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To investigate how a back propagation neural network based on genetic algorithm (GA-BPNN) optimizes the low-intensity pulsed
ultrasound (LIPUS) stimulation parameters to improve the bone marrow mesenchymal stem cells (BMSCs) viability further. 1e
LIPUS parameters were set at various frequencies (0.6, 0.8, 1.0, and 1.2MHz), voltages (5, 6, 7, and 8V), and stimulation durations
(3, 6, and 9minutes). As only some discrete points can be set up in the experiments, the optimal LIPUS stimulation parameter may
not be in the value of these settings. 1e GA-BPNN algorithm is used to optimize parameters of LIPUS to increase the BMSCs
viability further. 1e BMSCs viability of the LIPUS-treated group was improved up to 19.57% (P< 0.01). With the optimization
via the GA-BPNN algorithm, the viability of BMSCs was further improved by about 5.36% (P< 0.01) under the optimized
condition of 6.92V, 1.02MHz, and 7.3min. LIPUS is able to improve the BMSCs viability, which can be improved further by
LIPUS with parameter optimization via GA-BPNN algorithm.

1. Introduction

Since the concept of tissue engineering and regenerative
medicine has been proposed, as a particular type of MSCs,
bone marrow mesenchymal stem cells (BMSCs) have broad
application prospects in the field of cell transplantation.
Studies have shown that BMSCs has strong proliferation and
low immunological properties [1, 2] and gradually become
the best source of seed cells in tissue engineering.

Low-intensity pulsed ultrasound (LIPUS) is an effective,
noninvasive, and safe ultrasonic therapy [3–5]. Some animal

experiments have proved that LIPUS can improve tissue
regeneration [6–9]. At present, LIPUS parameters can be set
to stimulate cells, but can only be set to some fixed and
discrete voltages, frequencies, and stimulation durations.
1ese settings may not be the optimal LIPUS stimulation
parameters.1e relationship between LIPUS parameters and
BMSCs viability is complex and nonlinear, and therefore it is
important to develop techniques to take these factors into
account. GA-BPNN is capable of nonlinear multivariate data
analysis and forecasting because of its ability to account for
nonlinearity. It has been used in optimizing parameters in
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many fields such as manufacturing industry, electric power
industry, and so forth [10–13].

1e current study is a preliminary investigation on the
use of GA-BPNN for further improvement of BMSCs via-
bility. 1is method may help to optimize the parameters of
LIPUS technique for cell transplantation.

2. Materials and Methods

2.1. BMSCs Culture. BMSCs were isolated from fifty female
Wistar rats aged 4 weeks and weighing 180 ± 20 g. 1e
Experimental Animal Ethics Committee of Tianjin Medical
University approved all of the animal experimental pro-
tocols. 1e femurs and tibias of the rats were bluntly
dissected with all connective tissue cleaned. 1en the bone
marrow was exposed by cutting off both ends of the femur.
1e bone marrow was flushed out with fetal bovine serum
(FBS) (10%, v/v, Solarbio Co., Beijing, China) and cultured
in LG-DMEM (Gibco, a brand of 1ermo Fisher Scientific,
Waltham, MA, USA), which was supplemented with fetal
bovine serum (FBS) (10%, v/v, Solarbio Co., Beijing,
China), streptomycin (100 μL/100mL, Solarbio Co., Bei-
jing, China), and penicillin (100 μL/100mL, Solarbio Co.,
Beijing, China) in an incubator with 5% CO2 at 37°C.
BMSCs were passaged when the cells reached about
85%–90% confluence. BMSCs at passage 3 were used for the
LIPUS stimulation experiments.

2.2. Experimental Equipment. 1e schematic representation
of LIPUS exposure setup is as below (Figure 1). 1e system
basically consists of a power supply (HT2332, Henki), a
function generator (AFG 3052C, Tektronix), an amplifica-
tion module (THS4062, Texas Instruments), and a trans-
ducer (Shanghai XieMing Ultrasonic Equipment Co., Ltd).
1e central frequency of the transducer is 1MHz, whose
outside diameter is 10mm. 1e probe is inserted into the
cell culture dish to stimulate the cell, and the distance
from the top of the transducer to the bottom of the culture
plate is about 5mm. At various voltages and frequencies,
ultrasonic waves with different particular acoustic intensity
were used to stimulate BMSCs (Table 1). 1e acoustic in-
tensity was measured by Hangzhou Applied Acoustics Re-
search Institute.

2.3. LIPUS Stimulation. BMSCs at passage 3 were used for
the LIPUS stimulation experiments in a super-clean bench
(Suzhou purification equipment Co., Ltd., Jiangsu, China).
BMSCs were seeded onto Petri dishes at 1× 104 cell con-
centration in each Petri dish. 1e LIPUS-treated group
contained 48 groups, and each group of experiments was
repeated 20 times, thus 960 sets of data were collected. Prior
to ultrasound exposure, the medium was washed three times
with phosphate-buffered saline (PBS) (Solarbio Co., Beijing,
China). LIPUS stimulates BMSCs after adding 1ml of
medium to each well. To determine the optimal LIPUS
parameters, various voltages (5, 6, 7, and 8V), frequencies
(0.6, 0.8, 1, and 1.2MHz), and stimulation durations (3, 6,
and 9min) were performed in the experiments. 1e control

group underwent the same submersion but without ultra-
sound stimulation (0MHz).

2.4. Evaluation of Cell Proliferation. Cell proliferation via-
bility was measured by the cell counting kit-8 (CCK-8)
according to the manufacturer’s protocol (BestBio, China).
After LIPUS stimulation, the cells were digested with 0.25%
trypsin-EDTA solution (Solarbio Co., Beijing, China).
Subsequently, BMSCs were seeded in the 96-well culture
plates at a density of 5×104 cells/well (100 μL) and cultured
in the incubator for 24 h to adhere. 10 μL CCK-8 solution
was mixed carefully and then added into each well, and the
plates were incubated for 3 h to evaluate cell proliferation
viability. 1e absorbance at 450 nm was measured by a
multifunctional plate reader (Varioskan Flash), and the OD
values were recorded. All the absorbance rates are expressed
as percent of the absorbance rate of the control group
(without ultrasound stimulation, 0MHz), which was set as
100%.

2.5.GA-BPNNModel. BPNN is able to approach a nonlinear
continuous function reasonably in theory [14]. BPNN is
used to optimize the parameters of LIPUS to improve the
viability of BMSCs further. BPNN consists of three layers:
the input layer, the hidden layer, and the output layer
(Figure 2). x is the input of BPNN, d is the output of BPNN,
and ω is the neural network weights. BPNN learns by a rule,
and then a corresponding decision is made. BPNN needs a
certain amount of historical data, and then the network can
learn the implicit knowledge in the data. 1e output error is
used to estimate the error of the previous layer. According to
the prediction error, the weights and thresholds of BPNN are
able to be adjusted [11, 15, 16] so that the output of the
BPNN is expected to approach the desired output.

1e general weight adjustment formula of BPNN is as
follows:

Δωjk � − η
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zωjk
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where ω is network weight, Δω is weight increment, E is the
error function of the output node of neural network:
E � 1/2

L
K�1(dk − Ok)2, ek is the error back propagation

signal from outer layers to inner ones, L is the number of
output neurons, f′(netk) and f′(netj) are the derivatives of
transfer function of output and hidden layer, the negative
sign expresses the gradient descent, and the constant
η ∈ (0, 1) is the learning rate of network.

1e output of hidden layer is calculated as follows:

yj � f 
n

i�1
ωijxi − aj

⎛⎝ ⎞⎠, j � 1, 2, . . . , l, (2)
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where yj and f is the output of hidden layer and the incentive
function of neurons, j is the neuron number of hidden layer,
m is the neuron number of input layer, ωij is the weight
factor between input layer and hidden layer, and aj is the
threshold value. 1en, the predicting value of the output
layer is calculated as follows:

Ok � 
l

j�1
yjωjk − ak, k � 1, 2, . . . , n, (3)

where ωjk is the weight factor between input layer and
hidden layer and k is the neuron number of output layer.

BPNN is one of the most widely used artificial neural
networks. However, local optimization and overfitting are
ineluctable in the BPNN calculation process. Genetic al-
gorithm (GA) is a parallel stochastic search optimization
method. BPNN had been improved by introducing GA,
therefore, the whole algorithm is called GA-BPNN (Fig-
ure 3). GA-BPNN performs better than BPNN in terms of
mean error, mean square error, and error probability. 1e
weights and thresholds of BPNN are initialized, and then the
network is trained.

GA-BPNN is a neural computation method and can
effectively realize the nonlinear mapping of the input space
to the output space. 1e three parameters (voltage, fre-
quency, and simulation duration) are treated as the input
of GA-BPNN, and the BMSCs viability is used as the
output. By training these data, GA-BPNN is able to derive
the main characteristics of these samples, and the optimal
value can be obtained. After obtaining the optimal value,
the verification experiments are needed to check the result.
1e optimal LIPUS parameters combining voltage, fre-
quency, and stimulation duration, which is able to improve
BMSCs viability further, can be used to stimulate BMSCs
again.

2.6. Statistical Analysis. All statistical analyses were
expressed as mean± standard deviation (SD). Differences
between the groups were compared using one-way analysis
of variance (ANOVA) to determine the effects of voltage,
frequency, and stimulation duration. A level of P< 0.05
value was considered statistically significant.
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Figure 1: 1e LIPUS experimental equipment.

Table 1: Acoustic intensity (mW·cm− 2) stimulates BMSCs at 5mm.

Voltage (V)
Frequency (MHz)

0.6 0.8 1 1.2
5 13.9 3.4 33.7 3.7
6 19.3 4.7 48.2 5.1
7 28.9 6.8 53.9 8
8 37.3 8.5 69.3 10
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Figure 2: Structure diagram of the three-layer BPNN model.
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3. Results

3.1. BMSCs Viability Analysis. 1e 3 passages of BMSCs
were successfully obtained by culture, isolation, and puri-
fication. After being sterilized by 75% medical alcohol, the
transducer was inserted into the culture medium.1e LIPUS
parameters were set at various frequencies (0.6, 0.8, 1.0, and
1.2MHz), voltages (5, 6, 7, and 8V), and stimulation du-
rations (3, 6, and 9minutes). Besides, the ultrasound fre-
quency of the control group was set to 0MHz. After 24 h, the
BMSCs of the stimulation group and the control group were
removed from the medium. 1e BMSCs were flushed and
cultured in L-DMEM supplemented with 10% FBS, and then
10 μL CCK-8 was added per culture medium. Before LIPUS
stimulation, under the invertedmicroscope, the morphology
of the cells was spherical, and they varied in size under DMIL
LED inverted microscope (Leica Instrument Manufacturing
Co., Ltd.). Compared with the control group, the counts of
BMSCs stimulated by LIPUS are significantly increased.
Besides, through LIPUS stimulation, the proliferation and
morphology of BMSCs are different for different parameter
combinations (voltage, frequency, and stimulation duration)
(Figure 4).

In order to investigate how LIPUS parameters influence
the BMSCs viability, BMSCs were stimulated by various
voltage, frequency, and stimulation duration. 1e BMSCs
viability is different from various voltages and frequencies
for different stimulation durations (Figure 5) (detailed data
are provided in Tables 2–4). When the voltage is 6 V, the

frequency is 1MHz, and the stimulation duration is 9min,
the BMSCs viability is the strongest.

Colors represent BMSCs viability, and it is clear that the
relationship between the 3 parameters (voltage, frequency, and
stimulation duration) and BMSCs viability is complex and
nonlinear (Figure 6). BMSCs viability is different with different
voltage, frequency, and stimulation duration. Also the con-
ditions in the experiments are likely not to contain the optimal
LIPUS stimulation parameters, which is to be identified by the
GA-BPNN algorithm developed in this work.

3.2. Application of GA-BPNN Model. 1ere are 3 nodes, 8
nodes, and 2 nodes in the input layer, the hidden layer, and
the output layer, respectively. 1e specified parameters of
BPNN and GA were set up using the values given in Tables 5
and 6.

When the number of iteration increases over around 40,
the curve of GA becomes stable and then reaches a plateau
(Figure 7). 1e optimal combination of parameters can be
achieved by the GA-BPNN, which are 6.92V, 1.02MHz, and
7.3min, respectively.

3.3. Verification Experiments. It shows the BMSCs pro-
liferation and morphology at validation experiments (Fig-
ure 8). 1e viability (124.93%) of BMSCs under the optimized
condition (6.92V, 1.02MHz, and 7.3min) via GA-BPNN
algorithm is about 5.36% higher than that of LIPUS-treated
group without the optimization (6V, 1MHz, and 9min).
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Figure 3: Flow chart of the GA-BPNN algorithm.
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(a) (b)

(c) (d)

Figure 4: BMSCs proliferation with different parameters (n� 20). (a) BMSCs proliferation in the control group. (b) BMSCs proliferation
with 3min LIPUS stimulation. (c) BMSCs proliferation with 6min LIPUS stimulation. (d) BMSCs proliferation with 9min LIPUS
stimulation (bar� 200 μm).
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Figure 5: Continued.
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Figure 5: 1e BMSCs viability (%) after LIPUS stimulation with different parameters (voltage, frequency, and stimulation duration). n� 5
for each group. LIPUS-treated group (0.6, 0.8, 1, and 1.2MHz) versus control group (0MHz), one-way ANOVA, ∗P< 0.05, ∗∗P< 0.01.
(a)1eBMSCs viability variedwith frequency and voltagewhen the stimulation durationwas 3min. (b)1eBMSCs viability variedwith frequency and
voltage when the stimulation duration was 6min. (c)1e BMSCs viability varied with frequency and voltage when the stimulation duration was 9min.
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Compared with the control group, LIPUS stimulation is
able to improve the viability of BMSCs (Figure 9 and
Table 7). More importantly it should be noted that the
BMSCs viability increased further after the GA-BPNN
optimization.

4. Discussion

MSCs from a mesoderm origin are very attractive stem cells
in the field of cell-based tissue regeneration and gene therapy
[2, 17]. It is a good way to use stem cells to replace damaged

Table 4: BMSCs viability (%) after LIPUS stimulation with 9min.

Voltage (V)
Frequency (MHz)

0 0.6 0.8 1 1.2
5 100 107.64± 8.97∗∗ 112.64± 3.53∗∗ 114.33± 2.74∗∗ 102.18± 6.7
Confidence intervals (%) [100,100] [103.44,111.84] [110.99,114.29] [113.04,115.61] [99.05,105.32]
P values — 0.0005 1.66E − 18 3.90E − 24 0.153
6 100 106.63± 12.5∗ 118.55± 5.75∗∗ 119.57± 3.85∗∗ 100.67± 10.46
Confidence intervals (%) [100,100] [100.78,112.49] [115.87,121.24] [117.77,121.37] [95.77,105.56]
P values — 0.023 5.15E − 17 1.00E − 23 0.777
7 100 108.78± 9.49∗∗ 116.21± 6.41∗∗ 116.61± 7.49∗∗ 102.36± 9.62
Confidence intervals (%) [100,100] [104.34,113.22] [113.21,119.21] [113.10,120.11] [97.85,106.86]
P values — 0.0002 9.86E − 14 4.28E − 12 0.28
8 100 103.17± 13.78 106.05± 14.84 105.95± 14.88 101.17± 10.47
Confidence intervals (%) [100,100] [96.72,109.62] [99.10,112.10] [98.99,112.91] [96.27,106.07]
P values — 0.31 0.076 0.082 0.62
Data presented as mean± SD, n� 20 (∗P< 0.05, ∗∗P< 0.01).

Table 3: BMSCs viability (%) after LIPUS stimulation with 6min.

Voltage (V)
Frequency (MHz)

0 0.6 0.8 1 1.2
5 100 105.89± 10.51∗ 111.86± 6.87∗∗ 111.91± 6.09∗∗ 101.8± 9.8
Confidence intervals (%) [100,100] [100.97,110.81] [108.64,115.07] [109.06,114.76] [97.21,106.38]
P values — 0.017 2.64E − 09 1.22E − 10 0.418
6 100 105.94± 14.42 114.28± 7.7∗∗ 114.45± 7.28∗∗ 101.75± 9.43
Confidence intervals (%) [100,100] [99.19,112.69] [110.68,117.89] [111.04,117.86] [97.33,106.16]
P values — 0.073 4.70E − 10 8.56E − 11 0.412
7 100 109.02± 10.41∗∗ 114.06± 7.33∗∗ 114.64± 6.6∗∗ 101.73± 10.3
Confidence intervals (%) [100,100] [104.15,113.90] [110.63,117.49] [111.55,117.73] [96.91,106.55]
P values — 0.0004 1.99E − 10 4.24E − 12 0.458
8 100 104.79± 16.66 107.28± 18.14 106.86± 20.24 102.77± 16.21
Confidence intervals (%) [100,100] [96.99,112.58] [98.79,115.77] [97.38,116.33] [95.18,110.35]
P values — 0.206 0.081 0.138 0.45
Data presented as mean± SD, n� 20 (∗P< 0.05, ∗∗P< 0.01).

Table 2: BMSCs viability (%) after LIPUS stimulation with 3min.

Voltage (V)
Frequency (MHz)

0 0.6 0.8 1 1.2
5 100 100.57± 6.52 103.40± 5.91∗ 105.17± 7.17∗∗ 100.92± 8.18
Confidence intervals (%) [100,100] [97.52,103.62] [100.63,106.16] [101.81,108.53] [97.09,104.74]
P values — 0.699 0.014 0.003 0.619
6 100 101.15± 16.08 104.81± 12.95 107.72± 14.07∗ 100.71± 13.13
Confidence intervals (%) [100,100] [93.62,108.68] [98.75,110.87] [101.13,114.30] [94.57,106.86]
P values — 0.751 0.105 0.019 0.81
7 100 102.8± 10.92 102.84± 10.81 103.94± 6.54∗ 100.59± 7.15
Confidence intervals (%) [100,100] [97.69,107.91] [97.78,107.90] [100.88,106.10] [97.24,103.94]
P values — 0.259 0.248 0.01 0.715
8 100 101.57± 7.73 102.46± 10.56 102.34± 12.14 101.48± 9.82
Confidence intervals (%) [100,100] [97.95,105.20] [97.51,107.40] [96.66,108.02] [96.88,106.07]
P values — 0.368 0.305 0.394 0.505
Data presented as mean± SD, n� 20 (∗P< 0.05, ∗∗P< 0.01).
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tissue. However, the proliferation and differentiation of
BMSCs need certain condition control. It would need a
long exploration stage on how to avoid the potential risk
factors such as tumor when BMSCs differentiate and
proliferate in a certain way. BMSCs are thought to be
multipotent cells. With certain stimulation, BMSCs can
differentiate into bone cells, cartilage cells, muscle cells, fat
cells, and so on [18]. BMSCs are not only able to secrete a
variety of nerve growth factor but also able to promote the
secretion of the central nervous system growth factor.

Besides, BMSCs are able to promote local angiogenesis and
vascular remodeling [19].

Studies [20–22] demonstrated that LIPUS is able to
effectively promote fracture healing, fracture delayed tissue
healing, and other bone defect regeneration. However, in the
prior studies, the parameter setting of LIPUS on BMSCs is
not optimized. In this work, GA-BPNN is chosen to pre-
liminarily optimize three LIPUS parameters.

1e artificial neural network can realize some functions
on the basis of the understanding of the human brain neural
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Figure 6: (a)1e BMSCs viability with 3min stimulation duration. (b)1e BMSCs viability with 6min stimulation duration. (c)1e BMSCs
viability with 9min stimulation duration.
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network. GA-BPNN is a mathematical model of the human
brain neural network and can be simulated by computer
software. Besides, it is able to acquire knowledge by learning
and store it on interconnected weights rather than in a
specific storage unit. Corresponding to the human brain’s
receiving information, processing information, and making
judgments, GA-BPNN formed the corresponding in-
formation processing model (input layer, hidden layer, and
output layer). 1e relationship between LIPUS parameters
and BMSCs viability is nonlinear. Fortunately, GA-BPNN,

which is usually applied to simulate irregular nonlinear
systems, is able to deal with the aforementioned case.

GA-BPNN was employed to find the optimal parameter
combination of LIPUS stimulation, which provides a
valuable reference for further fundamental and clinical re-
search about the optimal treatment protocols for LIPUS.
Compared with the control group, whose BMSCs viability is
100%, the BMSCs viability (119.57%) of the LIPUS-treated
group was improved up to 19.57%. 1e viability of BMSCs
(124.93%) was improved further by 5.36% by using the

Table 5: 1e specified parameters of BPNN.

Name Input Output Maximum number of epochs Learning rate Accuracy
Number 3 1 1000 0.1 0.0001

Table 6: 1e specified parameters of GA.

Name Population size Iteration Mutation probability (PM) Crossover probability (PC)
Number 50 100 0.1 0.8
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Figure 8: 1e verification experiments. (a) 1e control group. (b) 1e LIPUS-treated group under the optimized condition (6.92V voltage,
1.02MHz frequency, and 7.3min stimulation duration) by GA-BPNN algorithm. n� 5 for each group; bar� 200 μm.
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optimized parameters of LIPUS obtained by the GA-BPNN
algorithm. 1e experimental data verified that the algorithm
based on the GA-BPNN was able to optimize parameters of
LIPUS to increase the BMSCs viability further.

It is important to recognize that this study presented
some preliminary results and further work has been planned
and carried out already. Firstly, only BMSCs were in-
vestigated in the current cells study. In fact, more cell studies
should be performed to study the impacts of frequency,
voltage, and stimulation of LIPUS treatment. Secondly, there
were some differences in BMSCs between rats and humans.
1us, the results of this study might not be simply translated
to the treatment of humans.

1is study shows that the use of the GA-BPNN increases
the viability of BMSCs. 1erefore, further studies focusing
on BMSCs transplantation in vivo are promising. In addi-
tion, the findings of this studymay provide somemeaningful
research foundations for future clinical and basic research in
medicine.

5. Conclusion

In this study, LIPUS is able to improve the BMSCs viability,
which can be improved further by LIPUS with parameter
optimization via GA-BPNN algorithm. 1e findings of this
study provide a meaningful research foundation for future
clinical and basic research in medicine.

Data Availability

1e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

1e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Xiuzhi Yang and Yu Wu contributed equally to this work.
Zhigang Qu and Guangzhi Ning designed the experiments.
Xiuzhi Yang, YuWu, Jiqing Li, andManWang conducted the
experiments. Shiqing Feng, Yu Wu, Yang An, Yanfen Wang,
and Qiuli Wu analyzed the data and interpreted the results.
Xiuzhi Yang, YuWu, andWuliang Yin wrote the manuscript.
All authors reviewed and approved the manuscript.

Acknowledgments

1is work was supported by the National Natural Science
Foundation of China (Project Number: 81472070/81772342).

References

[1] M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage
potential of adult human mesenchymal stem cells,” Science,
vol. 284, no. 5411, pp. 143–147, 1999.

[2] P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal
stem cells: revisiting history, concepts, and assays,” Cell Stem
Cell, vol. 2, no. 4, pp. 313–319, 2008.

[3] K. Kumagai, R. Takeuchi, H. Ishikawa et al., “Low-intensity
pulsed ultrasound accelerates fracture healing by stimulation
of recruitment of both local and circulating osteogenic pro-
genitors,” Journal of Orthopaedic Research, vol. 30, no. 9,
pp. 1516–1521, 2012.

[4] H. Lu, C. Chen, J. Qu et al., “Initiation timing of low-intensity
pulsed ultrasound stimulation for tendon-bone healing in a
rabbit model,” @e American Journal of Sports Medicine,
vol. 44, no. 10, pp. 2706–2715, 2016.

[5] N. Mizrahi, E. H. Zhou, G. Lenormand et al., “Low intensity
ultrasound perturbs cytoskeleton dynamics,” Soft Matter,
vol. 8, no. 8, pp. 2438–2443, 2012.

[6] K. W. Jang, L. Ding, D. Seol, T.-H. Lim, J. A. Buckwalter, and
J. A. Martin, “Low-intensity pulsed ultrasound promotes
chondrogenic progenitor cell migration via focal adhesion
kinase pathway,” Ultrasound in Medicine & Biology, vol. 40,
no. 6, pp. 1177–1186, 2014.

[7] W. Jiang, Y. Wang, J. Tang et al., “Low-intensity pulsed ul-
trasound treatment improved the rate of autograft peripheral
nerve regeneration in rat,” Scientific Reports, vol. 6, no. 1,
p. 22773, 2016.

[8] Y. Wang, Z. Chai, Y. Zhang, F. Deng, Z. Wang, and J. Song,
“Influence of low-intensity pulsed ultrasound on osteogenic
tissue regeneration in a periodontal injurymodel: X-ray image
alterations assessed by micro-computed tomography,” Ul-
trasonics, vol. 54, no. 6, pp. 1581–1584, 2014.

[9] X. Zhou, N. J. Castro, W. Zhu et al., “Improved human bone
marrowmesenchymal stem cell osteogenesis in 3D bioprinted
tissue scaffolds with low intensity pulsed ultrasound stimu-
lation,” Scientific Reports, vol. 6, no. 1, p. 32876, 2016.

[10] Y. Rong, Z. Zhang, G. Zhang et al., “Parameters optimization
of laser brazing in crimping butt using Taguchi and BPNN-
GA,” Optics and Lasers in Engineering, vol. 67, pp. 94–104,
2015.

Control LIPUS LIPUS
(GA-BPNN)

90

100

110

120

130
C

el
l v

ia
bi

lit
y 

(%
)

∗∗

∗∗

Figure 9: 1e BMSCs viability with different methods. Data
presented as mean± SD. ∗∗P< 0.01.

Table 7: BMSCs viability (%) with different methods. Data pre-
sented as mean± SD, n� 5. (∗∗P< 0.01).

Control LIPUS-treated LIPUS-treated
(GA-BPNN)

BMSCs viability (%) 100 119.57± 3.85∗∗ 124.93± 1.28∗∗
Confidence intervals
(%) [100,100] [116.6,122.07] [123.34,126.52]

P values — 4.73E − 08 8.65E − 11

10 Computational and Mathematical Methods in Medicine



[11] W. Sun and Y. Xu, “Financial security evaluation of the
electric power industry in China based on a back propagation
neural network optimized by genetic algorithm,” Energy,
vol. 101, pp. 366–379, 2016.

[12] C.-J. Tzeng and R.-Y. Chen, “Optimization of electric dis-
charge machining process using the response surface meth-
odology and genetic algorithm approach,” International
Journal of Precision Engineering and Manufacturing, vol. 14,
no. 5, pp. 709–717, 2013.

[13] R. Liu, X. Zhang, L. Zhang et al., “Bitterness intensity pre-
diction of berberine hydrochloride using an electronic tongue
and a GA-BP neural network,” Experimental and @erapeutic
Medicine, vol. 7, no. 6, pp. 1696–1702, 2014.

[14] F. Yu and X. Xu, “A short-term load forecasting model of
natural gas based on optimized genetic algorithm and im-
proved BP neural network,” Applied Energy, vol. 134,
pp. 102–113, 2014.

[15] Y. Kassa, J. H. Zhang, D. H. Zheng, and D. Wei, “A GA-BP
hybrid algorithm based ANN model for wind power pre-
diction,” in Proceedings of the 2016 IEEE Smart Energy Grid
Engineering (SEGE), pp. 158–163, Oshawa, Canada, August
2016.

[16] Z. Q. Li, P. Nie, S. G. Zhao, and Z. S. Ding, “Study on the
identification method of tool wear state based on BP neural
network optimized by genetic algorithm,” Applied Mechanics
& Materials, vol. 602–605, pp. 2458–2461, 2014.

[17] A. E. Ropper, D. K. 1akor, I. Han et al., “Defining recovery
neurobiology of injured spinal cord by synthetic matrix-
assisted hMSC implantation,” Proceedings of the National
Academy of Sciences, vol. 114, no. 5, pp. E820–E829, 2017.

[18] Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency
of mesenchymal stem cells derived from adult marrow,”
Nature, vol. 418, no. 6893, pp. 41–49, 2002.

[19] M. Dezawa, H. Kanno, M. Hoshino et al., “Specific induction
of neuronal cells from bone marrow stromal cells and ap-
plication for autologous transplantation,” Journal of Clinical
Investigation, vol. 113, no. 12, pp. 1701–1710, 2004.

[20] S.-C. Fu, W.-T. Shum, L.-K. Hung, M. W.-N. Wong, L. Qin,
and K.-M. Chan, “Low-intensity pulsed ultrasound on tendon
healing: a study of the effect of treatment duration and
treatment initiation,” @e American Journal of Sports Medi-
cine, vol. 36, no. 9, pp. 1742–1749, 2008.

[21] K. H. Salem and A. Schmelz, “Low-intensity pulsed ultra-
sound shortens the treatment time in tibial distraction
osteogenesis,” International Orthopaedics, vol. 38, no. 7,
pp. 1477–1482, 2014.

[22] Y. Watanabe, T. Matsushita, M. Bhandari, R. Zdero, and
E. H. Schemitsch, “Ultrasound for fracture healing: current
evidence,” Journal of Orthopaedic Trauma, vol. 24, pp. S56–
S61, 2010.

Computational and Mathematical Methods in Medicine 11


