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Abstract: This paper reviews applications of gas chromatography-mass spectrometry techniques
for the characterization of photooxidation and autoxidation products of lipids of senescent pho-
totrophic organisms. Particular attention is given to: (i) the selection of oxidation products that are
sufficiently stable under environmental conditions and specific to each lipid class and degradation
route; (ii) the description of electron ionization mass fragmentation of trimethylsilyl derivatives of
these compounds; and (iii) the use of specific fragment ions for monitoring the oxidation of the main
unsaturated lipid components of phototrophs. The techniques best geared for this task were gas
chromatography-quadrupole-time of flight to monitor fragment ions with very high resolution and
accuracy, and gas chromatography-tandem mass spectrometry to monitor very selective transitions in
multiple reaction monitoring mode. The extent of the degradation processes can only be estimated if
the oxidation products are unaffected by fast secondary oxidation reactions, as it is notably the case of
∆5-sterols, monounsaturated fatty acids, chlorophyll phytyl side-chain, and di- and triterpenoids. In
contrast, the primary degradation products of highly branched isoprenoid alkenes possessing more
than one trisubstituted double bond, alkenones, carotenoids and polyunsaturated fatty acids, appear
to be too unstable with respect to secondary oxidation or other reactions to serve for quantification in
environmental samples.

Keywords: senescent phototrophs; unsaturated lipids; photooxidation; autoxidation; gas chromatogra-
phy-mass spectrometry; specific tracers; TMS derivatives; EI fragmentation; environment

1. Introduction

Phototrophic organisms (mainly green plants, algae, cyanobacteria and some protists)
carry out photosynthesis that is, conversion of sunlight energy, carbon dioxide and water
into organic materials. Due to the generation of highly reactive oxygen species (ROS) during
photosynthetic electron transport, these organisms are particularly sensitive to oxidative
damages [1]. Lipids (hydrocarbons, pigments, terpenoids, free fatty acids, acylglycerides,
phospholipids, galactolipids, cutins, suberins and waxes [2]) are important components of
phototrophic organisms, accounting for 16–26% of organic content in phytoplankton [3]
and up to 45% in the green alga Botryococcus Braunii [4]. The relative stability and specificity
of lipids makes them popular tracers of the origin of organic matter in environmental sam-
ples [5–7]. Their abiotic oxidation products can be also very useful for estimating present or
past photooxidative and autoxidative alterations in specific phototrophic organisms [8,9].

The most common chromatographic methods for lipid analysis are gas chromatog-
raphy (GC), and high-performance liquid chromatography (HPLC) coupled with mass
spectrometers (MS). GC-based analytical procedures require analytes that are volatile and
thermally stable. In practice, this means that GC-based analysis of the oxidation prod-
ucts of mixtures of complex and simple lipids with such techniques demands a chemical
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pre-treatment of the samples, including: (i) NaBH4 reduction of thermally-labile hydroper-
oxides to the corresponding alcohols [10], (ii) alkaline hydrolysis of complex lipids into
their constituent fatty acids, plus glycerol, phosphate, sterol or sugar groups [5], and
then (iii) conversion of polar compounds to volatile derivatives (derivatization). Despite
this added time-consuming pre-treatment (which is not necessary with HPLC-MS anal-
yses), GC-MS techniques involving electron ionization (EI) and chemical ionization (CI)
are widely employed for the characterization of lipid oxidation products [11–13]. In-
deed, EI provides more structural information than the soft ionization techniques such as
electron spray ionization (ESI) or atmospheric pressure chemical ionization (APCI) em-
ployed in HPLC-MS analyses, notably as it enables easy determination of the position of
functional groups of lipid oxidation products [14]. However, the relatively soft ESI and
APCI ionization modes used during HPLC-MS analyses allow structural characterization
of thermally-labile compounds (e.g., hydroperoxides) [15]. Moreover, the possibility to
work in reverse-phase liquid chromatography also allows the analysis of compounds too
heavy to be amenable by GC (e.g., triacylglycerides) [15,16]. Note that other powerful
non-chromatographic techniques such as matrix-assisted laser desorption/ionization mass
spectrometry (MALDI-MS) [17,18], ion-mobility mass spectrometry (IM-MS) [19,20], and
nuclear magnetic resonance (NMR) [21] also appeared to be very useful for the characteri-
zation of lipid oxidation products.

In this review, particular attention is given to the use of gas chromatography-tandem
mass spectrometry (GC-MS/MS) and gas chromatography-quadrupole-time of flight (GC-
QTOF) techniques for the characterization of trimethylsilyl (TMS) derivatives of lipid
oxidation products in senescent phototrophic organisms. GC-MS/MS can perform analyses
in multiple reaction monitoring (MRM) mode based on specific collision-induced fragmen-
tations of precursor ions, which substantially increase signal-to-noise ratios and method
sensitivity [22]. GC-QTOF offers high mass resolution and accuracy and can use narrow
mass intervals reducing interferences and background noise, making it particularly suitable
for identifying unknown lipid oxidation products in complex natural extracts.

Trimethylsilylation is the method most commonly employed for derivatization of
lipids in GC-MS analyses [23,24]. TMS derivatives are produced by replacing the active
hydrogen atom of alcohols, acids, amines and thiols by a trimethylsilyl group. These deriva-
tives are highly volatile, thermally stable and present outstanding gas chromatographic
characteristics. EI mass spectra of TMS derivatives generally exhibit a significant [M − 15]+

ion formed by loss of a silicon-bonded methyl group, which is especially useful for deter-
mining molecular mass. Fragmentations of these derivatives are also hugely informative
for structural elucidations [25,26].

2. Abiotic Oxidation of Lipid Components of Autotrophic Organisms
2.1. Type II Photosensitized Oxidation

Due to the presence of chlorophyll, which is a very efficient photosensitizer [27,28],
visible light-induced photosensitized processes act intensively during the senescence of
autotrophic organisms. In healthy cells, the excited singlet state of chlorophyll (1Chl)
formed after absorption of a quantum of light energy, leads predominantly to the charac-
teristic fast photosynthesis reactions [27]. However, a small proportion of 1Chl undergoes
intersystem crossing (ISC) to form the longer live triplet state (3Chl) [28], which is not
only itself potentially damaging in type I reactions [28] but can also generate ROS and,
in particular, singlet oxygen (1O2) by reacting with ground state oxygen (3O2) (type II
processes). As a defense against oxidative damage, there are many antioxidant compounds
(e.g., carotenoids and vitamin E) and enzymes (e.g., superoxide dismutase and catalase)
that operate in chloroplasts [27,29].

As fast photosynthesis reactions are clearly not operative in senescent phototrophic
organisms, potentially damaging 3Chl and 1O2 [30] are produced at an accelerated rate
exceeding the quenching capacity of the photoprotective system and thus damage the
membranes (photodynamic effect [31]). 1O2 readily oxidizes cellular components of senes-
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cent autotrophic organisms such as unsaturated lipids (including ∆5-sterols, unsaturated
fatty acids, chlorophyll phytyl side-chain, carotenoids and alkenes), proteins, and nucleic
acids [32]. The rate of reaction of 1O2 with olefins is controlled by the degree of substitution
and the configuration (cis- or trans-) of the double bond [33], with highly-substituted and
cis- double bonds being the more reactive. Type II photosensitized oxidation of unsaturated
lipids affords allylic hydroperoxides (for reviews see [8,9]).

2.2. Free Radical Oxidation (Autoxidation)

Due to spin restriction [34], the unpaired electrons of ground-state triplet molecular
oxygen 3O2 can only interact with unpaired electrons of organic radicals, which drive autox-
idation reactions. Autoxidation involves free-radical-mediated oxidation chain reactions,
which can be divided into three steps: chain initiation, propagation, and termination [35].
Initiation of autoxidation requires initiators that are able to produce radicals by removing an
electron to the substrate molecule or breaking a covalent bond. The most common initiators
are heat, light, redox-active metal ions undergoing one-electron transfer (e.g., Fe2+, Co2+,
Fe3+, Cu2+, Mn2+, Zn2+, Mg2+, V2+), and certain enzymes (lipoxygenases). The propagation
step involves a succession of reactions in which each radical produced in one reaction is
consumed in the next [36]. It generally proceeds via: (i) hydrogen atom abstraction from
tertiary, allylic or α to oxygen positions, and (ii) addition of peroxyl radicals to double
bonds. Termination results from reactions of radicals affording non-radical products. In
senescent phototrophic cells, initiation of autoxidation processes is generally attributed to
the cleavage (induced by heat, light, metals or enzymes) of hydroperoxides resulting from
type II photosensitized oxidation of cellular components to hydroxyl, peroxyl and alkoxyl
radicals [37,38].

3. Characterization of the Oxidation Products of Lipids

This chapter briefly describes the mechanisms of photooxidation and autoxidation of
the main unsaturated lipids of phototrophic organisms. A focus is given to the selection
of oxidation products sufficiently stable and specific to act as tracers of these processes in
environmental samples (such as: phytodetritus, particulate matter, marine and lacustrine
sediments and soil), as well as to the mechanisms of fragmentation of TMS derivatives of
these compounds during electron ionization. Some application examples of these tracers
are also shown. Note that accurate masses of the different fragment ions formed are given,
which makes them amenable to use in GC-QTOF analyses, while the corresponding unit
masses can still be used in GC-MS/MS or classical GC-MS analyses.

3.1. Chlorophyll Phytyl Side-Chain

Attack of 1O2 on the tri-substituted double bond of the chlorophyll phytyl side-
chain affords two allylic hydroperoxides, which may be recovered in the form of 6,10,14-
trimethylpentadecan-2-ol and 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol (phytyl-
diol) after NaBH4 reduction and alkaline hydrolysis [39] (Scheme 1). The stable and
highly specific phytyldiol was proposed as biogeochemical marker of chlorophyll pho-
todegradation in the natural environment [40]. In contrast, free radical oxidation (au-
toxidation) of chlorophyll phytyl side-chain and subsequent reduction and hydrolysis
gives 3,7,11,15-tetramethylhexadec-3-en(Z/E)-1,2-diols, 3,7,11,15-tetramethyl-hexadec-2-
en(Z/E)-1,4-diols and 3,7,11,15-tetramethyl-hexadec-1-en-3-ol (isophytol) [41,42] (Scheme 1).
These compounds have been proposed as specific tracers of chlorophyll phytyl side-chain
autoxidation in environmental samples [41,42].
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Scheme 1. Photooxidation and autoxidation of chlorophyll phytyl side-chain. 

TOF mass spectra of the TMS derivatives of phytyldiol and 3,7,11,15-tetramethylhex-
adec-3-en(Z/E)-1,2-diols show intense and specific fragment ions at m/z 353.3235 resulting 
from classical α-cleavage between the carbon atoms 1 and 2 bearing the two TMS ether 
groups [31], while the spectra of TMS derivatives of 3,7,11,15-tetramethyl-hexadec-2-
en(Z/E)-1,4-diols are dominated by a fragment ion at m/z 245.1388 corresponding to α-
cleavage between carbon atoms 4 and 5 (Scheme 2). 

Scheme 1. Photooxidation and autoxidation of chlorophyll phytyl side-chain.

TOF mass spectra of the TMS derivatives of phytyldiol and 3,7,11,15-tetramethylhexadec-
3-en(Z/E)-1,2-diols show intense and specific fragment ions at m/z 353.3235 resulting
from classical α-cleavage between the carbon atoms 1 and 2 bearing the two TMS ether
groups [31], while the spectra of TMS derivatives of 3,7,11,15-tetramethyl-hexadec-2-
en(Z/E)-1,4-diols are dominated by a fragment ion at m/z 245.1388 corresponding to
α-cleavage between carbon atoms 4 and 5 (Scheme 2).

Note that the loss of a methyl radical by the molecular ion of TMS derivatives of phytol
and isophytol also affords a fragment ion at m/z 353.3235. Monitoring ions at m/z 353.3235
and 245.1388 thus allows simultaneous characterization and quantification of phytol and
its main photooxidation and autoxidation products in natural samples (see example given
in Figure 1).
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Figure 1. Partial TOF ion chromatograms (m/z 353.3235 and 245.1388) showing the presence of TMS
derivatives of phytol and its main photooxidation and autoxidation products in senescent cells of the
diatom Thalassiosira sp.

3.2. ∆5-Sterols

Reaction of 1O2 with the double bond of ∆5-sterols mainly affords a ∆6-5α-hydroperoxide
and to a lesser extent ∆4-6α/β-hydroperoxides [43,44] (Scheme 3). Under environmental
conditions ∆6-5α-hydroperoxide undergoes fast allylic rearrangement to unstable and un-
specific 7α/β-hydroperoxides (Scheme 3). ∆4-Stera-3β,6α/β-diols resulting from NaBH4-
reduction and alkaline hydrolysis of ∆4-6α/β-hydroperoxides were thus proposed as
specific tracers of type II photosensitized oxidation of the corresponding ∆5-sterols [45,46].
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Scheme 3. Photooxidation and autoxidation of ∆5-sterols.

Autoxidation of ∆5-sterols mainly affords unstable and unspecific 7α/β-hydroperoxides
after hydrogen atom abstraction at the allylic carbon atom 7 [47]) (Scheme 3). Smaller
proportions of isomeric 5α,6α- and 5β,6β-epoxysterols are also produced after addition
of peroxyl radical to the double bond [48] (Scheme 3). Stable and specific 3β,5α,6β-
trihydroxysterols resulting from the hydrolysis of these epoxides during alkaline hydrolysis
and in environmental conditions were proposed as specific tracers of the autoxidation of
∆5-sterols [45,46].

TOF mass spectra of ∆4-stera-3β,6α/β-diol TMS derivative exhibit an intense and in-
teresting fragment ions at [M − 143.0887]+ resulting from double bond ionization and
subsequent hydrogen migrations and cleavages of the C1–C10 and C4–C5 bonds [49]
(Scheme 4). Due to steric hindrance, the classical silylation reagents only silylate 3β,5α,6β-
trihydroxysterols to their 3 and 6 positions [50], and during ionization their TMS derivatives
very easily lose a neutral molecule of water and thus exhibit mass spectra that are very
similar to those of ∆4-stera-3β,6β-diol TMS derivatives (Scheme 4).

Specific fragment ions [M − 143.0887]+, for which Table 1 gives accurate masses for
the ∆4-stera-3β,6β-diols of the more common sterols, thus emerged as very useful for the
monitoring of ∆5-sterol photooxidation and autoxidation in phototrophic organisms. An
example of their application is given in Figure 2.
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logically increase with their number of double bonds [51,52]. Unfortunately, oxidation 
products of the more reactive polyunsaturated fatty acids (PUFAs) are not sufficiently 
stable under environmental conditions to be used as tracers of these degradation pro-
cesses in situ. Note that isoprostanoids (cyclopentane-containing oxylipins) resulting from 
autoxidation of C18, C20 and C22 PUFAs are often used as biomarkers for in vivo oxidative 
stress in animals and plants [53]. These compounds could be detected in higher plants and 
algae by using GC–MS in negative-ion chemical ionization (NICI) mode [53,54]. However, 
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In contrast, oxidation products of monounsaturated fatty acids (MUFAs) are suffi-
ciently stable for use as tracers of type-II photosensitized oxidation and autoxidation pro-
cesses in situ [10]. During type II photosensitized oxidation of MUFAs, attack by 1O2 of 
the two ethylenic carbon atoms of the double bond leads to the formation of two trans- 
allylic hydroperoxides [52,55], which subsequently undergo stereoselective radical allylic 
rearrangement to afford two other isomers with a trans-double bond [56] (Scheme 5). Note 
that if type II photosensitized oxidation of MUFAs involves UV radiation, then four cor-
responding cis-allylic hydroperoxides also get produced [57] (Scheme 5). In contrast, free 
radical oxidation of these compounds affords only two cis-allylic hydroperoxides (corre-
sponding to the oxidation of the two allylic positions of MUFAs) in addition to the four 
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Figure 2. Partial TOF ion chromatogram (m/z 431.3710 and 486.4260) showing the presence
of TMS derivatives of 24-ethylcholest-5-en-3β-ol (sitosterol) ([M]+• = 486.4260) and its photo-
([M − 143.0887]+ = 431.3710) and autoxidation ([M − H2O − 143.0887]+ = 431.3710) products in
senescent leaves of Smilax aspera.
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3.3. Unsaturated Fatty Acids

Type II photosensitized oxidation and autoxidation rates of unsaturated fatty acids
logically increase with their number of double bonds [51,52]. Unfortunately, oxidation
products of the more reactive polyunsaturated fatty acids (PUFAs) are not sufficiently stable
under environmental conditions to be used as tracers of these degradation processes in situ.
Note that isoprostanoids (cyclopentane-containing oxylipins) resulting from autoxidation
of C18, C20 and C22 PUFAs are often used as biomarkers for in vivo oxidative stress in
animals and plants [53]. These compounds could be detected in higher plants and algae by
using GC–MS in negative-ion chemical ionization (NICI) mode [53,54]. However, in the
literature there are no reports of such compounds in environmental samples.

In contrast, oxidation products of monounsaturated fatty acids (MUFAs) are suf-
ficiently stable for use as tracers of type-II photosensitized oxidation and autoxidation
processes in situ [10]. During type II photosensitized oxidation of MUFAs, attack by 1O2
of the two ethylenic carbon atoms of the double bond leads to the formation of two trans-
allylic hydroperoxides [52,55], which subsequently undergo stereoselective radical allylic
rearrangement to afford two other isomers with a trans-double bond [56] (Scheme 5). Note
that if type II photosensitized oxidation of MUFAs involves UV radiation, then four cor-
responding cis-allylic hydroperoxides also get produced [57] (Scheme 5). In contrast, free
radical oxidation of these compounds affords only two cis-allylic hydroperoxides (corre-
sponding to the oxidation of the two allylic positions of MUFAs) in addition to the four
trans-isomeric hydroperoxides [56] (Scheme 5). Consequently, in senescent autotrophic
organisms a dominance of these two cis-isomers (among the four cis-isomers) points to the
involvement of autoxidation processes, while a dominance of all four cis-isomers points to
UV-induced photodegradation.
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Scheme 5. Type II photosensitized oxidation (induced by PAR and UV radiations) and autoxidation
of MUFAs.
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Under EI, TMS derivatives of isomeric allylic hydroxy acids resulting from photooxi-
dation and autoxidation of MUFAs and subsequent NaBH4 reduction undergo α-cleavage
at their TMS ether group. Cleavage acts on the saturated side of the molecule (as the vinylic
position of the double bond hinders cleavage on the other side) and affords stable and
specific fragment ions (Scheme 6) that are dependent on the carbon atom number and
double-bond position of the MUFA considered [11,15]. The fragment ions resulting from
α-cleavage of silylated oxidation products of the more common MUFAs are listed in Table 2.
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Table 2. Accurate masses of the main fragment ions produced during EI fragmentation of silylated
allylic hydroxy acids resulting from NaBH4-reduction of photo- and autoxidation products of some
common MUFAs.

MUFAs (OH-Position)
m/z

(OH-Position)
m/z

(OH-Position)
m/z

(OH-Position)
m/z

C16:1∆9 (9-) 199.1518 a (8-) 213.1675 a (10-) 329.1968 b (11-) 343.2125 b

C16:1∆11 (11-) 171.1206 (10-) 185.1363 (12-) 357.2280 (13-) 371.2437
C18:1∆9 (9-) 227.1830 (8-) 241.1987 (10-) 329.1968 (11-) 343.2125
C18:1∆11 (11-) 199.1518 (10-) 213.1675 (12-) 357.2280 (13-) 371.2437
C20:1∆9 (9-) 255.2139 (8-) 269.2295 (10-) 329.1968 (11-) 343.2125
C20:1∆11 (11-) 227.1830 (10-) 241.1987 (12-) 357.2280 (13-) 371.2437
C22:1∆9 (9-) 283.2451 (8-) 297.2607 (10-) 329.1968 (11-) 343.2125
C22:1∆11 (11-) 255.2139 (10-) 269.2295 (12-) 357.2280 (13-) 371.2437

a Fragments containing the terminal methyl group. b Fragments containing the trimethylsilyl ester group.

GC-QTOF allows a clean characterization and quantification of TMS derivatives of
MUFA oxidation products in autotrophic organisms and environmental samples. Figure 3
gives some examples of the technique application showing typical profiles of visible light-
induced, (visible + UV) light-induced and autoxidative degradation products.
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Figure 3. Partial TOF ion chromatograms showing TMS derivatives of MUFA oxidation products in
senescent cells of the haptophyte Emiliania huxleyi irradiated by visible light (A), and after aging (B),
and of the diatom Thalassiosira sp. irradiated by (visible + UV) light (C).

MRM analyses of TMS derivatives of MUFA oxidation products involve intense and
selective transitions from the ions resulting from α-cleavage (precursor ions) to the fragment
ion at m/z 129 (product ion) (Scheme 6). Note that this transition is more efficient with
precursor ions containing the terminal methyl group than with precursor ions containing
the TMS ester group, which can easily lose neutral TMSOH molecules (Scheme 6, Figure 4).
Figure 5 gives an example of how MRM analyses can be applied.
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Figure 5. MRM chromatogram (m/z 199→ 129, m/z 213→ 129, m/z 329→ 149 and m/z 343→ 163)
showing the presence of TMS derivatives of palmitoleic acid (C16:1ω9) oxidation products in senescent
cells of Thalassiosira sp. irradiated by sunlight.

3.4. Pentacyclic Triterpenes

Pentacyclic triterpenes and their derivatives, which are widely found in angiosperms [58],
are divided into three main classes, that is, lupanes, oleananes and ursanes.

3.4.1. Lupanes

Type-II photooxidation and autoxidation of lupanes have so far only been studied for
betulin [59], but the results obtained can be extended to lupeol or betulinic acid (the main
triterpenoids with betulin of the lupane group). 1O2 reacts slowly with the C20–C29 double
bond of betulin and specifically produces lup-20(30)-ene-3β,28-diol-29-hydroperoxide,
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which can be quantified after NaBH4 reduction in the form of lup-20(30)-ene-3β,28,29-triol
(Scheme 7). Lup-20(30)-ene-3β,28,29-triol, lup-20(30)-ene-3β,29-diol (arising from lupeol)
and lup-20(30)-ene-3β,29-diol-28-oic acid (arising from betulinic acid) constitute useful
specific tracers of photooxidation of lupanes in angiosperms.
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Scheme 7. Photooxidation and autoxidation of lupanes.

In contrast, the autoxidation of betulin mainly involves peroxyl radical addition to
the C20–C29 double bond and mainly affords a diperoxide that is unaffected by NaBH4
reduction and converted to stable lupan-20-one-3β,28-diol during hot GC injection [59]
(Scheme 7). Lupan-20-one-3β,28-diol, lupan-20-one-3β-ol (arising from lupeol) and lupan-
20-one-3β-ol-28-oic acid (arising from betulinic acid) can be used as specific tracers of the
autoxidation of lupanes in angiosperms [59,60].

The EI mass spectra of the TMS derivatives of lup-20(30)-ene-3β,28,29-triol and lupan-
20-one-3β,28-diol exhibit intense fragment ions at m/z 481.3860 and m/z 395.3305, re-
spectively, whose formation involves elimination of a neutral molecule of TMSOH and
subsequent loss of the CH2OTMS group borne by the carbon 28 [59] (Scheme 8). These
fragment ions make good candidates for monitoring type-II photosensitized oxidation and
autoxidation of betulin, respectively, in environmental samples. As the formation of these
ions involves the loss of the group borne by carbon 28, they can be also used as tracers of the
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oxidation of lupeol and betulinic acid. Figure 6 gives an example of the specific fragment
ion at m/z 395.3305 applied for monitoring lupane autoxidation in environmental samples.
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Figure 6. Partial TOF ion chromatograms (m/z 395.3305, 498.3908 and 500.4053) showing the presence
of autoxidation products of lupeol and betulin in higher plant debris collected in the Rhône River.
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3.4.2. Ursanes and Oleanes

Studies on type II photosensitized oxidation and autoxidation of ursanes and oleanes
have mainly focused on α- and β-amyrins [61]. α- and β-amyrins were found to be totally
unaffected during photodegradation experiments, due to steric hindrance preventing 1O2
reaction with their double bond [61]. Autoxidation of amyrins mainly involves hydrogen
abstraction and specifically produces 11α-hydroperoxyamyrins [61] (Scheme 9).
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These hydroperoxides, which appeared to be unaffected by NaBH4 reduction, are
thermally cleaved to the corresponding 11-oxoamyrins during GC or GC-MS analyses
using hot injectors (Scheme 9). 11-Oxoamyrins are sufficiently stable and specific to serve
as tracers of amyrin autoxidation in senescent angiosperms or environmental samples.

EI fragmentation of TMS derivatives of 11-oxoamyrins was recently studied [62] and
found to involve: (i) retro-Diels-Alder cleavage of the unsaturated ring C leading to the
formation of a fragment ion at m/z 232.1822, (ii) γ-hydrogen rearrangement of the ionized
11-keto group and subsequent cleavage of the 7–8 bond affording a well-stabilized fragment
ion at m/z 273.2213, and (iii) a fragmentation pathway involving loss of the TMS group
together with carbon atoms 1, 2 and 3 of the A ring after initial cleavage of the 3–4 bond [25]
producing a fragment ion at m/z 383.3308 (Scheme 10). Subsequent fragmentation of the
ion at m/z 273.2213 affords a strongly stabilized ion at m/z 135.0804 after migration of
the methyl group 27 from carbon 14 to carbon 13 and concerted cleavage of the 13–18 and
15–16 bonds [63] (Scheme 10).
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Scheme 10. Main EI mass fragmentation of TMS derivatives of 11-oxo-amyrins. Scheme 10. Main EI mass fragmentation of TMS derivatives of 11-oxo-amyrins.

Note that after the loss of a methyl radical, a fragment ion at m/z 217.1588 can be
formed from the fragment ion at m/z 232.1822 (Scheme 10). This fragmentation, which is
more intense in the case of 11-oxo-β-amyrin due to the thermodynamically-favored loss of a
methyl radical from the tertiary carbon 20, may be useful for differentiating 11-oxo-amyrins.

Specific fragment ions at m/z 512.4063 [M]+•, 383.3308, 273.2213 and 232.1822 ap-
peared to be useful for GC-QTOF monitoring of TMS derivatives of 11-oxo-amyrins in
environmental samples (see example given in Figure 7A). MRM analyses using the transi-
tions m/z 273→ 135 and m/z 232→ 217 also appeared to be well suited to the detection of
traces of these compounds (see Figure 7B).
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3.5. Dehydroabietic Acid

Dehydroabietic acid (8,11,13-abietatrien-18-oic acid), a component of conifers, has long
be used as a tracer of gymnosperms [64,65]. Autoxidation of this compound involves hydro-
gen atom abstraction at the benzylic carbon atom 7 to give 7α/β-hydroperoxydehydroabietic
acids [66], which are reduced to the corresponding hydroxy acids during NaBH4-reduction
(Scheme 11). 7α/β-hydroxydehydroabietic acids are useful tracers of dehydroabietic autox-
idation in gymnosperms.



Molecules 2022, 27, 1629 17 of 26

Molecules 2022, 27, x FOR PEER REVIEW 18 of 27 
 

 

3.5. Dehydroabietic Acid 
Dehydroabietic acid (8,11,13-abietatrien-18-oic acid), a component of conifers, has 

long be used as a tracer of gymnosperms [64,65]. Autoxidation of this compound involves 
hydrogen atom abstraction at the benzylic carbon atom 7 to give 7α/β-hydroperoxydehy-
droabietic acids [66], which are reduced to the corresponding hydroxy acids during 
NaBH4-reduction (Scheme 11). 7α/β-hydroxydehydroabietic acids are useful tracers of de-
hydroabietic autoxidation in gymnosperms. 

C O
OH

OOH
C O
OH

OH
7 7

NaBH4 reductionAutoxidation

Autoxidation tracers

COOH

1
2

3
4 5 6

7

8

11

9

15
17

14

13

16

10

12

20

19 18

 
Scheme 11. Autoxidation of dehydroabietic acid. 

EI mass spectra of TMS derivatives of 7α/β-hydroxydehydroabietic acids exhibit in-
tense fragment ions at m/z 191.0887, 234.1435 and 237.1638 [66]. The formation of the ion 
at m/z 237.1638 results from successive losses of neutral TMSOH and formate molecules 
and subsequent loss of a methyl radical (Scheme 12). The bicyclic fragment ion at m/z 
234.1435 results from complex fragmentation processes involving cleavage of the 6–7 and 
9–10 bonds [66] (Scheme 12); and it can readily lose an isopropyl radical to give a stable 
fragment ion at m/z 191.0887. 

C O
OTMS

O
TMS

OTMS OTMS

- CH3

- HCOOTMS

- TMSOH

m/z 191.0887m/z 234.1435

-

m/z 237.1638

Cleavages of 6-7
 and 9-10 bonds

910

6 7

m/z 252.1873

 
Scheme 12. Main EI mass fragmentations of TMS derivatives of 7α/β-hydroxydehydroabietic ac-
ids. 

Fragment ions at m/z 191.0887, 234.1435 and 237.1638 can be used in GC-QTOF anal-
yses to characterize TMS derivatives of 7α/β-hydroxydehydroabietic acids. However, 
MRM analyses using the highly specific transitions m/z 234 → 191 and m/z 460 → 417 [M 

Scheme 11. Autoxidation of dehydroabietic acid.

EI mass spectra of TMS derivatives of 7α/β-hydroxydehydroabietic acids exhibit
intense fragment ions at m/z 191.0887, 234.1435 and 237.1638 [66]. The formation of
the ion at m/z 237.1638 results from successive losses of neutral TMSOH and formate
molecules and subsequent loss of a methyl radical (Scheme 12). The bicyclic fragment ion
at m/z 234.1435 results from complex fragmentation processes involving cleavage of the
6–7 and 9–10 bonds [66] (Scheme 12); and it can readily lose an isopropyl radical to give a
stable fragment ion at m/z 191.0887.
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Fragment ions at m/z 191.0887, 234.1435 and 237.1638 can be used in GC-QTOF analyses to
characterize TMS derivatives of 7α/β-hydroxydehydroabietic acids. However, MRM analyses
using the highly specific transitions m/z 234→ 191 and m/z 460→ 417 [M− isopropyl group]+

emerged as better suited to detecting traces of these compounds in environmental samples
(Figure 8).
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autoxidation products of dehydroabietic acid in senescent needles of Pinus halepensis.

3.6. Highly Branched Isoprenoid (HBI) Alkenes

HBI alkenes (exhibiting 1–6 double bonds) are produced by some marine and fresh-
water diatoms belonging to the Berkeleya, Haslea, Navicula, Pleurosigma, Pseudosolenia and
Rhizosolenia genera [67,68]. During the senescence of these organisms, 1O2 attack is focused
on the lesser sterically-hindered trisubstituted double bonds of these alkenes affording 2 or
4 allylic hydroperoxides according to the E or Z configuration of the double bond [69]. As
an example, Scheme 13 shows type II photosensitized oxidation of Z and E isomers of HBI
III, which are ubiquitous throughout the world’s oceans [70]. In this case, 1O2 attack acts
mainly on the C9–C10 double bond and to a lesser extent to the more sterically-hindered
C7–C20 double bond affording 9- and 7-hydroperoxides, respectively, as the major oxidation
products. Autoxidation processes also act very quickly on HBI III, producing numerous
autoxidation products, but predominantly 9-hydroperoxides resulting from hydrogen atom
abstraction at the allylic carbon 11 (Scheme 13) [71]. Indeed, the major oxidation pathway
of this compound involves hydrogen abstraction at the bis-allylic C8 position to afford
conjugated dienes, which are particularly prone to peroxyl radical additions and readily
undergo copolymerization with oxygen (Scheme 13). Consequently, the 7-alcohol resulting
from NaBH4-reduction of the corresponding hydroperoxide could be used as specific tracer
of type II photosensitized oxidation of HBI III (Scheme 13). However, the reduction prod-
ucts of 9-hydroperoxides will only be indicative of oxidation of this specific HBI alkene.
Unfortunately, in the case of HBI alkenes (such as HBI III) possessing several trisubstituted
double bonds, photooxidation and autoxidation products are unable to accumulate due to
the involvement of fast secondary oxidation reactions [71]. All these tracers can thus only
serve to give qualitative indications.
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Scheme 13. Type II photosensitized oxidation and autoxidation of HBI III.

EI mass spectra of the TMS derivatives of the 9-alcohols resulting from HBI III oxida-
tion exhibit an intense fragment ion at m/z 213.1670 corresponding to α-cleavage relative to
the TMS ether group [72] (Scheme 14). This fragment ion can readily lose a neutral molecule
of TMSOH to give a fragment ion at m/z 123.1170, or undergo a hydrogen transfer with
concerted cleavage of the bond between carbon atoms 3 and 4, yielding a fragment ion at
m/z 143.0887 (Scheme 14). In the case of the 7-alcohol, α-cleavage relative to the TMS ether
group affords two fragment ions at m/z 295.2452 and 321.2610, which are then cleaved
in the α position relative to the ionized TMS ether group after hydrogen transfers to give
fragment ions at m/z 183.1201 and 181.1044, respectively (Scheme 14).
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Scheme 14. Main EI mass fragmentations of TMS derivatives of 9- and 7-alcohols resulting from
oxidation of HBI III.

Oxidation products of HBI III were only characterizable in environmental samples in
MRM mode using the m/z 213→ 123, m/z 213→ 143, m/z 295→ 183 and m/z 321→ 181
transitions [71–73]. An applied example is given in Figure 9.

3.7. Alkenones

Alkenones are a class of mono-, di-, tri-, tetra- and penta-unsaturated C35–C40 methyl
and ethyl ketones, which are produced by certain haptophytes [74–78]. The unsaturation
ratio of C37 alkenones, which is defined by the equation: UK′

37 = [C37:2]/([C37:2] + [C37:3])
(where [C37:2] and [C37:3] are the concentrations of di- and tri-unsaturated C37 methyl
alkenones, respectively) varies positively with the growth temperature of the alga [79,80]
and is thus now routinely used for paleotemperature reconstructions (e.g., [81,82]). Due
to the trans- geometry of the alkenone double bonds [83], which is poorly reactive with
1O2 [33]), alkenones are not affected by type II photosensitized oxidation processes [84,85].
However, they are highly reactive to autoxidation processes [86]. Autoxidation of alkenone
double bonds (separated by five or three methylene groups) affords six hydroperoxides
as in the case of MUFAs (see Section 3.3). Isomeric alkenediols resulting from NaBH4
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reduction of these oxidation products could make very useful indicators of autoxidative
alterations of the unsaturation ratio UK′

37 , but unfortunately they fail to accumulate due to
the subsequent oxidation of the other double bonds [87]. Note that TMS derivatives of
alkene-triols, tetraols or pentaols obtained after NaBH4 reduction and derivatization of
secondary oxidation products of di-, tri- or tetraunsaturated alkenones are too heavy and
labile to be analyzed by GC-MS. The characterization of alkenone autoxidation products
in sediments or phytodetritus with more adapted analytical techniques constitutes a very
important challenge.
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3.8. Carotenoids

Carotenoids, which are important antioxidant constituents of thylakoid membranes,
play special roles in the protection of tissues against damage caused by light and oxygen [88].
These compounds can very efficiently quench 1O2 by energy transfer (quenching), but
also by chemical reaction (scavenging) [89]. They are also good scavengers of ROS [90].
The attack of β-carotene by 1O2 affords β-carotene-5,8-endoperoxide (Scheme 15) [91]. If
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this compound is generally considered a useful early signal of 1O2 production in plant
leaves [92], it may be also formed during autoxidation of β-carotene [89] and is clearly
not stable enough to serve as a viable environmental tracer. Unfortunately, the reaction of
1O2 and ROS with carotenoids produces oxidation products that are not sufficiently stable
and specific (production of similar compounds by enzymatic processes) [89] to be used as
unequivocal indicators of type-II photosensitized oxidation or autoxidation of carotenoids
in senescent phototrophic organisms and environmental samples.

Molecules 2022, 27, x FOR PEER REVIEW 23 of 27 
 

 

of alkene-triols, tetraols or pentaols obtained after NaBH4 reduction and derivatization of 
secondary oxidation products of di-, tri- or tetraunsaturated alkenones are too heavy and 
labile to be analyzed by GC-MS. The characterization of alkenone autoxidation products 
in sediments or phytodetritus with more adapted analytical techniques constitutes a very 
important challenge.  

3.8. Carotenoids 
Carotenoids, which are important antioxidant constituents of thylakoid membranes, 

play special roles in the protection of tissues against damage caused by light and oxygen 
[88]. These compounds can very efficiently quench 1O2 by energy transfer (quenching), 
but also by chemical reaction (scavenging) [89]. They are also good scavengers of ROS 
[90]. The attack of β-carotene by 1O2 affords β-carotene-5,8-endoperoxide (Scheme 15) [91]. 
If this compound is generally considered a useful early signal of 1O2 production in plant 
leaves [92], it may be also formed during autoxidation of β-carotene [89] and is clearly not 
stable enough to serve as a viable environmental tracer. Unfortunately, the reaction of 1O2 
and ROS with carotenoids produces oxidation products that are not sufficiently stable and 
specific (production of similar compounds by enzymatic processes) [89] to be used as un-
equivocal indicators of type-II photosensitized oxidation or autoxidation of carotenoids 
in senescent phototrophic organisms and environmental samples. 

O
O

1
2

3
4

5

6
7 8

1O2

 
Scheme 15. Reaction of 1O2 with β-carotene. 

4. Conclusions 
In this review, a focus was given to the selection and characterization of stable and 

specific tracers of photooxidation and autoxidation of lipid components (chlorophyll 
phytyl side-chain, ∆5-sterols, MUFAs, pentacyclic triterpenes and dehydroabietic acid) of 
phototrophs. The author hope that it will contribute to a better consideration of photoox-
idative and autoxidative processes almost ignored so far in the literature when studying 
the degradation of autotrophic organisms in marine and terrestrial environments. 

The different oxidation products selected could be used as indicators of: (i) oxidative 
stress of specific phototrophic organisms; (ii) paleoenvironmental changes of the condi-
tions of sedimentation (oxic or anoxic); (iii) abiotic alteration of paleoproxies in oxic envi-
ronments; (iv) environmental problems related to ozone depletion, and (v) abiotic degra-
dation of permafrost released under the effect of global warming [60]. 

In the future, a special attention should be given to the detection of oxidation prod-
ucts of alkenones and HBI alkenes (possessing several trisubstituted double bonds) suffi-
ciently stable and specific to act as tracers of oxidative alteration of these proxies in oxic 
environments (water column of oceans and oxic layer of sediments). MALDI-MS and IM-
MS techniques, which allow simultaneous characterization of all molecular species in bi-
ological tissues and reduce sample preparation artifacts arising from extensive purifica-
tion procedures [93], seem to be particularly well-adapted to this task. 

Scheme 15. Reaction of 1O2 with β-carotene.

4. Conclusions

In this review, a focus was given to the selection and characterization of stable and
specific tracers of photooxidation and autoxidation of lipid components (chlorophyll phytyl
side-chain, ∆5-sterols, MUFAs, pentacyclic triterpenes and dehydroabietic acid) of pho-
totrophs. The author hope that it will contribute to a better consideration of photooxidative
and autoxidative processes almost ignored so far in the literature when studying the
degradation of autotrophic organisms in marine and terrestrial environments.

The different oxidation products selected could be used as indicators of: (i) oxidative
stress of specific phototrophic organisms; (ii) paleoenvironmental changes of the conditions
of sedimentation (oxic or anoxic); (iii) abiotic alteration of paleoproxies in oxic environ-
ments; (iv) environmental problems related to ozone depletion, and (v) abiotic degradation
of permafrost released under the effect of global warming [60].

In the future, a special attention should be given to the detection of oxidation products
of alkenones and HBI alkenes (possessing several trisubstituted double bonds) sufficiently
stable and specific to act as tracers of oxidative alteration of these proxies in oxic envi-
ronments (water column of oceans and oxic layer of sediments). MALDI-MS and IM-MS
techniques, which allow simultaneous characterization of all molecular species in biolog-
ical tissues and reduce sample preparation artifacts arising from extensive purification
procedures [93], seem to be particularly well-adapted to this task.

NICI GC-MS, HPLC-MS and IM-MS techniques should be also used to give evidence
of the presence of isoprostanoids resulting from PUFA oxidation in environmental samples.
Due to the very high reactivity of PUFA towards photooxidation and autoxidation processes,
such compounds could be very sensitive tracers of the early stages of oxidative damages.
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