
Roussel et al. BMC Res Notes          (2019) 12:526  
https://doi.org/10.1186/s13104-019-4554-z

RESEARCH NOTE

Training program‑induced skeletal muscle 
adaptations in two men with myotonic 
dystrophy type 1
Marie‑Pier Roussel1,2,3, Marika Morin4, Mélina Girardin4, Anne‑Marie Fortin2, Mario Leone2,4, Jean Mathieu2,3,5, 
Cynthia Gagnon2,3,5 and Elise Duchesne2,3,4,6* 

Abstract 

Objective:  The purpose of this side product of another unpublished research project, was to address the effects of 
a training program on skeletal muscle adaptations of people with myotonic dystrophy type 1 (DM1), under a multi‑
faceted perspective. The objective of this study was to look at training induced muscular adaptations by evaluating 
changes in muscle strength, myofiber cross-sectional area (CSA), proportion of myofiber types and with indirect mark‑
ers of muscle growth [proportion of centrally nucleated fibers (CNF) and density of neutrophils and macrophages]. 
Two men with DM1 underwent a 12-week strength/endurance training program (18 sessions). Two muscle biopsies 
were obtained pre- and post-training program.

Results:  Muscular adaptations occurred only in Patient 1, who attended 72% of the training sessions compared 
to 39% for Patient 2. These adaptations included increase in the CSA of type I and II myofibers and changes in their 
proportion. No changes were observed in the percentage of CNF, infiltration of neutrophils and macrophages and 
muscle strength. These results illustrate the capacity of skeletal muscle cells to undergo adaptations linked to muscle 
growth in DM1 patients. Also, these adaptations seem to be dependent on the attendance.

Trial registration Clinicaltrials.gov NCT04001920 retrospectively registered on June 26th, 2019
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Introduction
Myotonic dystrophy type 1 (DM1), is the most frequent 
autosomal dominant myopathy in adults [1]. DM1 is 
caused by a cytosine, thymine and guanine (CTG) tri-
plet repeat expansion within the dystrophy myotonic 
protein kinase gene [2]. The adult form of DM1 displays 
heterogeneous symptoms, namely skeletal muscle weak-
ness. A maximal muscular strength decline from 24.5 to 
52.8% on a 9 year period has been reported [3], in addi-
tion to loss of muscle mass [4–6], decrease of myogenic 
capacity [7–11] and perturbation of local and systemic 

inflammatory status [12, 13]. However, whether the loss 
of muscle mass is due to decreased protein synthesis or 
increased degradation is still unanswered [4, 6, 14, 15]. 
Muscle weakness secondary to muscle wasting is a strong 
predictor of disrupted social participation [16]. Research 
focusing on interventions that could induce positive skel-
etal muscle adaptations is much needed.

Strength-training is safe in patients with DM1 and 
may increase muscle strength [17]. However, it remains 
unknown if this gain can be explained by neuronal adap-
tations or muscle hypertrophy, which occurs when pro-
tein synthesis rate exceeds protein degradation. Protein 
synthesis is also influenced by the number of myonu-
clei present in skeletal muscle. Since exercise positively 
modulates satellite cell number [18], a complete evalu-
ation of muscle hypertrophy should include myonuclei 
assessment. Moreover, exercise-induced muscle damage 
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provokes an infiltration of macrophages and neutrophils, 
both cell types known to positively influence the myo-
genic process [19–24]. A scoping review has shown that 
the physiological parameters explaining muscle response 
to exercise are greatly understudied in DM1 [25]. The aim 
of this side product study of an unpublished project was 
to evaluate the effect of a strength and endurance-train-
ing program on skeletal muscle adaptation under a multi-
faceted perspective in two patients with DM1.

Main text
Methods
Participants
Participants recruited at the Neuromuscular Clinic of the 
Centre intégré universitaire de santé et de services sociaux 
(CIUSSS) of Saguenay–Lac-Saint-Jean (Québec, Canada) 
had to be between 20 and 60 years old, be able to walk 
without technical aid and have a muscle impairment 
rating scale (MIRS) grade 3 or 4 [26]. Exclusion criteria 
were any contraindication to physical exercise or to mus-
cle biopsy. The study was approved by the Ethics Review 
Board of the CIUSSS Saguenay–Lac-St-Jean and a signed 
informed consent was obtained from each participant. 
The trial was retrospectively registered on June 26th, 
2019 on Clinicaltrials.gov NCT04001920.

Training program
Participants underwent a 12-week/18-session supervised 
training program [17, 27] of 6 exercises: elbow flexion/
extension, shoulder horizontal adduction, leg press, and 
knee flexion/extension. The one-repetition maximum 
(1-RM) was evaluated for each exercise at weeks 0 and 6. 
To offer a complete training program aimed at improving 
function it was divided: the first 6 weeks were dedicated 
to strength-training (2 sets of 6 repetitions at 80% of 
1-RM), whereas the following weeks focused on endur-
ance-training (1 set of 25 repetitions at 40% of 1-RM).

Muscle strength
The maximum isometric muscle strength of the knee 
extensors was assessed before and after the training pro-
gram using make test with a handheld dynamometer 
(Microfet-2, Hoggan Health Industries, Salt Lake City, 
UT). The lever arm was measured to calculate the maxi-
mal torque in Newton-meters (Nm). Results were pre-
sented as the mean of the right and the left side.

Muscle biopsy
Suction-modified Bergström muscle biopsies were sam-
pled in Vastus lateralis of each participant before and 
after the training program [28]. Two segments were 
taken from each biopsy and frozen separately in 2-meth-
ylbutane cooled in liquid nitrogen before being stored 

at − 80  °C. Four consecutive 10-μm-thick transverse 
sections were cut from each segment using a cryostat 
(CM1850; Leica Microsystems, Concord, Ontario, Can-
ada). Each muscle biopsy provided a total of six sections 
from two distinct segments with two negative experi-
mental controls. Two blinded evaluators analysed both 
segments to reinforce the results.

Immunohistochemical and histological analyses
Immunochemistry was performed using: CD68+ mac-
rophages (Dako, Glostrup, Denmark), neutrophil elastase 
(Dako, Glostrup, Denmark) and anti-skeletal myosin fast 
(IIA, IIB and IIX isoforms) primary antibodies (Sigma-
Adrich, St-Louis, MO, USA), biotinylated universal anti-
body anti-mouse IgG/rabbit IgG (Vector Laboratories, 
Burlingame, CA, USA) and chromogen AEC substrate 
(Dako, Glostrup, Denmark). A conventional haematoxy-
lin/eosin staining was used to assess centrally nucle-
ated fibers (CNF). Images of muscle sections were taken 
using AMG Evos XL Core Microscope. ImageJ Software 
(National Institues of Health, Bethesda, Maryland) was 
used to: (1) assess neutrophil and macrophage density 
(number of cells divided by muscle section volume), (2) 
identify fiber type (I or II) and measure their cross-sec-
tional area (CSA) and (3) evaluate the proportion of CNF.

Statistical analysis
Statistical analyses were performed using Graphpad 
Prism version 7 (GraphPad Software, La Jolla, California). 
Pre- and post-training results of each patient compared 
to itself was performed with Student’s t tests. When the 
assumption of normality was not reached, the non-par-
ametric Kruskal–Wallis Test was used. The significance 
level was set at p < 0.01.

Results
Participants
The characteristics of the two patients are presented in 
Table 1. Despite the notable difference in the age and the 
body mass index (BMI), blood CTG repeat expansion 
size is equal and they both scored 4 on the MIRS [26]. A 
major difference can be observed in the training attend-
ance: Patient 1 completed 72% (8/8 sessions in the first 
6-week part, 5/10 in the second part) of the training pro-
gram, whereas Patient 2 completed 39% of the program 
(2/8 sessions in the first part, 5/10 in the second part).

Skeletal muscle fiber size
The immunohistochemical staining of myofibers is 
shown in Fig.  1a and results are presented in Table  2. 
For Patient 1, training induced a significant increase in 
CSA of type I myofibers reaching 38% and 28% for eval-
uators 1 and 2, respectively. To a lower extent, the same 
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observations were made for type II myofibers CSA, but 
only evaluator 2 recorded a significant increase (20%). 
Contrasting results were seen for Patient 2 for whom 
the CSA of type I myofibers was not significantly differ-
ent between the two time points while the size of type 
II myofibers significantly decreased according to both 
evaluators (by 16% and 14%).

Proportion of muscle fiber type
As presented in Table  2, significant change in mus-
cle fiber composition is observed in Patient 1 following 
its participation to the training program: an increase of 

68% and 64% of type II myofiber was reported by evalua-
tor 1 and 2, respectively, with a concomitant decrease in 
the proportion of type I fibers. On the other hand, while 
evaluator 1 reported no significant impact of training 
program on muscle fiber type composition for Patient 2, 
evaluator 2 noted a slight but significant increase in the 
proportion of type II fiber post-training (19%).

Proportion of CNF and leukocyte accumulation
The proportion of CNF was evaluated as a measure of 
myogenic activity (Fig. 1b) along with the density of neu-
trophil and macrophage (Fig. 1c, d), known as myogenic 

Table 1  Patients’ characteristics

# Patient Age (years) Height (m) Weight (kg) BMI (kg/m2) CTG repeats MIRS Training attendance Maximal isometric 
knee extensors 
strength (Nm)

(# of sessions) (%) Pre Post

1 36 1.70 90.2 31.2 400 4 13/18 72 127.3 115.0

2 56 1.67 72.6 26.0 400 4 7/18 39 141.2 148.5

#

*

a

*

*

b

c d

Fig. 1  Histological analysis of Vastus lateralis muscle biopsies pre- and post-training program for DM1 patients. a Immunohistochemical staining of 
myofibers allowed the identification of fiber type II with anti-skeletal myosin fast primary antibody (#). Unstained cells correspond to fiber type I (*). 
b Haematoxylin/eosin allowed the identification of CNF (*). Immunochemistry allowed the identification of neutrophils (c) and macrophages (d), as 
indicated by the arrows
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regulators. Following the training program, both evalua-
tors reported no significant difference in the proportion 
of CNF nor neutrophil and macrophage densities for 
both patients, except for evaluator 2 which concluded to 
a significant increase of 34% in macrophage density for 
Patient 2 (Table 2).

Discussion
Training programs seem a promising strategy to slow 
or reverse muscle atrophy in DM1, but there is no clear 
evidence if they could trigger cellular and molecular 
responses similar to the ones observed in healthy indi-
viduals. The main findings of this paper are that skeletal 
muscle can undergo growth adaptations.

It is interesting to note that fiber CSA expanded in one 
participant despite that the training program did not 
induce any change in maximal strength. A non-linear 
relationship between maximal force and CSA has already 
been described and explained by the other factors such 
as age, gender and training status [29]. Furthermore, a 
single isometric muscle strength evaluation carried out at 
the end of the training program, which was different from 
isokinetic exercises performed during the training pro-
gram, could have not reflected the positive fundamental 
muscle adaptations since motor control is a major com-
ponent implicated in the assessment of muscle strength.

Tollbäck et  al. [30] have reported no significant dif-
ference in average fiber size in patients with DM1 that 
participated in their supervised 12-week progres-
sive high-resistance training program. Our results 

demonstrated that the training program has only induced 
a significant increase in myofiber CSA (type I and II) of 
Patient 1, who completed 72% of the training program, 
including all strength-training sessions. Patient 2, who 
attended only 39% of the training sessions (and only 
25% of the strength part) has shown a slight, but signifi-
cant, decrease in type II myofiber CSA. Unsurprisingly, 
these results suggest that the intensity of the stimulus is 
an important factor in muscle growth. The proportion 
of type II muscle fibers has significantly increased in 
Patient 1 and to a much lesser extent for only one evalua-
tor for Patient 2. Since the training program was divided 
in two 6-week periods dedicated to strength-training 
and endurance-training respectively, the adaptations 
observed could have been flattened.

Protein synthesis-induced muscle growth is influ-
enced by myogenic activity and inflammatory cell 
invasion: satellite cells are guided through the different 
phases of myogenesis by the activity of inflammatory 
cells [19, 23, 24, 31]. Regenerating fibers are character-
ized by their small caliber and their centrally located 
myonuclei [32]. While the presence of CNF is gener-
ally considered as an indicator of myogenesis in studies 
focusing on skeletal muscle repair, it represents a sign 
of histological deterioration in the neuromuscular dis-
ease field. This is because some muscular dystrophies 
(e.g. Duchenne muscular dystrophy) are characterized 
by repeated cycles of degeneration-regeneration lead-
ing to an abnormally large number of CNF. Strength 
training has previously induced no systematic 

Table 2  Histological and immunohistological results obtained in Vastus lateralis muscle biopsies pre- and post-training 
program for DM1 patients according to evaluator #1 and #2

*Significant difference between pre- and post-training (p < 0.01)

Evaluator # Patient 1 Patient 2

Pre Post Pre Post

CSA (type I), mm2 (SD) 1 0.0053 (0.00058) 0.0073 (0.0004)* 0.0061 (0.0008) 0.0052 (0.0016)

2 0.0060 (0.001) 0.0077 (0.0003)* 0.0067 (0.0017) 0.0055 (0.0011)

CSA (type II), mm2 (SD) 1 0.0084 (0.0011) 0.0096 (0.0005) 0.0067 (0.0005) 0.0058 (0.0002)*

2 0.0084 (0.0011) 0.0101 (0.0004)* 0.0067 (0.0005) 0.0059 (0.0004)*

Proportion (type I), % (SD) 1 57.3 (2.6) 28.2 (1.8)* 56.7 (5.8) 52.3 (3.0)

2 56.6 (2.8) 28.7 (1.7)* 57.0 (4.4) 49.0 (7.6)*

Proportion (type II), % (SD) 1 42.7 (2.6) 71.8 (1.8)* 43.3 (5.8) 47.7 (3.0)

2 43.4 (2.8) 71.3 (1.7)* 43.0 (4.4) 51.0 (7.6)*

CNF proportion % (SD) 1 4.77 (3.4) 5.28 (3.4) 7.14 (6.3) 8.26 (2.9)

2 2.18 (2.4) 2.08 (1.7) 6.3 (5.4) 4.45 (1.5)

Neutrophil density, cells/mm3 (SD) 1 218 (113) 353 (125) 445 (237) 356 (164)

2 445 (286) 519 (244) 633 (168) 429 (170)

Macrophage density, cells/mm3 (SD) 1 2852 (413) 2642 (371) 4347 (803) 5158 (972)

2 3855 (669) 4273 (979) 5846 (1555) 7830 (501)*
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difference in histopathological abnormalities in DM1 
[30], the proportion of CNF could then be considered 
as a myogenesis marker in people with DM1 that have 
undergone training. In this study, no significant differ-
ences were observed in the proportion of CNF in both 
patients included in this study. While reinforcing the 
previous findings that training is safe for patients with 
DM1, our results suggest that either myogenic process 
was not triggered by this training stimulus or either 
this process has taken place before the sampling of 
muscle biopsy post-training in our participants.

Finally, in our participants, neutrophil and mac-
rophage densities were not significantly modulated by 
the training program: only evaluator 2 has reported a 
significant increase in macrophage density post-train-
ing for Patient 2. It was not surprising that neutrophil 
density did not change since, beyond their pro-inflam-
matory role, neutrophils participate in the early stages 
of the myogenic process which typically lasts 4–5 days 
[24]. Conversely, while macrophages are classically 
known for their pro-inflammatory roles in innate 
immunity, a subset of macrophages, called M2, par-
ticipate in the repair and remodeling processes. Since 
the antibody used in this study was pan-macrophage, 
the subset(s) of macrophage which has undergone 
an increase in Patient 2 (by evaluator 2) cannot be 
identified.

Our results suggest that muscular adaptations linked 
to muscle growth can occur in DM1 as demonstrated 
by the CSA increase of type I and type II myofib-
ers. Training might also influence the distribution 
of myofibers, in favour of type II. The myogenic and 
inflammatory markers evaluated do not seem to be 
modulated by the training stimulus in our participants. 
Compliance to the program seems to be an impor-
tant factor to consider. Patient’s preferences regarding 
training regimen should be considered in the per-
spective of personalized training/precision medicine. 
It should be noted that beyond the positive impact 
of training on muscle adaptations, it could also bring 
positive changes in other organ systems. Further stud-
ies comprising a higher number of participants and 
controls are needed to validate our findings and deter-
mine to which extent and how skeletal muscles of DM1 
patients adapt to strength training.

Limitations

•	 This study only has two participants, which limits 
generalizations to the whole DM1 population.

•	 The two patients included in this study cannot be 
directly compared together considering the differ-
ence in training attendance, age and BMI.

•	 This project serves as a template for further studies 
with more DM1 participants regarding post-training 
biopsy evaluations.
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