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Abstract: We demonstrate theoretically, using multiple-time-scale perturbation theory, the existence
of nonseparable superpositions of elastic waves in an externally driven elastic system composed of
three one-dimensional elastic wave guides coupled via nonlinear forces. The nonseparable states
span a Hilbert space with exponential complexity. The amplitudes appearing in the nonseparable
superposition of elastic states are complex quantities dependent on the frequency of the external
driver. By tuning these complex amplitudes, we can navigate the state’s Hilbert space. This nonlinear
elastic system is analogous to a two-partite two-level quantum system.
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1. Introduction

The notions of superposition of states and entanglement lay at the core of today’s second
quantum revolution [1]. Nonlocality and nonseparability are two distinctive attributes of entangled
superpositions of states. While nonlocality is a unique feature of the strangeness of quantum mechanics,
nonseparability is not. The notion of classical “entanglement”, i.e., local nonseparable superposition
of states has received a lot of attention from the theoretical and experimental point of views in the
field of optics [2–4]. Recently, remarkable new behaviors of sound, analogous to quantum physics,
have also been revealed [5]. For instance, elastic waves in one-dimensional (1D) waveguides with
broken time reversal or parity symmetry have been shown to obey Dirac-like equations and possess
spin-like topology [6,7]. The amplitude of these pseudospin elastic waves takes the form of a spinor in
the two-dimensional Hilbert space of the direction of propagation along the waveguides. In parallel
arrays of elastically coupled one-dimensional waveguides, the amplitude also spans an N dimensional
Hilbert subspace, where N is the number of waveguides, and becomes analogous to orbital angular
momentum (OAM) degrees of freedom [8,9]. We have shown theoretically and experimentally that
linear combinations of elastic states taking the form of tensor products of OAM and spinor amplitudes
can form nonseparable states reminiscent of “entangled” Bell states [10]. We demonstrated that the
amplitude coefficients of the nonseparable superposition of states are complex due to dissipation
in the constitutive elastic materials. By tuning these complex amplitudes, we have shown that we
can experimentally navigate a sizeable portion of the Bell state’s Hilbert space. These states lie in
the tensor product Hilbert space of the subspaces associated with the direction of propagation and
OAM degrees of freedom. The dimension of this product space scales linearly with the number of
waveguides as 2 N. In order to achieve the full potential of the second quantum revolution, it would
be highly desirable to construct classical nonseparable states that lie in an exponentially complex
Hilbert space. More specifically, one would like to design a multipartite elastic system composed of
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N subsystems, each of which is able to be in at least two states. The dimension of the Hilbert space
of such a system can take the value 2N, which scales exponentially with the number N. In this paper,
we devise such a system. This system is composed of 1D elastic waveguides which are coupled via
nonlinear forces. The nonlinear forces are quadratic functions of the relative elastic displacements in
adjacent waveguides. The elastic medium is also assumed to be dissipative. The elastic nonlinearity
by enabling wave–wave interaction is necessary to achieve wave mixing and, therefore, allowing the
formation of waves for which the frequency and wave number are the sum of the frequencies and
wave numbers of parent linear waves. These nonlinear waves are product waves of the parent waves
and, therefore, span a Hilbert space, which is the product of the spaces supporting the parent waves. It
is in that space which exploration is enabled by the nonlinearity that one can observe nonseparable
superpositions of elastic waves. In this paper, the nonlinear coupling is treated as a perturbation. Here,
we develop a multiple-time-scale perturbation theory for a system composed of three nonlinearly
coupled waveguides driven by an external harmonic force. The driven elastic system can be treated
as a multipartite system composed of subsystems (each subsystem corresponding to a well-defined
OAM elastic band). Considering finite waveguides and, therefore, discrete plane wave states, for each
OAM band, we limit the plane wave solutions to those two states that are in the near vicinity of the
frequency of the external driver. We show that to first order in perturbation, if we excite two OAM
bands and two plane wave states in each band, the elastic system can be visualized as a two-partite
two-level system which can support superpositions of nonlinear modes which span an exponentially
complex Hilbert space. This space, of dimension 22, is the tensor product of the Hilbert space of two
two-level subsystems. These nonlinear modes are shown to be nonseparable. The amplitudes of the
superposition of nonlinear modes are complex due to dissipation and can be tuned by varying the
driving frequency. Such behavior is a local analogue of the nonseparable superpositions of states of
two-particle two-level quantum systems.

2. Model System and Method

We consider a system composed of three coupled one-dimensional mass-spring chains (Figure 1).
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Figure 1. Schematic illustration of the system composed of three coupled one-dimensional elastic
waveguides. The red springs couple the three elastic chains identified with blue springs. See text for
meaning of symbols.

The chains and coupling springs obey linear elasticity. The discrete linear elastic equations of
motion are given by the following:

m
∂2un

∂t2 − knn(un+1 − 2un + un−1) − kc(vn − un) + η
∂un

∂t
= 0 (1a)

m
∂2vn

∂t2 − knn(vn+1 − 2vn + vn−1) − kc(un − vn) − kc(wn − vn) + η
∂vn

∂t
= 0 (1b)
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m
∂2wn

∂t2 − knn(wn+1 − 2wn + wn−1) − kc(vn −wn) + η
∂wn

∂t
= 0 (1c)

In Equations (1a)–(1c), un, vn and wn are the displacements of the nth mass of chain 1, 2, and 3,
respectively. m is the mass, and the viscous damping coefficient η models the dissipation. knn is the
stiffness of the springs in the waveguide chains. Here, we take the coupling constant between chains
kc to be the same for all coupled chains. In the limit of long wavelength compared to the inter-mass
spacing, a, the equations of motions (1) of the three coupled linear harmonic chains of masses and
springs become the following:

∂2u
∂t2 − β

2 ∂
2u
∂x2 − α

2(v− u) + ή
∂u
∂t

= 0, (2a)

∂2v
∂t2 − β

2 ∂
2v
∂x2 − α

2(u− v) − α2(w− v) + ή
∂v
∂t

= 0, (2b)

∂2w
∂t2 − β

2 ∂
2w
∂x2 − α

2(v−w) + ή
∂w
∂t

= 0, (2c)

where β2 = knna2/m, α2 = kc/m and ή = η/m.
The coupling terms in Equations (2a)–(2c) can be grouped into α coupling matrix form

1 −1 0
−1 2 −1
0 −1 1

 acting on the vector


u
v
w

. The eigen vectors of the coupling matrix are isomorphic to

an orbital angular momentum (OAM). The three normalized OAM eigen vectors corresponding to the

eigen values λ1 = 0, λ1 = 1, and λ3 = 3, are: e1 =


e1u
e1v
e1w

 = 1
√

3


1
1
1

, e2 =


e2u

e2v

e2w

 = 1
√

2


1
0
−1

, e3 =


e3u

e3v

e3w

 = 1
√

6


1
−2
1

. The associated dispersion relations for plane wave solutions, eikxeiωkt, are given

by ω2
k = (βk)2, ω2

k = (βk)2 + (α)2 and ω2
k = (βk)2 + 3(α)2.

The coupled elastic system is then driven externally with the external force
→

F0 =


Fu

0
Fv

0
Fw

0

eiωt =
→

Feiωt

applied at x = 0.
The equations of motion of the driven coupled system become the following:

∂2u
∂t2 − β

2 ∂
2u
∂x2 − α

2(v− u) + ή
∂u
∂t

= Fu
0eiωtδx=0, (3a)

∂2v
∂t2 − β

2 ∂
2v
∂x2 − α

2(u− v) − α2(w− v) + ή
∂v
∂t

= Fv
0eiωtδx=0, (3b)

∂2w
∂t2 − β

2 ∂
2w
∂x2 − α

2(v−w) + ή
∂w
∂t

= Fw
0 eiωtδx=0, (3c)

At a steady state, the displacement field takes the form of a linear combination of frequency
modes: 

u(x, t)
v(x, t)
w(x, t)

 =
∑

k1

A1(k1)e1eik1x +
∑
k2

A2(k2)e2eik2x +
∑
k3

A3(k3)e3eik3x

eiωt (4)
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where

A1(k) =

1
√

3


1
1
1

.
→

F

ω2
01(k) −ω

2 − iήω
, A2(k) =

1
√

2


1
0
−1

.
→

F

ω2
02(k) −ω

2 − iήω
, A3(k) =

1
√

6


1
−2
1

.
→

F

ω2
03(k) −ω

2 − iήω
,

and writing A1(k) =
∣∣∣A1(k)

∣∣∣eiφ1(k), A2(k) =
∣∣∣A2(k)

∣∣∣eiφ2(k), and A3(k) =
∣∣∣A3(k)

∣∣∣eiφ3(k), we find φ1(k) =

tan1
(

ήω

ω2
01(k)−ω

2

)
, φ2(k) = tan1

(
ήω

ω2
02(k)−ω

2

)
and φ3(k) = tan1

(
ήω

ω2
03(k)−ω

2

)
. Here, ω01,ω02 and ω03 are the

eigen frequencies of the (1 1 1), (1 0 −1) and (1 −2 1) OAM eigen vectors. Equations (3a)–(3c) relate to
infinite chains, however, in the case of more realistic finite spring-mass chains, one expects to deal
with a finite set of modes labeled by a discrete set of wavenumbers. In Equation (4), we have used
discrete summation as a proxy for a finite system. In that case and in light of the Lorentzian line shape
of the amplitudes, A1,2,3, it is possible to conceive the use of isofrequency drivers which minimize
the amplitude of the e1 OAM eigen modes compared to that of e2 and e3. For instance, exploiting the

orthogonality of e1, e2 and e3, one may employ a driving force
→

F , which is a linear combination of e2

and e3. In that case, the first summation in Equation (4) will have only negligible amplitudes. We
subsequently limit the second summation to the two states k2 and k′2 with OAM eigen vector e2 and

frequency ω that contribute the largest amplitudes, namely A2 = A2(k2) and A′2 = A2
(
k′2

)
. Similarly,

the third sum in Equation (4) is also limited to the two states k3 and k′3 with the largest amplitudes

A3 = A3(k3) and A′3 = A3
(
k′3

)
. These states are illustrated in Figure 2. Note that here, for the sake of

simplicity of our demonstration, we use only positive wavenumbers but finite mass-spring chains
would also support negative wavenumber states.
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Equation (4) reduces then to the following:
u(x, t)
v(x, t)
w(x, t)

 = {[
A2eik2x + A′2eik′2x

]
e2 +

[
A3eik3x + A′3eik′3x

]
e3

}
eiωt (5)

Equation (5) represents the superposition of states of a two-partite system (with subsystems
identified by their OAM index, 2 and 3) possessing two levels (i.e., primed and unprimed wave
numbers). The amplitudes in this superposition are complex due to their Lorentzian character. This
means that one can tune the relative phase associated with these amplitudes by controlling the
frequency ω. eik2x and eik′2x form a basis for subsystem 2. eik3x and eik′3x form a basis for subsystem 3.

We now consider the coupled system with nonlinear coupling springs. The equations of motion
in the long wavelength limit take the form:

∂2u
∂t2 − β

2 ∂
2u
∂x2 − α

2(v− u) + ε(v− u)2 + ή
∂u
∂t

= Fu
0eiωtδx=0 (6a)

∂2v
∂t2 − β

2 ∂
2v
∂x2 − α

2(u− v) − α2(w− v) + ε(u− v)2 + ε(w− v)2 + ή
∂v
∂t

= Fv
0eiωtδx=0 (6b)

∂2w
∂t2 − β

2 ∂
2w
∂x2 − α

2(v−w) + ε(v−w)2 + ή
∂w
∂t

= Fw
0 eiωtδx=0 (6c)

The nonlinear quadratic terms correspond to forces that do not depend on the sign of the relative
displacements. This type of nonlinearity will occur in heterogeneous materials that contain microcracks,
for example [11]. This type of nonlinear term will lead to states with doubled frequency.

We now attempt to solve Equations (6a)–(6c) using multiple-time-scale perturbation theory [12];
the nonlinear term being the perturbation. For this, we consider ε to be a small quantity. The advantage
of multiple-time-scale perturbation theory is that it can capture nonlinear amplitude–frequency
interaction in systems with time-dependent amplitude and phase [13]. This is the case when multiple
waves with comparable amplitudes interact with each other, leading to multiple secular terms in the
dynamical equations. The additional degrees of freedom introduced via the multiple time scales are
necessary to obtain a perturbation solution. While approaches such as the molecular dynamics method
can also be utilized [14] to numerically solve nonlinear dynamical problems, analytical methods are
still useful tools to illuminate the multiple wave scattering processes in nonlinear one-dimensional
mass-spring chains, such as the one studied here.

We rewrite the displacements as polynomials in ε, that is, considering, as an example, the
displacement u:

u(τ0, τ1, τ2) = u0(τ0, τ1, τ2) + εu1(τ0, τ1, τ2) + ε2u2(τ0, τ1, τ2) + . . . (7)

with τ0 = t, τ1 = εt, τ2 = ε2t.
We also have the following:

∂u
∂t

=
∂u0

∂τ0
+ ε

(
∂u1

∂τ0
+
∂u0

∂τ1

)
+ ε2

(
∂u2

∂τ0
+
∂u1

∂τ1
+
∂u0

∂τ2

)
+ . . . (8)

and
∂2u
∂t2 =

∂2u0

∂τ2
0

+ ε

∂2u1

∂τ2
0

+ 2
∂2u0

∂τ1∂τ0

+ ε2

∂2u2

∂τ2
0

+ 2
∂2u1

∂τ1∂τ0
+ 2

∂2u0

∂τ2∂τ0
+
∂2u0

∂τ2
1

+ . . . (9)

Similar expressions can be obtained for the other displacements, v and w.
We illustrate below the expansion to first order of the nonlinear terms in Equation (6a):

(v− u)2= (v0 − u0)
2 + ε[(v0 − u0)(v1 − u1) + (v1 − u1)(v0 − u0)] + . . . (10)
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Inserting Expressions (7)–(10) and their equivalent forms for the other displacements into Equations
(6a)–(6c) leads to one equation to zeroth order in the perturbation, ε, one equation to first order in ε
and equations for subsequent higher orders. Here, we limit ourselves to the zeroth and first-order
equations in the perturbation. To zeroth order, we obtain the following:

∂2u0

∂τ2
0

− β2 ∂
2u0

∂x2 − α
2(v0 − u0) + ή

∂u0

∂τ0
= Fu

0eiωτ0δx=0, (11a)

∂2v0

∂τ2
0

− β2 ∂
2v0

∂x2 − α
2(u0 − v0) − α

2(w0 − v0) + ή
∂v
∂τ0

= Fv
0eiωτ0δx=0, (11b)

∂2w0

∂τ2
0

− β2 ∂
2w0

∂x2 − α
2(v0 −w0) + ή

∂w0

∂τ0
= Fw

0 eiωτ0δx=0, (11c)

This is essentially, Equations (3a)–(3c) with already known solutions.
Regrouping all terms multiplied by ε, we obtain the first-order equations:

∂2u1

∂τ2
0

+ 2
∂2u0

∂τ1∂τ0
− β2 ∂

2u1

∂x2 − α
2(v1 − u1) + ή

(
∂u1

∂τ0
+
∂u0

∂τ1

)
= −(v0 − u0)

2, (12a)

∂2v1
∂τ2

0
+ 2 ∂2v0

∂τ1∂τ0
− β2 ∂2v1

∂x2 − α
2(u1 − v1) − α2(w1 − v1) + ή

(
∂v1
∂τ0

+ ∂v0
∂τ1

)
= −(u0 − v0)

2
− (w0 − v0)

2, (12b)

∂2w1

∂τ2
0

+ 2
∂2w0

∂τ1∂τ0
− β2 ∂

2w1

∂x2 − α
2(v1 −w1) + ή

(
∂w1

∂τ0
+
∂w0

∂τ1

)
= −(v0 −w0)

2, (12c)

We note that while the external force
→

F drives the zeroth-order equation, only the zeroth-order
solutions drive the first-order equations. Note that for the purpose of this investigation, we do not need
to expand the equations of motion to second order in perturbation. Expansion to that order would
provide, in addition to obtaining the second-order solutions, corrections to the zeroth-order solutions.
The solutions of Equations (12a)–(12c) are sums of the solutions of the homogeneous equations (i.e.,
without the terms on the right-hand side of the equals sign) and particular solutions (i.e., with the
right-hand-side terms). In order to eliminate secular terms in the homogeneous solutions, we impose to
u0, v0, w0, not to be functions of τ1. In that case, the derivatives ∂2

∂τ1∂τ0
and ∂

∂τ1
in Equations (12a)–(12c)

are effectively zero.
We use Equation (5) to write the solution to the zeroth-order equations:

u0(x, τ0)

v0(x, τ0)

w0(x, τ0)

 = {[
A2eik2x + A′2eik′2x

]
e2 +

[
A3eik3x + A′3eik′3x

]
e3

}
eiωτ0 (13)

For the sake of illustration, we derive the zeroth-order driving term in Equation (11a), namely:

(v0 − u0)
2 =

[
A2eik2x + A′2eik′2x

]2
(e2v − e2u)

2ei2ωτ0 +
[
A3eik3x + A′3eik′3x

]2
(e3v − e3u)

2ei2ωτ0

+2
[
A2A3eik2xeik3x + A2A′3eik2xeik′3x + A′2A3eik′2xeik3x

+A′2A′3eik′2xeik′3x
]
ei2ωτ0(e2v − e2u)(e3v − e3u)

(14)

The first term and second term lead to self-interaction between the two states of the same
subsystems. The third term containing cross-terms between states of different subsystems (i.e., different
OAM) enables us to explore the tensor product Hilbert space of the Hilbert spaces of the subsystems.
Let us consider the two-dimensional Hilbert space of the subsystem 2, H2, with basis eik2x and eik′2x and
the two-dimensional Hilbert space of subsystem 3, H3, with basis eik3x and eik′3x. The tensor product
space, H23 = H2 ⊗H3 has dimension 22 with the basis ϕ1 = ei(k2+k3)x, ϕ2 = ei(k2+k′3)x, ϕ3 = ei(k′2+k3)x,
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ϕ4 = ei(k′2+k′3)x. It is these cross-terms which enable us to use nonlinearity to explore the tensor
product space of the bipartite elastic system. We will now focus on the cross-terms as driving terms
for the first-order equation. After deriving expressions for the other zeroth order cross-terms of,
(u0 − v0)

2, (w0 − v0)
2 and (v0 −w0)

2 and inserting into Equations (12a)–(12c), we seek the cross-terms
contributions to the particular solutions of the first-order equations in the form:

u1 = (auϕ1 + buϕ2 + cuϕ3 + duϕ4)ei2ωτ0 (15a)

v1 = (avϕ1 + bvϕ2 + cvϕ3 + dvϕ4)ei2ωτ0 (15b)

w1 = (awϕ1 + bwϕ2 + cwϕ3 + dwϕ4)ei2ωτ0 (15c)

We seek expressions for the 12 coefficients au, bu, . . . , cw, and dw. Using the definition of the OAM
eigen vectors, after extensive algebraic manipulations, the contribution of zeroth-order cross-terms to
the first-order particular solutions becomes the following:

u1

v1

w1

 = √3


1
0
−1


[

A2A3

F1
ϕ1 +

A2A′3
F2

ϕ2 +
A′2A3

F3
ϕ3 +

A′2A′3
F4

ϕ4

]
ei2ωτ0 (16)

where
F1 = −4ω2 + β2(k2 + k3)

2 + α2 + i2ήω, (17a)

F2 = −4ω2 + β2
(
k2 + k′3

)2
+ α2 + i2ήω, (17b)

F3 = −4ω2 + β2
(
k′2 + k3

)2
+ α2 + i2ήω, (17c)

F4 = −4ω2 + β2(k′2 + k′3)
2 + α2 + i2ηω. (17d)

It is worth noting that the FI, I = 1, 2, 3, 4 are complex quantities due to the dissipation. The
complex nature of these amplitudes completes the analogy between superpositions of elastic waves
and superposition of states of a two-partite two-level quantum system.

Equation (16) represents a state of the nonlinear system in the tensor-product Hilbert space H23.
This state is said to be separable if it can be written as a tensor product of individual states of the two
subsystems. This condition is satisfied if we can find four complex numbers ρ2, ρ′2, ρ3, ρ′3 such that[

A2A3
F1

ϕ1 +
A2A′3

F2
ϕ2 +

A′2A3
F3

ϕ3 +
A′2A′3

F4
ϕ4

]
ei2ωτ0

=
[

A2
ρ2

eik2x +
A′2
ρ′2

eik′2x
]
eiωτ0

[
A3
ρ3

eik3x +
A′3
ρ′3

eik′3x
]
eiωτ0

(18)

This condition reduced to the factorization of the FI’s in the form

F1 = ρ2ρ3F2 = ρ2ρ
′

3F3 = ρ′2ρ3F4 = ρ′2ρ
′

3

If we define the complex numbers ρ2 = X2 + iY2, ρ3 = X3 + iY3 and ρ′3 = X′3 + iY′3, the first two
conditions for factorization imply for the imaginary part of F1 and F2 that 2ήω = X2Y3 + Y2X3 =

X2Y′3 +Y2X′3. This first equation can only be satisfied if ρ′3 = ρ3. Furthermore, the real parts of F1 and F2

take the form −4ω2 + β2(k2 + k3)
2 + α2 = X2X3 −Y2Y3 and −4ω2 + β2

(
k2 + k′3

)2
+ α2 = X2X′3 −Y2Y′3.

In that case, the real parts of F1 and F2 need to be the same, that is, one needs to impose the impossible
condition k3 = k′3. We, therefore, have proven that the particular solutions of the first-order equation
resulting from the nonlinearity (i.e., cross zeroth-order driving terms) given by Equation (16) which
resides in the tensor-product Hilbert space H23 = H2 ⊗H3 is not separable, i.e., it is not factorizable
into the product of a solution supported by the Hilbert space H2 and a solution supported by H3.
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These nonseparable states are defined in the two-partite Hilbert space H23, for which the dimension
22 is exponentially complex. Accessibility to larger multipartite Hilbert spaces would require elastic
systems composed of N mass-spring chains with nonlinear coupling scaling as a power of N. Provided
that each one of the N OAM bands can be treated as a two-level subsystem, the multipartite nonlinear
system would admit elastic states to first order that span the exponentially complex Hilbert space of
dimension 2N. This approach can be generalized to subsystems with more than two levels. Indeed,
the external harmonic driver may excite more than two discrete states along a given OAM band. In
that case, denoting by B the number of such plane wave states, i.e., the dimension of the base for the
driven elastic states, and by E the exponent of the nonlinear coupling, the first-order nonlinear states
will span a product space of dimension BE. In the event that E < N, one may not achieve complete
exponential complexity but superlinear complexity

3. Conclusions

We have used multiple-time-scale perturbation theory, to investigate the behavior of an externally
driven elastic system composed of three coupled mass-spring chains. The chains are coupled via
nonlinear springs whose force depends quadratically on the relative displacement of adjacent chains.
The quadratic nonlinear forces in Equations (6a)–(6c) provide a path toward realizing nonseparable, or
in other words, “classically entangled” elastic states. The possibility of realizing physically with elastic
waves nonseparable superpositions of states with superlinear complexity if not exponential complexity
opens new doors in the area of elastic-wave-supported information processing. “Classically entangled”
elastic states are local. However, nonlocality is not a necessary condition for applying the concept of
nonseparability to processing information. Nonseparable superpositions of elastic waves offer the
advantage of stability over entangled states of true quantum systems. Nonseparable superpositions of
elastic waves are robust against decoherence and will not require operating at cryogenic temperatures
to maintain the delicate balance of the superpositions. Nonseparable superpositions of elastic waves
do not suffer from the phenomenon of wave function collapse upon measurement. A coherent
superposition of quantum states collapses into a pure state upon measurement. Multiple statistical
measurements are, therefore, necessary to obtain information on the original superposition. From a
physical point of view, following work reported in [10], the realization of the coupled systems described
here theoretically could be achieved by using finite-length cylindrical elastic rods as the waveguides
and employ a nonlinear elastic material as the coupling agent between the rods. Future research would
involve experimental measurement of the exponentially complex nonseparable superpositions of elastic
waves in these nonlinear arrays of coupled waveguides. The OAM states could be directly excited
using transducer technologies while the spatial (wave number) characteristics would be subsequently
measurable using noncontact methods such as scanning laser Doppler vibrometry. This future work
would demonstrate the scalability of the superpositions introduced in this paper.
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