities and combinations thereof. We will outline their advantages, disadvantages, their poten-
tial pitfalls and the promises they hold with a special focus on a clinical audience. Throughout the review we will
highlight methodological aspects of novel machine-learning approaches as they are particularly crucial to realize
precision medicine. We will finally provide an outlook on how artificial intelligence approaches might contribute
to enhancing favourable outcomes after stroke.
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Introduction
Why precision medicine in stroke?

In spite of over 10 million yearly strokes worldwide and a global
lifetime risk of 25% to suffer a stroke,1,2 each of these strokes is a
unique and very personal experience, leaving each stroke survivor
with his or her very own story. Imagine being that one particular
patient: you are female, 65 years old and have arterial hypertension
as known comorbidity, yet are otherwise a healthy and independ-
ent person. You have noticed a weaker left-sided grip strength for 1
h and now cannot lift your left arm against gravity, your speech is
slurred. Your symptom severity corresponds to a National
Institutes of Health Stroke Scale (NIHSS) of 5 (maximum: 42).
Initial MRI indicates ischaemia in the right internal capsule with
an acute onset and no evidence for a large vessel occlusion.
Would you choose a treatment and outcome prediction based on
the ‘average’ stroke patient having a comparable NIHSS score,
time constellation and imaging findings? Or would you rather pre-
fer a more personalized version that takes into account (i) your in-
dividual constitution with respect to the potential to recovery; and/
or (ii) response to a certain treatment, and has the potential to pro-
duce individualized predictions? The second, more complex
choice, considering high-dimensional information, may be ren-
dered more and more possible when merging artificial and human
intelligence, as we will outline more in depth in this review.

In well-developed countries, stroke outcome has been steadily
improving in recent years: These advancements have been
achieved by highly effective recanalizing therapies for acute treat-
ment, such as thrombolysis and thrombectomy,3,4 high-quality im-
aging, the stratified extension of therapeutic time windows5,6 and
standardized care for dedicated stroke units. Intense rehabilitation
programs7,8 and secondary prevention, such as anticoagulants and
statins,9,10 are further examples in the subacute and chronic
phases. However, most of these post-stroke treatment options re-
quire a high number of patients needed to treat to prevent an un-
favourable outcome. Therefore, the optimal and most effective
treatment decisions for an individual may not necessarily be de-
rived from population averages.

These insights are not limited to stroke, but pertain to health-
care in general. They have prompted a new focus on individualiz-
ing treatments in recent years and ignited increasing numbers of
precisionmedicine endeavours.11,12 Ever since, more andmore op-
timization aims focus on individuals rather than population
averages to increase the efficacy in healthcare.

The role of artificial intelligence for precision medicine

Modern artificial intelligence (AI) practices offer the great oppor-
tunity to realize the vision of precisionmedicine.13–15 AI can be for-
mally defined as ‘the capacity of computers or other machines
to exhibit or simulate intelligent behaviour; the field of study
concerned with this’ (Oxford English Dictionary, see also Matheny
et al.16). Of note, the term AI was introduced already about 70 years
ago.17,18 However, since then, AI has also experienced several per-
iods of reduced interest (‘AI winter’) after falling short of expecta-
tions. Early AI implementations successfully completed tasks
that are usually difficult for humans by applying a sequence of lo-
gical rules.19 Examples may be seen in expert systems that imitate
human decision-making processes.20 These same implementa-
tions, however, failed to tackle tasks easy to complete for humans,
such as image recognition. With the recent coincidence of growing
amounts of data, exponentially increasing computational power,

affordable computing and storing resources, aswell as a broad soft-
ware availability,21 techniques such as machine learning and deep
learning have begun to remedy these previous shortcomings. In
general, both machine and deep learning have led to ground-
breaking innovations, such as intelligent software to understand
language22 and images23 or, as a very recent biological example,
the prediction of protein structures based on their amino acid se-
quence (AlphaFold).24 Machine and deep learning approaches, as
modern branches of AI, excel in automatically detecting patterns
in data and leveraging those pattern to predict future data
(see Box 1 for examples of individual algorithms).25–27 Deep learn-
ing is special in the way that it leverages artificial neural networks
with multiple (‘deep’) levels of representations that facilitate the
acquisition of particularly complex functions.28

Notably, AI is not a new idea in healthcare,29 as expert-guided,
rule-based medical approaches were already introduced in the
1970s, for example featuring the automated interpretation of
ECGs.18,30 Once again, machine and deep learning have recently en-
abled substantial improvements and demonstrated performances
comparable with highly trained physicians, especially in the fields
of radiology, dermatology and ophthalmology. For example,
Gulshan and colleagues31 demonstrated the feasibility of automatic-
ally detecting diabetic retinopathy in retina fundus photographs.
Esteva and colleagues32 predicted skin cancer type as accurately as
dermatologists, and Hannun and colleagues33 constructed a
deep learning model that could accurately classify computerized
echocardiograms into 12 rhythm classes. These successful AI imple-
mentations hold several promises in the longer term, such as pre-
dicting future disease manifestations based on routinely collected
healthcare data,34 or automated screening for certain cancer types
in imaging data.35 In the shorter term, AI-based individualized pre-
dictions on clinical outcomes could provide essential information
for healthcare professionals, as well as patients, their families and
friends.16

To foster the potential of machine and deep learning, it will be
of particular importance to acquire large datasets, comprising
subject-level information on hundreds to thousands of patients.
Only then will these datasets have the potential to adequately re-
present interindividual variability in the presentation of the dis-
ease, comorbidities and predisposition,36,37 and allow for an
advantageous performance of AI models. Recent years have al-
ready seen the advent of bigmedical data initiatives, mostly within
the framework of population studies that are not only impressive
in the number of participants (number of participants .500 000),
but also their data depth (number of variables .1000) (e.g. UK
Biobank,38 NIH All of Us research programme in the USA39

and the Rhineland Study in Germany40). First examples of similar
developments in stroke research can be observed as well: the vir-
tual international stroke trial archive (VISTA) contains clinical
data, such as the NIHSS, comorbidities or laboratory results of
82 000 patients.41 However, ‘big’ imaging datasets of stroke patients
are still at least an order of magnitude smaller (e.g. 2800 structural
scans in the MRI-GENIE study,42,43 2950 scans of in Meta VCI map
consortium,44 1800 scans in ENIGMA45 or 1333 scans in an unicen-
tre study46,47). All in all, there have been calls to accumulate and
exploit regularly obtained clinical, imaging and genetic stroke
patient data in a collaborative fashion.48–50

Article structure
In the following sections, we will specifically illustrate single-

subject prediction scenarios within stroke outcome research in
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the acute, subacute and chronic stage. Additionally, we will high-
light important considerations with respect to methodological
approaches in line with the aim of this review. We first address
general aspects of motor outcome research after stroke (‘Motor
impairment after stroke’ section). Then, we will summarize the
statistical foundations necessary to understand the basic princi-
ples of AI in healthcare (‘Statistical background for precision

medicine: inference versus prediction’ section). Afterwards, we
present and discuss recent studies on stroke outcome research
with a special focus on those using prediction models, organized
depending on the type of data, i.e. clinical data (‘Stroke prognostic
scales based on clinical data only’ section), neurophysiological
data, and combinations of clinical, neurophysiological and basic
imaging data (‘Neurophysiology and combination of biomarkers

Box 1 Supervised learning

The machine-learning algorithms highlighted in this review fall into the category of supervised learning algorithms. This scenario
assumes that each predictor (= input) variable is linked to a response. Responses can be quantitative (i.e. taking on a numerical value,
such as a patient’s Fugl–Meyer score) or qualitative (i.e. categorical, such as motor symptoms versus no motor symptoms), resulting in
the formulations of regression or classification problems, respectively.83 Overall, supervised learning stands in contrast to
unsupervised learning, where we have observations of measurements but no associated responses. Hence, instead of formulating
regression or classification problems, the main aim of unsupervised learning approaches is to understand relationships between
observations, which can, for example be achieved via clustering.83 Further examples of unsupervised learning are dimensionality
reduction techniques, such as principal component analysis (PCA) or non-negative matrix factorization. Classical examples for
supervised learning algorithms for both regression and classification are linear regression models (regularized or unregularized),
tree-based and nearest-neighbour algorithms, SVMs and deep neural networks:

Linear regression: In linear regression, one (simple linear regression) or more input variables (multiple linear regression) are linked
to a response via a linear function. A typical application scenario for linear regression in stroke recovery research is the modelling of
Fugl–Meyer follow-up scores based on initial Fugl–Meyer scores.97 Model parameters are commonly fitted using the least square
approximation or a penalized version for regularized variations (ridge regression: L2-norm penalty; lasso: L1-norm penalty). In case of
regularization, coefficient estimates are shrunk towards or to zero, which can be particularly helpful in the case of highly variable least
squares estimates that often arise when the number of explanatory variables is almost as large as the sample size, i.e. the number of
observations.83 In these situations, estimates may differ widely between different samples.

Tree-based algorithms: The simplest tree-based algorithm is a decision tree. An exemplary application in recovery research is the
PREP algorithm.128 Other tree-based algorithms are, for example, random forest210 and gradient boosting algorithms.122 Regression and
classification are achieved by finding sequences of splitting rules that segment the space of input variables into simple regions. While
being very transparent and interpretable, decision trees usually cannot compete with other algorithms with respect to prediction
performance. However, modifications, such as bagging, boosting and random forests, that introduce different ways of combining
multiple decision trees (ensemble learning), have been shown to enhance prediction performance substantially.164 Interpretation is
less straightforward in case of ensemble learning approaches due to their complexity (combination of trees). However, it is still possible
to extract the importance of input variables for generating predictions, which facilitates their interpretability.

Nearest-neighbour algorithms: These algorithms accomplish solutions to regression or classification problems by finding k closest
observations for any given observation and then creating average responses or majority votes.211 Therefore, the predicted response is
the average value of responses of all neighbours in regression scenarios. In classification scenarios, the predicted category is the
majority class of nearest neighbours. Overall, it is appreciated that nearest-neighbour algorithms can find very complex patterns in
data, which, however, comes at the cost of increased computation demand and decrease in interpretability.165

Support vector machines: SVMs are generalizations of so-called maximal margin classifiers.87 SVMs are frequently used in
multivariate lesion-symptom studies relying on neuroimaging data.159 For example, a classification problem with two linearly
separable classes: In this case, many straight lines can entirely separate the two classes; an SVM finds the one straight line with the
widest margin. The observations closest to this separating line with the widest margin are then called support vectors. In reality,
classes may not be perfectly separable, and the objective might rather be to accept misclassification in few instances to allow for a
better classification performance in general, i.e. higher generalizability. While ’classic’ SVMs are linear models, they can be rendered
non-linear by introducing a ‘kernel’ that maps the input variables to an even higher dimensional space. SVMs are comparably less
computationally expensive and more interpretable, but more limited in the complexity of patterns that they can fit.165

Deep learning algorithms: Deep learning algorithms, in particular, have gained attraction in recent years, not least due to
concurrently increasing dataset sizes and available computational power. They constitute exceptionally flexiblemethods that combine
multiple stacked layers and non-linear transformations when passing on information from one layer to the next. While each building
block is comparably simple, their combination has been shown to be capable of automated feature selection and representation of
complex pattern. As Goodfellow and colleagues19 phrase it: ‘Deep learning allows the computer to build complex concepts out of
simpler concepts’. For example, deep learning algorithms have premiered in stroke outcome prediction scenarios based on clinical
data.113,114

All of the outlined algorithms have their unique strengths and weaknesses. It may be particularly instrumental to compare them
with respect to their transparency and complexity212 (Fig. 6).
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in individual data’ section), as well as more detailed structural
(‘Structural imaging’ section) and functional imaging data
(‘Functional imaging’ section). Given their prime importance for
the realization of precision medicine, we will outline essential
methodological aspects at the beginning and end of each section.
Finally, we will present a synopsis of methods as employed in
concrete scenarios in motor outcome research post-stroke
(‘Overview of employed algorithms’ section), their general advan-
tages and promises (‘General advantages and promises’ section),
as well as disadvantages and pitfalls (‘Disadvantages and
pitfalls’ section). All in all, our review complements previous re-
views on the use of AI in stroke, for example with a focus on clin-
ical decision support in the acute phase,51 acute stroke
imaging,52,53 stroke rehabilitation54 and prognostic scales on clin-
ical outcomes and mortality55,56 (see the Supplementary material
for our literature research strategy and selection criteria).

Motor impairment after stroke

A substantial amount of stroke patients finds themselves affected
by some degree of motor impairment. Studies7,57 report frequen-
cies as high as 80% and 50%, respectively. The enormous burdens
associated with motor impairments with regard to economic
costs,58 rehabilitation need59 and disability-adjusted life years60

necessitate optimizing acute and chronic stroke care. While acute
stroke treatment has been considerably advanced leading to both
reduced mortality and morbidity in the past decades, it may now
be the restorative therapy after stroke that needs to see the same
progress.61 This focus on the subacute-to-chronic post-stroke
phasemay be of particular importance since only a relatively small
fraction of patients presenting with acute ischaemic stroke are eli-
gible for acute treatment options (e.g. 15.9% for thrombolysis and
5.8% for mechanical thrombectomy in Germany in 2017,62 with
comparable numbers in various other countries63,64).

Providing accurate outcome predictions has always been a cen-
tral goal in stroke research. More specifically, predictions may
point at the most suitable short and long-term treatment goals:
should the focus of treatment be on true recovery or rather com-
pensation, when significant behavioural restitution is unlikely?65

True recovery requires neural repair to allow for an at least partial
return to the pre-stroke repertoire of behaviours, e.g. the same
graspingmovement pattern as present prior to cerebral ischaemia.
Compensation implies the substitution of pre-stroke behaviours by
newly learned pattern without the necessity of neural repair, e.g.
compensatorymovements of the shoulder to account for extension
deficits of the hand.61 During rehabilitation, patients often show
both phenomena, i.e. a partial recovery, which is complemented
by compensatory behaviours. In this context, rehabilitation refers
to the entire process of care after brain injury and an ‘active change
by which a person who has become disabled acquires the knowl-
edge and skills needed for optimumphysical, psychological and so-
cial function’.66 The availability of predictions may help patients
and their proxies to be informed about what to expect in the future
and plan accordingly. Furthermore, predicting spontaneous recov-
ery after strokemay be crucial to evaluate the effect of intervention
studies. Using this information to stratify patients into control and
treatment groups could decrease the overall number of patients
needed to be recruited, thereby not only rendering significantly
more studies feasible in terms of design and financial costs, but
also yielding faster results.67 Last, outcome models could also tar-
get the prediction of response to specific therapies, such as non-
invasive brain stimulation, and thus support the identification of

probable responders before the start of the therapy.68 In the same
vein, Stinear and colleagues54 previously defined several prerequi-
sites for rehabilitation prediction tools that may be useful in clinic-
al practice. Accordingly, prediction tools should forecast an
outcome that is meaningful for individual patients at a specific
time point in the future.

Statistical background for precision medicine: 
inference versus prediction

Classical inference statistics, such as F- or t-tests, comprise a
powerful tool kit to evaluate research hypotheses, and offer ex-
plainable results. Null hypotheses testing represents a frequently
used example, which is linked to resulting P-values and ensuing
statistical significance statements.69,70 Importantly, these classical
statistical instruments were invented almost a hundred years ago,
in an era of rather limited data availability and hardly any compu-
tational power.71 In regard to biomedical research, insights were
previously commonly gleaned from either observational descrip-
tions of single patients (e.g. Pierre-Paul Broca’s patient Mr
Leborgne, called ‘Tan’),72 or group comparisons. This situation,
however, is changing nowadays.

The perception of statistical significance will most probably ex-
perience a redefinition in times of emerging big data scenarios. On
the one hand, extensive datasets will more frequently lead to stat-
istical significance of effects with (clinically) negligible effect
sizes.73,74 For example, Miller and colleagues conducted 14 million
individual association tests between MRI-derived brain pheno-
types, e.g. brain volumes or functional connectivity strength
between two brain areas, and sociodemographic, neuropsycho-
logical or clinical variables in 10000 UK Biobank participants.75

These tests resulted in many statistically significant associations,
yet these associations sometimes explained less than a percentage
point of variance, which, thus, questions their relevance.76 On the
other hand, the default use and interpretation of P-values has been
challenged frequently in recent years. This process was triggered
by increasing reports on low reproducibility of research findings.77

When trying to reproduce the findings of 100 psychological re-
search studies, replication studies produced significant results in
only 36%, while original studies reported significant results in
97% of cases.78 In response to these findings, Benjamin and collea-
gues suggested a lower level of significance, i.e. P, 0.005, for the
discovery of new effects to increase the robustness of findings.79

Amrhein and colleagues went a step further yet and recommended
to relax the over-reliance on P-values by completely abandoning
dichotomous decisions.80 These suggestions have prompted vital
discussions: While generally being supported widely—the call by
Amrhein was accompanied by .800 signatures of international re-
searchers—other statisticians have been more cautious, for ex-
ample stressing the positive effect of statistical significance as
gatekeeper.81

It is also important to realize that statistically significant group
differences, as indicated by low P-values, do not generally imply
good single-subject level prediction performances, as measured
by out-of-sample generalization (Fig. 1). The latter, however, is
the idea of precisionmedicine.37,82–84 In contrast to the previous fo-
cus on inference and explanation, recent years have seen an up-
surge of AI and, more specifically, machine-learning techniques,
that predominantly target prediction performance of single-
subject outcomes. Examples of these machine-learning models in-
clude, e.g. regularized regression, (deep) neural networks, nearest-
neighbour algorithms,85 random forests86 or kernel support vector
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machines (SVMs) (Box 1).87 Given multiple input variables, such as
age, sex, initial stroke severity and comorbidities, thesemodels are
trained to predict some specific individual outcome, such as a mo-
tor score 3 months after stroke, based on a weighted combination
of these input variables, with the highest achievable prediction
performance. This performance can be quantified by various estab-
lished measures, such as explained variance, accuracy, sensitivity,
specificity and area under the curve. As they are evaluated by their
generalization capability to previously unseen, i.e. new data sam-
ples, they are well suited to ensure accurate predictions of individ-
ual future outcomes. At the same time, these models may not
typically and reliably be able to explain their predictions any fur-
ther and allow for inferences on particular biological mechanisms.
This characteristic has prompted the denotation black-box
model.88

Stroke outcome studies
Stroke prognostic scales based on clinical data only

The initial level of impairment induced by the stroke lesion is a
well-known explanatory variable of the neurological outcome sev-
eral months later.89–91 A number of studies aimed to explain recov-
ery patterns through linking motor impairments at initial and
follow-up time points by means of linear regression models (63–
211 patients).92–95 In these scenarios, the change between initial
and follow-up motor impairment (i.e. a continuous change=
follow-up − initial scores) represented the output, i.e. the depend-
ent variable Y. This output was computed based on the recovery
potential, i.e. the maximum score minus the initial motor impair-
ment as input, i.e. the independent variable X. Motor impairment
was most frequently captured as Fugl–Meyer score of the upper
limb.96 The typically obtained performance measure here was the
explained variance in form of the in-sample R2-value. This
R2-value, also called the coefficient of determination, indicates
how much of the variance in the dependent variable can be ex-
plained by one or more independent variables.

Thesemodelling endeavours resulted in the proportional recov-
ery rule.97 Stroke patients with mild to moderate motor impair-
ments usually regain a certain amount of their lost motor
functionwithin the first months after their stroke. In one of the lar-
gest stroke recovery studies, considering 211 patients, initial motor
impairment apparently explained up to 94% of the variance in

motor recovery based on the proportional recovery rule.93

However, recent re-evaluations of the statistics underlying the pro-
portional recovery rule suggest that previous estimates of ex-
plained variance were inflated. This inflation occurred due to
statistical confounds, such as measurement noise, ceiling effects
and a phenomenon called mathematical coupling.98–101

Mathematical coupling here describes a situation where the input
and output variables are not independent—which is the case when
recovery is defined as the difference between an initial score and
the follow-up score, and this change score is then correlated to
the very same initial score that was used to compute the change
score. Thus, the assumption of no relationship between input
and output is void. Simulations have shown that significant rela-
tionships between initial and change score can occur, when, in
fact, there is no significant link between initial and follow-up
scores.99,100We recently introduced a Bayesian hierarchical model-
ling regimen to combine patient data from six recovery studies (n=
385) and demonstrated that reducing analyses to the subset of only
severely to moderately affected patients could successfully miti-
gate the effects of ceiling and mathematical coupling.102 Notably,
after addressing confounds, the initial impairment was shown to
explain only a small amount of the variance in recovery, reaching
a maximum of 32% explained variance only.102 Therefore, propor-
tional recovery may occur, however, to a considerably smaller de-
gree than originally claimed.

Importantly, these recovery studies highlight the distinction
between inference and prediction (see the ‘Statistical background
for precision medicine: inference versus prediction’ section). In
the studies mentioned before, the relationship between initial im-
pairment and recovery was primarily investigated in-sample.
In-sample here means that the performance of linear regression
models was estimated relying on exactly the same data that was
used for model training. Therefore, models had already seen all
parts of the data that they were subsequently tested on and could
optimally adapt to them. This strategy is particularly helpful, if the
main study aim is to identify significant explanatory variables of
the outcome and to obtain interpretable models.82,84 If several
studies then independently point to the same association, this as-
sociationmight be consideredmore stable and reliable, since it was
validated. The estimates of prediction performance have, however,
not been validated by these means. When training and test data do
not differ, algorithms are also prone to overfitting, i.e. they might
capture the characteristics of the data sample at hand very well

Figure 1 Three scenarios to compare group difference and classification analyses. Data is simulated, differences between groups 1 and 2 are deter-
mined via two-sample t-tests, classification via linear methods into groups 1 and 2 is achieved via thresholding (indicated by red dotted lines). (A) A
significant group difference is found despite a poor classification performance. (B) Groups do not differ significantly, but classification accuracy is very
high. (C) A significant group difference goes along with high classification accuracy. Overall, these three scenarios illustrate that neither significant
group differences automatically lead to high classification accuracies, nor high classification accuracies to significant group differences. Adapted
from Arbabshirani et al.,37 with permission.
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by explaining a high percentage of the variance observed for this
particular sample, but at the same time perform relatively poorly
when tested on an independent dataset. Conversely, generaliza-
tion capability—conceptually underlying precision medicine—is
commonly tested by measuring a model’s prediction performance
for unseen, novel data-points, i.e. those that have not been used in
the training phase. The developed model is therefore validated
out-of-sample.83,103 Therefore, it is generally crucial to know
whether prediction performance estimates were obtained in-
sample or out-of-sample (Supplementary Tables 1–3).

Given that the studies highlighted in the previous section
mainly used a within-sample approach, they could well infer the
significance of input variables (i.e. the initial motor score) and in-
terpret their coefficients (i.e. 70%) at the group-level. In contrast,
the aim of the studies presented in the following section is the ac-
curate training of prognostic models that can predict a categorical
functional outcome at the level of an individual patient104 (for re-
cent reviews see Fahey et al.55 and Drozdowska et al.56 and
‘Statistical background for precision medicine: inference versus
prediction’ and ‘General advantages and promises’ sections for de-
tails on the distinction between inference on group-level versus
prediction on individual-patient-level). Most of these prognostic
prediction endeavours feature similar methodological steps. First,
the outcome is not represented by a change score, as above, but
by a binary, categorical (0–1) follow-up outcome, for example, fa-
vourable versus unfavourable functional outcome [e.g. modified
Rankin Scale (mRS) of ≤2 versus .2, no-mild versus moderate-
severe disability]. Most often, the model of choice is a logistic re-
gressionmodel105 that considers sociodemographic and clinical in-
formation as input variables. Training and testing, or in other
words developing and validating, is commonly performed in separ-
ate datasets. Importantly, it is this separate training and testing ap-
proach that enables conclusions on the generalization
performance of a model to unseen data of individual patients.
Prediction performance itself is frequently quantified as area under
the receiver operating characteristic (AUROC), or in short area un-
der the curve (AUC), which considers the true positive rate (i.e. sen-
sitivity) as well as the false positive rate (i.e. 1—specificity) across
various thresholds. While a value of 0.5 represents the level of
chance, an AUC of 1 signals the best possible performance.83

Using data from 10777 patients included in the clinical trials
archive VISTA as an additional validation (test) dataset, Quinn and
colleagues106 compared the predictive capacities of eight well recog-
nized prognostic models to predict favourable outcome post-stroke
(90-day mRS≤ 2).107–112 The model abbreviated to ASTRAL (Acute
Stroke Registry and Analysis of Lausanne)107 provided the highest
prediction fidelity of all models and achieved an AUROC of 0.78. As
eachmodel had originally been trained in a different dataset, relying
on anywhere between 1645 and 12262 patients from different coun-
tries and continents, each model included a marginally varying
number and collection of input variables. However,most considered
age and stroke severity, as well as pre-stroke comorbidities as input
(Table 1). More recently, two studies explored the capability of
deep learning algorithms to enhance the prediction of functional
outcomes based on clinical information. Heo and colleagues113 com-
pared the performances of deep neural networks, random forest
classification and logistic regression to the establishedASTRAL score
to predict favourable outcomes (90-day mRS≤2) in 2604 patients.
Their deep learning model based on 38 clinical variables, such as
demographics, stroke severity and stroke subtype, was the only
one to significantly outperform the ASTRAL score. Li and collea-
gues,114 on the other hand, used deep neural networks, an SVM,

random forest classification, a gradient boosting algorithm and lo-
gistic regression to predict unfavourable outcomes (mRS.2)
6 months post-stroke in 1735 patients using information on clinical,
demographic and laboratory characteristics. Neither of their predic-
tion models performed clearly better. Of note, the studies by both
Heo and colleagues and Li and colleagues used a test set, thus their
estimates can be regarded as out-of-sample.

Further studies evaluated modified scenarios as they focused
on stroke patients admitted to rehabilitation institutes and specif-
ically strived for modelling outcomes after rehabilitation.115–117

Brown and colleagues asserted that the motor subscore of the
Functional Independence Measure (FIM),118 age and walking
distance at admission explained most variance in the FIM-based
recovery (i.e. change), length of stay and discharge destination
(148 367 patients).115 Since the authors derived their results only in-
sample, the generalization performance to out-of-sample, i.e. new,
patients remains to be elucidated. Scrutinio and colleagues116 de-
veloped a prediction model of the motor subscore of the FIM after
rehabilitation and considered multiple available variables as pre-
dictors during model training. They eventually chose five of them
based on forward stepwise logistic regression: age, time from
stroke occurrence to rehabilitation admission and unilateral neg-
lect were predictive of higher motor impairment at discharge,
while lower admission motor and cognitive impairment predicted
lower motor impairment at follow-up. After model development,
they then tested for their algorithm’s capacity to generalize to
new patients and obtained a validation sample prediction perform-
ance of AUC= 0.866.

In general, objectives of these prediction model endeavours
were to provide additional information to augment a doctor’s
judgement on the risk of favourable or unfavourable outcome
and assist in (fast) clinical decision making. Most of these studies
translated the original logistic model to an integer-based score or
offered online calculator for a more intuitive and faster outcome
calculation (Table 1 and e.g. https://goo.gl/fEAp81 for Scrutinio
et al.’s predictionmodels). Indeed, some of these automated predic-
tions were shown to outperform the intuitions of medical doctors
in several datasets.119–121 However, any one of these scores has yet
to be implemented into clinical routine and several challenges re-
main to be addressed (see the ‘Disadvantage and pitfalls’ section).

Neurophysiology and combination of biomarkers in 
individual data

The studies in the following sectionmake use of predictors that are
closer to the neurobiology of the brain, i.e. data obtained by neuroi-
maging or neurophysiological recordings. Such surrogate-based
predictions might yield higher prediction accuracies than those
based on clinical or behavioural information as the former may

Table 1 Integer-based prognostic ASTRAL score for the
calculation of probability of unfavourable outcome in patients
with acute ischaemic stroke (1645 patients in total)

Covariates Score

Age: for every 5 years 1
Severity: for every NIHSS point 1
Time delay from onset to admission ,3 h 2
Range of visual field defect 2
Acute glucose .7.3 or ,3.7 mmol/l 1
Level of consciousness decreased 3

Higher scores indicate less favourable outcomes.108
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better capture interindividual differences of lesion-induced distur-
bances in neuronal function as well as the mechanisms driving
functional recovery. While some of the authors instrumentalized
stepwise logistic regression to identify critical parameters for re-
covery or future motor performance, others demonstrate broader
model type considerations that go beyond linear methods, for ex-
ample, decision-tree-based algorithms (Box 1). Among others,
these model types have the ability to exploit non-linear relation-
ships and interactions of input variables automatically.122

Conversely, when working in a linear regression framework as be-
fore, interactions have to be insertedmanually and thus intention-
ally, probably based on previous knowledge that the researcher
has. Altogether, more flexible models like tree-based algorithms
as well as further non-parametric models, such as nearest-
neighbour algorithms and those applying kernels, may be more
capable to ‘let data speak for themselves’.123 They can—at best—
uncover complex, predictive patterns in data automatically.
However, these models require a lot of data to successfully do so.
In view of their flexibility, these models are otherwise at the risk
of overfitting and poor generalization to new data due to too close
adaptation to the data at hand in case of data scarcity.

As first examples of broader biomarker consideration: Koh and
colleagues124 used stepwise linear regression to evaluate 19 vari-
ables comprising information on clinical and also imaging para-
meters to build a prediction model of motor recovery, i.e. the
change between admission and follow-up upper limb movement
capacity, in a sample of 140 severely affected stroke patients.
Four variables were ultimately identified to hold themost explana-
tory information: ‘baseline upper extremity score’ (positive associ-
ation with impairment) and ‘baseline NIHSS score’ (negative), as
well as the imaging-related variables ‘haemorrhagic stroke’ and
‘cortical lesion excluding primary motor cortex’ (both positive).
Model performance, however, was capped at 35% of total variance
explained in-sample. This low value signalled a generally limited
explanatory capacity of the considered initial input variables.
Nonetheless, more complex and less predictable recovery patterns
after severe stroke are a frequently described finding,125 which ren-
ders the results of Koh and colleagues124 less surprising. In another
study comprising data of 160 acute stroke patients, mRS-based
functional outcome 3 months post-stroke was significantly asso-
ciated with the clinical variables ‘left-sided lesions’, ‘stroke sever-
ity at admission’ (both negative association with favourable
outcome) and the ‘presence of motor-evoked potentials (MEPs) on
TMS of the ipsilesional motor cortex’ (positive association).126

Going yet a step further, several studies employed the combin-
ation of clinical, imaging and neurophysiological markers to opti-
mize outcome predictions. The Predict Recovery Potential (PREP)
algorithm runs through a sequence involving all of these measures
to stratify patients into four recovery groups based on their follow-
up Action Research Arm Test (ARAT) score.127,128 It first divides pa-
tients into two groups based on a commonly conducted clinical test
of upper limb function 72 h after stroke (SAFE= sum of the shoul-
der abduction and finger extension grades based on the Medical
Research Council muscle scale). Subsequently, it considers infor-
mation on transcranial magnetic stimulation (TMS)-obtained
MEPs in upper limbmuscles. MEP-positivity is here thought to indi-
cate functional integrity of corticospinal pathways. Last, the PREP
algorithm incorporates an MRI parameter that represents the
structural integrity of the cortico-spinal tract fibres in the posterior
limb of the internal capsule (fractional anisotropy asymmetry in-
dex). The PREP algorithmwas designed in a decision-tree-like fash-
ion relying on expert knowledge, i.e. the sequence and nature of

tests was manually chosen and not automatically computed from
data to reflect a setting that can be readily implemented into the
clinical routine.127 In general, decision-tree-based algorithms cre-
ate classifications by finding sequences of splitting rules that seg-
ment the space of input variables into simple regions and, as
such, are very transparent and interpretable (Box 1). The PREP
decision-tree-algorithm was subsequently validated in a dataset
of 40 stroke patients.128 Especially the outcome ‘full recovery’ could
be predicted with high positive predictive power (88%), negative
predictive power (83%), specificity (88%) and sensitivity (73%).
Only slightly lower prediction accuracies of correct outcome
classifications (80%) were found when testing the PREP on an
independent dataset of 157 patients, underlining its reliable gener-
alization performance.129 Furthermore, the PREP algorithm was
successively refined to the PREP2 algorithm by means of a more,
yet still only partly, automated classification and regression tree
(CART) approach in 207 patients, thus in-sample (Fig. 2).130 In con-
trast to the original PREP algorithm, the authors defined a lower
SAFE score cut-off at the first decision point, i.e. it was now reduced
to 5 instead of 8 points, with 5 points indicating a higher motor im-
pairment. As a result, this change required to assess MEPs only in
low SAFE score patients without any loss in prediction perform-
ance (sensitivity of 75% in comparison to 73% before).
Furthermore, the PREP2 algorithm did not rely on MRI data any-
more, thereby facilitating its clinical implementation. A study com-
paring the lengths of rehabilitation stays suggested a real-world
relevance of the PREP predictions: patients in an intervention
group as well their therapists were disclosed their PREP outcome
predictions at the beginning of the rehabilitation stay.129 Patients
in this group could then be discharged a week sooner than the pa-
tients in the control group lacking information on the additional
PREP estimate. Of note, this finding was controlled for upper limb
impairment, age, sex and comorbidities (implementation group: n
=110, 11 days, control group: n= 82, 17 days). Furthermore, there
were no adverse effects on later functional outcomes. The authors
explained the shorter rehabilitation period by an increase in the
therapists’ confidence and modification of therapy content in
view of the outcome prediction. Importantly, classification accur-
acy has been shown to be decreased in case of measuring initial
performance 2 weeks post-stroke instead of within the first 72 h
(91 patients).131

Structural imaging

Structural neuroimaging is well implemented in routine diagnostic
pathways for treating stroke patients. Therefore, using this infor-
mation for outcome prediction seems particularly feasible in a clin-
ical setting, and indeed, several studies have already provided clear
links between motor outcome and structural markers, such as im-
aging parameters reflecting pre-stroke brain health or lesion loca-
tion for example with respect to fibre tracts.132–139

Several studies pursued a hypothesis-driven approach focusing
on particular anatomical structures such as the corticospinal tract
(CST)—the most important motor output tract of the brain. For ex-
ample, the amount of damage to the CST, as estimated by the spa-
tial overlap between stroke lesion and tract volume, is strongly
associatedwith the level ofmotor impairment in the chronic phase
post-stroke (50 participants, in-sample R2= 0.71).133 Furthermore,
Feng and colleagues135 presented evidence that CST lesion and
the initial motor score performed on par when explaining the final
motor outcome 3months after stroke. To demonstrate the general-
izability of findings, analyses were conducted in two separate
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datasets, considering 37 patients for a training cohort and further
39 for a validation cohort. In the validation cohort, CST-lesion
load and the initial motor score explained 69% and 62%
(out-of-sample) variance of the final Fugl–Meyer score.
Interestingly, CST-lesion load was also significantly associated
with realized recovery, albeit to a limited degree, explaining �20%
of the in-sample variance (48 patients, with realized recovery=
[follow-up − initial motor score] / [maximum score − initial
score]).140 Likewise, studies based on diffusion tensor imaging
(DTI) suggest significant associations between measures of CST in-
tegrity and long-term functional outcomes as reflected by the mRS
3–12 months after stroke.141–144

In contrast to the low-dimensional data underlying
CST-lesion-based predictions of stroke outcomes, multivariate ap-
proaches have the capacity to capture high-dimensional whole-
brain lesion patterns. Thereby, they can consider specific spatial
distributions in high granularity, e.g. a particular combination of
lesioned voxels. For example, Forkert and colleagues145 leveraged
a multivariate SVM to predict favourable versus unfavourable
functional follow-up outcome in 68 patients (favourable 30 days
mRS≤2). The authors found that a favourable outcome could be
predicted with a cross-validated accuracy of 85%when considering
detailed information on lesion location as derived from MRI-FLAIR
images. Two recent studies demonstrated the feasibility of using
convolutional neural networks (CNNs) for a similar prediction
task, i.e. the prediction of favourable outcomes (90-day mRS≤2).
More specifically, Bacchi and colleagues146 trained CNNs in com-
bination with deep neural networks on information originating
from non-contrast CT and clinical data (e.g. age, sex, stroke sever-
ity and comorbidities) to generate predictions for 204 patients, and
achieved a test set accuracy of 74%. Nishi and colleagues147 relied
on diffusion-weighted MRI (DWI) of 324 patients to predict favour-
able outcomes, and demonstrated superior test set performance of
their deep learning model compared to simpler baseline models
(deep learning model: AUC= 0.81 versus ASPECTS: AUC=0.63).
Several further studies considered imaging data from a database
of a 132 first-time ischaemic and haemorrhagic stroke

patients.148,149 Two weeks after stroke, DWI-derived lesion volume
itself only explained a small amount of variance (cross-validated R2

,20%) in any of the evaluated functional domains (motor, lan-
guage, attention, memory, vision). However, explained variances
increased when information on lesion location was added
(between 25% and 54% for motor deficits, language and attention/
visual field biases). Only in case of verbal and spatial memory ex-
plained variance still totalled ,20%, which probably reflects their
less localized representation in the brain compared to the other
functional domains.148 These analyses relied on a pipeline com-
prising ridge regression and leave-one-out cross-validation. To re-
duce the high-dimensionality of voxel-wise lesion location
information, lesionmapswere also embedded in lower dimension-
al space via principal component analyses (PCA) before regression
analyses.

The aim of a subsequent study relying on the same dataset was
to predict the domain-specific 3-month outcomes (in contrast to
2-week outcomes)150: lesion size, age, educational attainment,
hours of therapy and domain-specific scores obtained in the sub-
acute post-stroke phase could explain in-sample variances be-
tween 42% for attention at the lower and 70% for language
impairments at the higher end in a linear regression framework.
When PCA-transformed lesion location information was added to
the models, prediction performance significantly increased for
models explaining language, motor and attention impairments
(4.0–13.0% increase in explained variance). However, explained
variance remained unchanged in case of the verbal and spatial
memory domains, suggesting once again that there is no
one-size-fits-all solution, and some deficits may not be straightfor-
wardly explained by lesion location alone. Furthermore, it is im-
portant to note that the inclusion of hours of therapy as input
variable in a prediction algorithm of stroke outcomes may be prob-
lematic, given that this value is not necessarily known in advance
and hence cannot easily be entered into a prediction algorithm at
the beginning of rehabilitation.54 Last, yet another study indicated
that more sophisticated neuroimaging parameters may outperform
simple lesion location ones. Accordingly, DTI-derived axial diffusion

Figure 2 Prediction of ARAT score-based upper limb recovery potential via the PREP2 algorithm. The PREP2 algorithm combines several assessments
in a decision-tree-like fashion considering the SAFE score, age, NIHSS andMEPs. The first decision step is based on the SAFE score, which captures the
ability of shoulder abduction and finger extension, using the Medical Research Council grades (0: no palpable muscle activity, to 5: normal power)
within the first 3 days after stroke onset. In the case of a SAFE score of 5 or above, the next decision is based on the patient’s age. If younger than
80 years, outcome is predicted to be excellent. If older than 80 years, it is once again the SAFE score that differentiates between outcomes: The algo-
rithm predicts excellent outcome in case of a score of 8 or higher and good outcome, if lower than 8. If, however, the patient achieves a SAFE score
below 5, the next decision step considers the presence or absence of MEPs on transcranial magnetic stimulation (TMS) of the ipsilesional motor cortex
on Days 3–7 after symptom onset. If MEPs are present, the patient is assigned to the second-best outcome group, i.e. a good outcome. Absent MEPs, in
contrast, prompt the consideration of the NIHSS on Day 3: a score below seven leads to the prediction of limited outcomes, while an NIHSS score of
7and above results in the prediction of the lowest, i.e. poor outcome. Adapted from Stinear and colleagues,130 with permission.
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maps were shown to yield higher prediction accuracies of 3-month
functional outcomes compared to simple lesion segmentationmaps
in a sample of 87 patients (median cross-validated accuracy: 82.8
and 76.7%, respectively).151

Taken together, the studies reviewed above demonstrate that
subacute and chronic post-stroke impairments in several function-
al domains can be better explained, if information on lesion loca-
tion is included. Nonetheless, the variance that could be
explained varied widely for different outcomes—for example
from 4% to 54% in the work by Corbetta and colleagues.148 Thus,
these results raise the question whether sample sizes larger than
the ones presented here may facilitate deriving more informative
low-dimensional lesion representations. Independent of sample
size, it may be also necessary to increase the spatial resolution as
even 1-mm isotropic voxel scans may still not capture the interin-
dividual variability that is seen in microscopical analyses of histo-
logical brain sections, especially with respect to fibre tract
anatomy.152

Functional imaging

In addition to structural scanning, functional MRI has become a
valuable method to infer post-stroke alterations of neuronal activ-
ity and also enable individual predictions.153–156 This technique al-
lows to draw conclusions on neural activity non-invasively on the
basis of changes of blood flow and oxygen content.157 Functional
imaging can come in two forms: task-based and resting-state func-
tional MRI. While participants are asked to perform a specific task
in the first scenario, they are required to lie motionless but awake
in the scanner in the second scenario. Analyses are then either
centred on activity changes in certain brain areas or functional
connectivity strengths between brain areas, respectively.158

Sample sizes are usually considerably smaller in functional im-
aging studies than in other stroke outcome prediction scenarios,
due to methodological challenges (longer acquisition times, low
signal-to-noise ratio, signal susceptibility to head movement, MRI
contraindications) and substantially higher costs. Interestingly,
as functional MRI datasets can be considered high-dimensional
data containing thousands of voxels, AI approaches have been fre-
quently used to detect certain patterns of activity or connectivity
that allow prediction of the functional outcomes of a single patient.
Importantly, here we focus only on those functional neuroimaging
studies that used rigorous cross-validation schemes to generate
single-subject predictions.

Two studies have made use of functional MRI data acquired in
the first days after stroke tomake predictions on clinical motor im-
pairment at the time of scanning and follow-up motor impairment
4 to 6 months post-stroke (40 and 21 stroke patients).159,160 These
studies were conducted in prediction-focused frameworks similar
to the structural stroke studies described previously, e.g. by apply-
ing SVMs combined with nested leave-one-out-cross-validation. In
a first study, resting-state functional MRI data were used to calcu-
late whole-brain connectivity to a ‘seed region’, i.e. reference re-
gion, in the ipsilesional, yet structurally intact primary motor
cortex. Subsequently, this connectivity information was instru-
mentalized to discriminate between stroke patients with andwith-
out acute hand motor deficits as well as healthy controls.159

Prediction models were successively refined to tell apart stroke pa-
tients with favourable versus unfavourable motor outcome several
months after stroke.160 Notably, prediction here relied on task-
based functional MRI, instead of resting-state functional MRI
data. Motor deficits were measured as Motricity Index of the

hand161 in the first and grip force and ARAT score in the second
study.162 Both studies reported cross-validated prediction
accuracies of .80% (82.6% motor-stroke versus non-stroke, 87.6%
motor-stroke versus non-motor-stroke in the first study159 and
86% favourable versus unfavourable motor outcome in the second
study160). In case of the discrimination of motor-stroke versus non-
stroke patients, classification performance particularly relied on
interhemispheric primary motor cortex M1—M1 as well as ipsile-
sional M1—premotor areas connectivity profiles (Fig. 3). As the
resting-state data investigated in the first study was collected dur-
ing routine scanning sessions, the authors underline the clinical
practicability of their approach, particularly for acute and severely
affected patients.159 Another milestone study, once again relying
on the 132 stroke patients introduced in the previous section on
structural scans,148,150 compared predictive capacities of
dimensionality-reduced structural lesion topography and func-
tional connectivity via ridge regression (Fig. 4): functional connect-
ivity allowed for more accurate cross-validated predictions in
neurocognitive domains (functional connectivity: visual and verbal
memory: R2=0.36 and R2= 0.42, respectively). Nonetheless, lesion
topography outperformed functional connectivity in case of pre-
dictions in sensorimotor domains (structural lesion information:
vision and motor impairments: R2=0.50 and R2=0.45, respective-
ly).149 Both imaging and behavioural datawere obtained on average
2 weeks post-stroke. Altogether, these rather moderate levels of
explained variance also suggest that a substantial fraction of vari-
ability in outcome may originate from factors that are not yet cap-
tured and considered in current studies. The studies reviewed in
this section made use of SVMs as well as ridge regression to com-
pute predictions on behavioural outcome after stroke. These two
approaches are influenced by so-called hyperparameters deter-
mining the amount ofmodel regularization. In the case of ridge lin-
ear regression, a regularized version of linear regression, as e.g.
applied in the study by Siegel and colleagues,149 the hyperpara-
meter lambda determines the amount of shrinkage of the regres-
sion coefficients.25 Likewise, the parameter C defines the amount
of regularization of the SVM applied in Rehme and colleagues.159,160

However, the optimization of these hyperparameters requires some
extra care to avoid overfitting. One way to achieve a safe optimiza-
tion can, for example, be a nested cross-validation framework, i.e.
the combination of inner and outer cross-validation loops (Fig. 5).
When the computational burden is high, as in case of
deep learning approaches, nested cross-validation might not be
feasible and, alternatively, the entire dataset can be split in three
parts: training, test and validation sets. The optimal hyperpara-
meters can then be obtained by relying on training and test sets,
while less biased performance estimates can be attained in the val-
idation set. However, such an approachmay require relatively large
datasets.

General considerations
Overview of employed algorithms

Having illustrated the various data fields of motor-focused stroke
outcome studies, it becomes apparent that each field may have
its unique repertoire of preferably used (prediction) algorithms
(for a theoretical overview on algorithms, see Box 1). ‘Classic’motor
recovery studies that consider the sole recovery potential, e.g. de-
fined as maximum minus initial Fugl–Meyer score as input vari-
able, primarily rely on relatively simple, unregularized linear
regression to model quantitative recovery scores, i.e. the change
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between follow-up and initial Fugl–Meyer scores. Particularly as fit-
ted in-sample, these models have proven to be particularly easy to
interpret. On the other hand, there seems to be a preference for lo-
gistic regression models within the field of prognostic studies of
raw (and not change score) follow-up outcomes (binary categories:
favourable versus unfavourable functional outcomes). These

logistic regression analyses are often combined with stepwise pro-
cedures to select final input variables and construct amodel as par-
simonious as possible. While the stepwise feature selection step
can indeed lead tomemorable sets of predictors and allow the con-
struction of simple, yet clinically practical point scores, there are
some drawbacks to stepwise feature selection procedures; for

Figure 4 Overview of the analytical pipeline to predict behavioural impairments in 100 stroke patients based on structural and functional MRI. (A)
Manual lesion segmentation in case of structural lesion information and atlas-defined region-of-interest (ROI)-based estimation of functional con-
nectivity in case of functional data. (B) Structural lesion information or functional connectivity data is entered into ridge regression models to predict
behavioural outcomes in a leave-one-out cross-validation. (C) Comparison of predicted and true behavioural scores to determinemodel performance.
(D) Visualization of model weights as estimated via ridge regression. Adapted from Siegel and colleagues (Copyright 2016, National Academy of
Sciences, USA).150

Figure 3 SVM-based prediction ofmotor deficits after stroke.Whole-brain functional connectivity to an ipsilesional M1 seed regionwas computed in a
voxel-wise fashion for 20 stroke patients with motor impairments, 20 stroke patients without motor impairments and 20 non-stroke controls. (A)
Stroke patients with motor impairment could be differentiated from non-stroke controls with an accuracy of 82.6%. (B) Similarly, the classification
of stroke patients into those with and without motor impairments resulted in an accuracy value of 87.6%. Regions coloured in blue support the pre-
diction of non-stroke controls or stroke patients without motor impairment; their functional connectivity is enhanced in comparison to stroke pa-
tients with motor impairments. Regions coloured in red, on the other hand, indicate a higher functional connectivity in patients with motor
impairment and contributed to their classification. Adapted from Rehme and colleagues,159 with permission.
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example, neither forward nor backward feature selection are guar-
anteed to result in the overall best model as models are con-
structed and tested iteratively and not all conceivable models are
considered.83 Moreover, the performance of stepwise selection
models might be overestimated, i.e. too optimistic.163

Decision-tree-based algorithms may be a natural choice when
combining information from different sources, such as behaviour-
al, neurophysiological and neuroimaging ones, as in case of the
PREP or PREP2 algorithm.128 Decision trees perform regression
and classification tasks by finding sequences of splitting rules
that segment the space of input variables into simple regions.
They may excel in being transparent, easily interpretable and ap-
plicable. It has to be noted, however, that more advanced tree-
based algorithms, such as random forest or gradient boosting

algorithms that combine multiple individual decision trees and
are thus more difficult to interpret, usually outperform simple
decision-tree algorithms.164

Last, SVMs and regularized linear regression (e.g. ridge regres-
sion) have been frequent choices to evaluate structural or function-
al neuroimaging data, given that they have proved to be capable of
handling high-dimensional data particularly well. While ridge re-
gression is mostly still combined with some initial (PCA-based) un-
supervised dimensionality reduction preprocessing step, SVMs
have been shown to generate good predictions despite the combin-
ation of moderate sample sizes and thousands of voxels per pa-
tient.165 More generally, SVMs can employ the ‘kernel trick’, i.e.
map input information to high-dimensional feature spaces and
by these means produce non-linear predictions, that may

Figure 5 Schematic illustration of nested cross-validation. Two loops of cross-validation are performed, with hyperparameter optimization being per-
formed in the inner, or nested, loop. Adapted from Varoquaux and colleagues,103 with permission.

Figure 6 Comparison of various learning algorithms with respect to their model transparency and complexity.Model transparency here refers to the
interpretability of input variables and thus the potential scientific insight and mechanistic understanding that can be gained. More complex models,
in return, maximize the predictive power. Altogether, increased transparency may come at the cost of decreased model complexity and associated
decreased predictive power and vice versa. Figure adapted from Bzdok and Ioannidis,212 with permission.
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automatically capture complex relationships between the input
and output. In contrast, ridge regression, as regularized version
of linear regression, is a linear prediction model. Interestingly,
deep learning has also made its entrance into several stroke out-
come predictions scenarios. This update may have been incenti-
vized by deep learning approaches’ promising success in further,
often machine vision-focused medical scenarios. For example,
deep learning has been shown to excel when detecting skin can-
cer,32 inferring genetic mutations in cancerous tissue from routine
histopathology tissue slides166 or evaluating mammography
scans.167,168 As deep learning models typically show most favour-
able performances when trained on particularly large samples, of-
ten .105–106, future studies are warranted to investigate the
usefulness of deep learning approaches for stroke outcome predic-
tions more broadly. Particularly as data sample sizes may not grow
quickly enough and may not reach the standards in other
non-stroke fields, successful deep learning applications might be
limited to specific tasks, such as image registration.169,170 Last, it
is important to consider that the ‘No Free Lunch’ theorem171 guar-
antees that all algorithms perform similarly on average when all
possible problems are taken into account. Thus, while each field
currently appears to employ a unique methodological toolset, an
enhanced methodological exchange between researchers of the
various displayed fields, that may motivate the application of sev-
eral learning algorithms at once, may be generally beneficial.

General advantages and promises

AI approaches in stroke research have already facilitated promising
developments in outcome predictions, as well as additional insights
in the (neurobiological) factors and mechanisms associated with
poor versus good outcomes. Importantly, we have highlighted the
delicate difference between in-sample inference and out-of-sample
prediction-oriented studies. The former—inference—capitalizes on
the interpretability of findings, at best describing an underlying
mechanism. In-sample inference, for example, focuses on estimat-
ing the importance of individual input variables in explaining the
outcome of interest across an entire group (and not individual pa-
tients). In contrast, out-of-sample computations are central to pre-
diction studies that put an emphasis on the best generalization
performance possible.83,84,172 This approach targets optimal predic-
tions for an individual patient not only with respect to outcome, but
also concerning the response to a certain treatment.

AI-based prediction approaches hold several advantages over
‘classical’ tools used in the field of post-stroke recovery. Most stud-
ies in stroke outcome research still apply some variant of linear or
logistic regressionmodel. Although suchmodels are often easier to
interpret, they cannot automatically exploit non-linear relation-
ships and interactions, which can lead to poorer prediction perform-
ance. These limitations can be overcome with machine-learning
algorithms, such as decision-tree-based algorithms, SVMs and
neural networks. Although these techniques are computationally
more demanding and the interpretation of the model parameters
more complex, they might augment the prediction performance
by exactly the amount that is necessary to turn an interesting
predictionmodel into a diagnostic tool. The PREP algorithm128,129 re-
presents a promising example. This decision-tree-based algorithm
has been shown to generate accurate predictions that
are clinically beneficial: information on outcome prediction
shortened rehabilitation stays without any reduction in functional
outcome.130 Nonetheless, recent non-stroke prediction-focused
studies suggest that these more complex relationships, i.e. non-

linearities and interactions, may not be generally present or readily
exploitable in clinical datasets with for example small to moderate
sample sizes (n, 100).173,174 Thus, the authors of these studies cau-
tion against unrealistic expectations that the application of
machine-learning algorithms instead of simple linear models will
automatically enhance prediction performance.

In addition to using linear models, most of the studies high-
lighted in this review still relied on specifically curated datasets
and considered a circumscribed list of input variables only.
However, the combination of out-of-sample testing and machine-
learning algorithms may allow for the consideration of a broader
range of input variables—as long as data sample sizes increase in
parallel. For example, it would be conceivable to jointly consider
multimodal, structural and functional imaging data175 or metabol-
ic, demographic and mechanistic variables176 to enhance predic-
tion performance. Overall, it seems likely that it will be such a
combination of multiple data sources, or essentially neurobiologi-
cally based biomarkers, that will facilitate themost accurate stroke
outcome prediction performance at a personalized level. Future
studiesmay hence not only explore a richermethodological toolset
(see the ‘Overview of employed algorithms’ section) but could also
plan to systematically and explicitly investigate the combination of
a variety of biomarkers.

What is more, machine-learning-based prediction performance
may be boosted even further whenmaking use of unsystematically
collected, but considerably bigger samples.84 ‘Unsystematically’
here refers to the fact that collected variables might not have
been hand-picked, but acquired without any previous hypothesis
and selective inclusion and exclusion criteria. Examples for these
kinds of data could be registry data, electronic health records or
clinical stroke scans that have been recorded independent of spe-
cifically planned research projects. The use of general, unstruc-
tured clinical data may furthermore enable a better
representation of the full spectrum of stroke patients: These pre-
diction scenarios may also include subgroups that are often ne-
glected in stroke outcome studies, such as very young, very old,
very severely affected or multimorbid stroke patients with recur-
rent strokes or other interfering neurological conditions.36,50,177,178

A further, desirable next step to enhance current prediction
scenarios is the consideration of outcomemeasures that go beyond
coarse-grained classifications, such as favourable versus unfavour-
able functional outcome based on binarized or ordinal scores like
the mRS. Several studies already provided evidence that the focus
on detailed scales, such as the ARAT or Fugl–Meyer assessment for
motor impairments of the upper limb, is feasible and instrumen-
tal.159,160 These more detailed motor assessments could be
amended by scores evaluating impairments in further functional
domains, such as the cognitive or language domains, and then in-
tegrated into multi-outcome prediction algorithms.179 Such a
multi-outcome approach might represent a more holistic and
hence realistic approach, as impairments are rarely limited to
just one functional domain148 and may even interact with one an-
other during recovery (e.g. motor recovery and cognitive dysfunc-
tion).180 In conjunction with the selection of outcome scales, it
will be important to reflect on the representation of the outcome:
Do we want to predict the change between follow-up and initial
scores or the final, follow-up score directly? Directly predicting
the final score, while of course taking into account the initial base-
line score, may be more desirable for several reasons. First, it cir-
cumvents any confounds induced by mathematical coupling that
arises when a change score is predicted by an initial score (see
the ‘Stroke prognostic scales based on clinical data only’ section).
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In particular, a linear regression model of raw outcome scores
could be transformed into a change score model, which would
then additionally allow for the interpretation of coefficients with
respect to the classic proportional recovery concept.102,181

Second, interpreting recovery solely on the basis of the change be-
tween follow-up and initial scores may mix up different patient
subgroups and neurobiological mechanisms underlying different
forms of functional recovery. For example, it is likely that a recov-
ery change score of 10 points on the Fugl–Meyer assessment scale
is driven by very different neurobiological processes depending on
whether recovery started with an initial score of 5 (very severely af-
fected) or 55 (almost no deficits). In turn, a patient that has recov-
ered 20 points on the Fugl–Meyer scale, but started with an initial
score of 5, is still considerably less recovered than a patient reco-
vering 10 points but starting from 55. Therefore, follow-up scores
rather than change scores seem to be better suited for recovery pre-
diction scenarios. Complementing the increase in granularity of
targeted outcomes, performance evaluation metrics could also be
intelligently varied: the AUROC is the currently predominantly
used score for binary prediction tasks. This one-dimensional ap-
proach could be extended to a multidimensional one by consider-
ing numerous, complimentary metrics, such as positive
predictive values, sensitivity and specificity at once.182

Altogether, improving predictions by all thesemeansmight even-
tually resolve the disenchantment stemming from reports of low
real-world impact as few of the prediction models are actually used
in clinical routine91,106,183 and render them more clinically useful.

Disadvantages and pitfalls

Interpretability has always been of particular importance for re-
searchers, independent from their specific field of research.184

However, as mentioned before, some modern learning algorithms
capture and instrumentalize patterns in high-dimensional data185

with sometimes even millions of parameters that may simply be
too complex to be readily comprehensible. These characteristics
have led to the denotation black box and triggered some scepticism
with which these modern statistical tools are regarded.186 Yet,
these black-box characteristics may be acceptable when they pro-
duce the best prediction results including high generalization per-
formance, as increasing interpretability—as found in simpler, e.g.
linear, models—often comes at the cost of decreasing prediction
performance.88 Essentially, there is currently no consensus on
what level of interpretability is required for safe deployment of pre-
dictionmodels.15 However, independent of the level ofmodel inter-
pretability, it seems necessary that human intelligence acts
together with AI.187 In particular, due to their capacity to extract in-
formation from otherwise intractable high-dimensional data, AI or,
more specifically, machine-learning approaches could represent a
very effective initial step. Medical professionals, such as physicians
and therapists, could then include this information into their treat-
ment decisions to achieve an optimal outcome for their patients.
Physicians, for example, tend to be too optimistic and vastly over-
estimate life expectancy of terminally ill patients.188 In contrast,
deep learning-based predictions were shown to generate more ac-
curate life expectancy predictions and hence might have yielded
better therapeutic decisions.189 As outlined above (the ‘Stroke prog-
nostic scales based on clinical data only’ section), some stroke out-
come models have also already been shown to outperform the
predictions made by physicians and/or therapists.119–121 At the
same time, for a safe implementation of machine-learning rou-
tines, physicians and therapists need to check on a regular basis

whether the models established for a certain diagnostic or thera-
peutic scenario are still valid.187 Incongruencies may, for example,
arise in case of a ‘dataset shift’, i.e. when there is a mismatch be-
tween the data used during model development and the data cur-
rently used for model deployment.190,191 As a prominent, recent
example, a major US hospital had to deactivate model-based
sepsis-predictions to prevent spurious alerts after patients’ charac-
teristics had substantially changed with the onset of the corona-
virus disease 2019 pandemic.191 The same sepsis-alert model has
furthermore been shown to perform only poorly in independent,
real-world data,192 motivating a constant ongoing surveillance
and validation of already established prediction models.

The current curriculum in medical school might thus be revised
to equip physicians with the necessary toolset, e.g. in the field of
health informatics.35 Close collaborations between various disci-
plines might be strengthened to successfully combine statistical,
computational and human perspectives.193,194 These efforts may
then increase physicians’ abilities to recognize both the benefits
and limitations of AI in healthcare195 and enhance the knowledge
on how to, for example, continuously quantify and validate predic-
tion performance of used prediction tools. Recently presented
checklists and guidelines for the transparent reporting of AI algo-
rithms and interventions in medicine may represent an essential
foundation.29,196,197 In general, reliability, privacy and fairness are
further important ethical aspects that need to be reconsidered and
redefined in greater depth in an interdisciplinary fashion when
using more machine-learning algorithms in upcoming years.15

Last, it will be important to warrant satisfactory data quality.
Otherwise, wemay be at risk of encountering the big data paradox,
as Xiao-Li Meng outlines it: ‘Themore data, themore surely we fool
ourselves’.198 An algorithm can hardly be any better than the data
that it learns from. Data acquired in the clinical routine might be
noisy and biased, since, for instance, the patient moved during
MRI scanning, it took too long until the bloodwas analysed or a jun-
ior doctor systematically misunderstood how to rate certain symp-
toms of the NIHSS score. Missing data, particularly those missing
not at random, represent further challenges.182 An important,
somewhat trivial, but often neglected aspect is the validity of the
data with respect to what can be really inferred from them. For ex-
ample, DTI-based neuroimaging gives the impression of assessing
anatomical fibre tracts, but they remain model-based approxima-
tions with a coarse spatial resolution when considering the nearly
1000-fold smaller diameter of axons.152 Likewise, functional MRI is
based on a haemodynamic signal, which is much slower and ana-
tomically blurrier than true neuronal activity.157 These issues are
further complicated by strong interindividual variability, which is
encountered at basically all levels of the CNS. For example, ana-
lyses of post-mortem brains have revealed that even the location
of primary areas like M1 or primary visual cortex, which represent
highly conserved brain regionswithin and across species,may vary
in a centimetre range between subjects independent of anatomical
landmarks.199 Decomposing anatomical variability is technically
feasible to a certain degree, but quickly meets its limits when it
comes to spatial and temporal resolution issues of neurons and
axons.

To proceed with any of these aspects mentioned, medical doc-
tors, neuroscientists, statisticians, computer scientists and ethi-
cists ideally need to work in an interdisciplinary fashion.17,193,194

They will need to ensure that inherent biases in data are detected,
react accordingly, ignite discussions and develop international
standards for big data analytics.191 In this way, it might be possible
to realize data science at its best and develop clinically helpful
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models—as, after all: ‘All models are wrong, but some are useful’.
(George E. P. Box).

Conclusion and open questions
Prediction approaches based on AI have the great potential to revo-
lutionize medical care in general. However, it remains to be seen
whether expectations can be sustainably met. It is furthermore es-
sential to recall that machine-learning based prediction scenarios
should not be mistaken as causal inference.200 In this context, ran-
domized clinical studies are an exemplary study type that permits
conclusions on whether a specific treatment causally underlies a
better outcome in the treatment group. However, we may not gen-
erally be able to decide onwhether a (standard) treatment is effect-
ive or not and whether it should e.g. be stopped based on
machine-learning-derived outcome predictions. To infer causal ef-
fects, we would rather have to estimate what was most likely to
happen, as well as the counterfactual prediction, i.e. what would
have happened, if things had been different.201 As Wilkinson and
colleagues200 put it:Wemay not be able to learn this counterfactual
prediction by relying on the combination of machine learning and
observational data—as they do not contain any information on
what would have happened given altered circumstances.

Furthermore, if it is not only the physician who is undertaking
the clinical decision-taking process, but a prediction algorithm,
who is responsible in case of (fatal) error? At present, it is still the
physician who has to take the final responsibility and to verify
that the result of a prediction algorithm complies with the current
medical standards. How to deal with the situation when an effect-
ive prediction algorithm is available for a doctor but is not used, es-
pecially when the doctor’s decision was wrong and harmed the
patient? How can we ensure that we comply with patients’ privacy
rights and protect health data from potential cyber-attacks?202

How can we guarantee that our prediction models are fair, i.e.
that prediction performance does not vary depending on ethnicity
or gender? This aspect might be of particular concern since
machine-learning approaches may sometimes even enhance
biases present in historical datasets that, for example, include
skewed representations of people of colour, women and under-
served populations.203 Last, how do these changes affect the doc-
tor–patient relationship and how can we unlock the potential of
AI assisted healthcare to eventually enhance our physician time
veridically spend on ‘caring for the patient’?187,204

Finally, advocating for more AI-based studies certainly does not
negate the value of small data studies using inference statistics,
which—especially if founded on strong theory, robust measure-
ment and effective error variance control—can reveal systematic,
functional relationships on the individual subject level205 and
may thus help to take a more mechanistic perspective on the de-
velopment of therapeutic approaches for stroke recovery.206 We
have also not considered any Bayesian approaches here that hold
great promise of capturing essential characteristics of stroke recov-
ery.207–209 In the very end, conclusions originating from different
methodological approaches may be merged to maximize patients’
well-being andwemay particularly embrace novel prediction tech-
niques to augment our human performance as medical doctors.
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