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Iron is a double-edged sword. It is vital for all that’s living, yet its deficiency

or overload can be fatal. In humans, iron homeostasis is tightly regulated at

both cellular and systemic levels. Extracellular vesicles (EVs), now known as

major players in cellular communication, potentially play an important role

in regulating iron metabolism. The gut microbiota was also recently reported

to impact the iron metabolism process and indirectly participate in regulating

iron homeostasis, yet there is no proof of whether or not microbiota-derived

EVs interfere in this relationship. In this review, we discuss the implication

of EVs on iron metabolism and homeostasis. We elaborate on the blooming

role of gut microbiota in iron homeostasis while focusing on the possible EVs

contribution. We conclude that EVs are extensively involved in the complex

iron metabolism process; they carry ferritin and express transferrin receptors.

Bone marrow-derived EVs even induce hepcidin expression in β-thalassemia.

The gut microbiota, in turn, affects iron homeostasis on the level of iron

absorption and possibly macrophage iron recycling, with still no proof of

the interference of EVs. This review is the first step toward understanding

the multiplex iron metabolism process. Targeting extracellular vesicles and

gut microbiota-derived extracellular vesicles will be a huge challenge to treat

many diseases related to iron metabolism alteration.
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Abbreviations: EVs, extracellular vesicles; ROS, reactive oxygen species; DMT1, divalent metal-
ion transporter 1; Dcytb, duodenal cytochrome b; TF, transferrin; FPN, ferroportin; STEAP3,
six-transmembrane epithelial antigen of prostate 3; HMOX1, heme oxygenase 1; IRPs, iron
regulatory proteins; IREs, iron-responsive elements; HIFs, hypoxia inducible factors; TFR 1,
transferrin receptor 1; TFR 2, transferrin receptor 2; JAK/STAT, Janus kinase/signal transducers
and activators of transcription; MDVs, mitochondria derived vesicles; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; DAP, 1,3 diaminopropane; SCFA, short chain fatty acids.
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Introduction

Iron is a vital trace element, essential for several
fundamental processes: globin synthesis and erythropoiesis
(1), energy production (2), DNA synthesis and repair (3),
and immune function (4). Its mode of action lies in its ability
to reversibly gain or lose a single electron to participate
in oxidation-reduction reactions, which also catalyze the
generation of reactive oxygen species (ROS) (5). Hence, in spite
of its vital role iron overload is toxic due to its ability to generate
ROS and trigger cell death (6). Excess of free reactive iron leads
to several types of cell death, including ferroptosis, the oxidative
cell death prompted by the accumulation of iron-mediated lipid
peroxidation (6).

No wonder, iron metabolism is a tightly regulated process.
The regulation of iron metabolism occurs at a cellular level
via transcriptional and post-transcriptional regulation of iron
genes. At the systemic level, iron metabolism is regulated
via the hepatic hormone hepcidin, which regulates iron
absorption, plasma concentrations, and tissue distribution (7).
The human microbiome, in turn, was recently identified as an
effector in the iron metabolism regulation process, considering
the fact that the microbiota also requires iron to maintain
symbiosis. The composition of the gut microbiota is affected
by iron availability, and microbiota-derived metabolites were
reported to impact both iron absorption (enterocyte) and iron
recycling (macrophage).

The iron metabolism process and its regulation are highly
complex; up till now, there remain a lot of missing links.
Ferritin, a main cargo of blood iron, and transferrin receptors,
involved in the cellular membrane transportation of iron,
have been identified in vesicular locations (8–10). Also, bone
marrow-derived extracellular vesicles (EVs) in β thalassemia
patients were reported to affect hepcidin production (11).
However, no paper has yet discussed the possible role of EVs
in iron homeostasis. Considering the blooming significance of
extracellular EVs in cell–cell communication, delivering cargo,
and modulating the physiological condition (12); we suggest
that EVs might play a role in transporting iron regulators thus
maintaining iron homeostasis.

Here we will discuss the critical process of iron metabolism
and the systems of its regulation, while focusing on the potential
interference of extracellular vesicles. We will also discuss the
role of gut microbiota and its metabolites in iron homeostasis,
and consider the potential involvement of microbiota-derived
extracellular vesicles in this relationship.

Iron metabolism

Iron metabolism consists of iron absorption, use, storage,
and transfer. Absorbable dietary iron can be in the form of heme
and non-heme iron (13). Heme iron contributes to 10–15% of

the absorbed dietary iron. It is more absorbable by the body
(15–35%) as compared to non-heme iron (2–20%) (14). Even
though heme iron absorption surpasses that of non-heme iron,
its absorption mechanisms remain ambiguous. Non-heme iron
is absorbed at the level of the duodenum and proximal jejunum,
by enterocytes divalent metal-ion transporter 1 (DMT1), after
being reduced to ferrous iron (Fe2+) via duodenal cytochrome
b (Dcytb) (15, 16). If not needed inside the cell, ferrous
iron, is either stored in the form of ferritin or transferred to
circulating transferrin (TF) via the iron exporter ferroportin
(FPN), after being oxidized to ferric iron (Fe3+) by hephaestin
(17). Transferrin bound iron is delivered to sites of utilization,
where it binds to cell surface transferrin receptor 1 (TFR1) and
endocytose into the cell (18); it then enters the cytoplasm via
DMT1 in the endosomal membrane, after being reduced to
(Fe2+) under the action of six-transmembrane epithelial antigen
of prostate 3 (STEAP3) (19). This iron can be used for metabolic
functions, or stored within cytosolic ferritin- iron in the ferric
form associated with hydroxide and phosphate anion (20).

Merely 1–2 mg of dietary iron are absorbed in the gut
daily; most iron is recycled upon phagocytosis of erythrocytes
by macrophages (21). Senescent/damaged erythrocytes are
phagocytosed by macrophages. Macrophages recover iron
from heme via heme oxygenase 1 (HMOX1) for utilization,
conservation or recycling depending on the body needs (22).

Iron homeostasis

The iron metabolism process is highly critical, considering
the danger of excess free reactive iron. It is supposed to be tightly
regulated. Iron homeostasis is essential to maintain normal
physiology. To achieve homeostasis, iron regulation takes place
at both cellular and systemic levels. At the cellular level, iron
homeostasis involves mechanisms that balance iron uptake with
intracellular iron storage and utilization (23). Systemic iron
homeostasis embodies the mechanisms that synchronize dietary
iron absorption and iron concentration in plasma and the
extracellular milieu (24).

Iron homeostasis at the cellular level

At the cellular level, iron metabolism regulation is based
on transcriptional and post-transcriptional regulation of iron
genes. Post transcriptional regulation is facilitated by the
binding of iron regulatory proteins (IRPs) to iron-responsive
elements (IREs) of their mRNA untranslated regions (25). In
case of iron-deficiency, IRP1 and IRP2 bind to the IREs in
TFR1 mRNA and stabilize it, thus increasing iron uptake. They
also bind to the 5′-UTR of the mRNAs that encode ferroportin
and ferritin to suppress their translation, thus blocking iron
export and storage (26). Conversely in iron-replete cells, iron
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can bind IRPs and induce their conformational change. Notably,
IRP1 assembles an aconitase-type 4Fe-4s and this assembly
alters its conformation (27, 28). The latter conformational
changes weaken the IRPs IRE-binding ability, thus leading to
(a) destabilization and degradation of TFR1 mRNA and (b)
facilitated translation of the target 5′-UTR mRNA encoding
ferroportin and ferritin (29). Micro RNAs (miRNAs) also count
as significant posttranscriptional regulators of gene expression.
They can regulate cellular iron homeostasis by influencing iron
absorption, transport, storage, and utilization. For example,
miR-Let-7d was reported to target the DMT1-non-IRE isoform
(30) and miR-320 was found to post-transcriptionally control
TfR1 expression (31). The mRNA encoding FPN in turn was
shown to be targeted by miR-485-3p (32). Furthermore, the
storage of iron as ferritin is downregulated by miR-200b (33).

Transcriptional regulation is dependent on hypoxia
inducible factors (HIFs). Hypoxia inducible factor -2α (HIF-2α)
plays an important physiological role in transcriptional
regulation of iron homeostasis. HIF-2α regulates iron
absorption notably by activating the expression of DcytB
and DMT1 proteins during iron deficiency or ineffective
erythropoiesis to increase iron uptake (34, 35). In fact, HIF-
2α mRNA 5′-UTR contains an IRE that binds both IRP1 and
IRP2 (36, 37) for iron-dependent regulation of the transcript.
By regulating HIF-2α mRNA, IRP1 amends the erythropoietic
response to hypoxia. This IRP1-HIF-2α axis synchronizes both
iron and oxygen sensing with erythropoiesis and iron absorption
(38). Furthermore, HIF regulates hepcidin, the orchestrator
of systemic iron homeostasis, via erythropoietin-induced
erythropoiesis. HIF can suppress the hepcidin gene Hamp1
indirectly through erythropoietin-induced erythropoiesis
(39, 40).

Iron homeostasis at the systemic level

Systemic iron homeostasis is regulated via hepcidin, a
hormone that is primarily secreted by hepatocytes. Iron and
inflammatory cytokines induce hepcidin expression, while iron
deficiency, erythropoiesis, and anemia/hypoxia downregulate it
(17). High circulating iron levels upregulate hepcidin expression
by hepatocytes, through the BMP/SMAD pathway (41). The
binding of transferrin to transferrin receptor 2 (TFR2), to
which it has less affinity than TFR 1, in case of high
plasma iron concentration, has been anticipated to affect
hepcidin expression. The binding of diferric transferrin to
TFR2 induces overexpression of hepcidin in hepatocytes and
reduced erythropoietin responsiveness in erythroid cells (42),
where TFR2 binds erythropoietin receptors (43). Inflammatory
cytokines upregulate hepcidin gene expression through the
Janus kinase/signal transducers and activators of transcription
(JAK/STAT); for example, IL-6, increases hepcidin expression
via activating the IL-6R-JAK2-STAT3 pathway (44). When

activated, hepcidin combines FPN1, internalizes it, and degrades
it in the lysosome (45), thereby reducing iron absorption by
duodenal cells and iron recycling by macrophages.

Extracellular vesicles: Key players
in iron homeostasis?

Extracellular vesicles are membrane-bound vesicles
secreted by cells into the extracellular space. They constitute
microvesicles, exosomes, and apoptotic bodies- released by
dying cells; they vary in size with microvesicles being the
smallest (less than 100 nm–1 µm), followed by exosomes and
apoptotic bodies, respectively (46). They function by facilitating
the intercellular exchange of proteins, lipids, and genetic
material, thus facilitating intercellular signaling/communication
(47). While it is known that iron metabolism requires a lot
of cell communication, the exact role of EVs in either iron
metabolism or the maintenance of iron homeostasis remains to
be elucidated. The putative role of EVs in iron homeostasis is
summarized in Figure 1.

Ferritin extracellular vesicles and their
fate

Iron is stored in the cells in the form of ferritin, as mentioned
before. The synthesis and degradation of ferritin are both
orchestrated by cellular iron status. Under low iron levels,
ferritin synthesis decreases via translational repression (48),
and ferritin lysosomal degradation, mediated by the selective
autophagy receptor NCOA4, increases. The degradation of the
ferritin to free the iron stored is a selective macro-autophagy
mechanism called ferritinophagy and is mediated by NCOA4
(49). On the other hand, high iron levels decrease the entry
of ferritin into the lysosome (50). Ferritin can be found in the
cytoplasm (51), nucleus (52), and mitochondria (53). However,
it has also been observed in vesicular locations.

Some researches succeeded to report the presence of ferritin
in human urinary exosomes, via a large-scale proteomic analysis
(9). However, there is a gap in our knowledge underlying ferritin
intracellular trafficking and secretion. It was thought to be
secreted through the Endoplasmic Reticulum–Golgi route (54),
but Cohen et al. showed that ferritin is secreted primarily
by macrophages through lysosomal pathway, by secretory
lysosomes (55). Truman-Rosentsvit et al. provided evidence on
the secretion of ferritin via the multivesicular body–exosome
pathway (56). Yanatori et al. studied the mechanism of secretion
of ferritin in extracellular vesicles (57). They discovered that
CD63, which plays a role in EVs secretion (58), is post-
transcriptionally regulated by iron via the IRE-IRP system, the
system that induces ferritin under iron upsurge (59). Thus,
increased levels of iron induce CD63 expression. Upon loading
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FIGURE 1

Schematic representation of the potential implication of extracellular vesicles (EVs) in iron homeostasis. This figure illustrates the possible
involvement of (1) Transferrin carrying EVs (TFR EVs) in iron delivery to host cells, (2) Ferritin EVs in mediating disease symptoms, and (3) Bone
marrow-derived EVs in affecting hepcidin release. ©Created with BioRender.com.

iron, intracellular ferritin is transported via nuclear receptor
coactivator 4 (NCOA4)/ferritin vesicles to CD63+ EVs that are
secreted (57).

Exosomes play a role in iron homeostasis after all, but
the destination of ferritin carried by the exosomes remains
to be explored. Is it transferred to hepatocytes, the major
sites for iron storage? Can those exosomes fuse with the free
mitochondria and deliver ferritin to them? Can the ferritin
stored in mitochondria be released via mitochondria-derived
vesicles (MDVs) too? Vasam et al. had reported that MDVs
revealed high levels of mitochondrial iron–sulfur clusters
biogenesis proteins, that are responsible for the biogenesis of
iron-containing cofactors, and iron-binding capable proteins.
They suggested that MDVs can serve as a potential source of
biomarkers for mitochondrial stress (60).

The serum ferritin level mirrors the body’s iron stock; it
is considered a hematologic index for iron-associated diseases
(61). Whether this serum ferritin is contained in EVs or possibly
released from ferritin carrying EVs is ambiguous. Excessively
elevated levels of both ferritin (62, 63) and EVs (64) have long
been noted in the circulation of iron overload β-thalassemia
patients. Recently, Atipimonpat et al. reported the presence of
high levels of ferritin-bearing exosomes in the plasma of β-
thalassemia patients (65). They explained that those high levels

of circulating red blood cells and activated platelets derived
EVs, especially ferritin-carrying exosomes, can speed up the
proliferation of H9C2 cardiac cells leading to cell hyperplasia,
progression of cardiac hypertrophy, and eventually heart failure.
What remains to be clarified is whether iron overload can induce
or increase the ferritin-loaded exosomes and if ferritin-loaded
exosomes can contribute to disease symptoms.

Strzyz in turn reported ferritin exosomes to induce
ferroptosis resistance (66). In this regard, exosomes provide
a route for ejecting iron out of ferroptotic cells, thus
protecting them from ferroptosis. Accordingly, Mukherjee et al.
reported that disrupting the EV release or ferritin heavy
chain expression in oligodendrocytes resulted in neuronal
loss and oxidative damage in mice (67). In case of cancer,
carcinoma cells may use this iron export pathway involving
multivesicular body/exosome trafficking of iron out of the
cell to avoid ferroptotic death (68). Interestingly, a study
conducted by Ito et al. showed that macrophages that engulf
asbestos produce ferroptosis-dependent extracellular vesicles
that contain ferritin and transport it to mesothelial cells, thereby
contributing to mesothelial carcinogenesis by loading ferritin
(69). Alterations in EV levels during therapy have been reported
in Glioblastoma patients; interestingly the EV protein signature
showed common iron metabolism proteins and disappeared
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post-surgical resection (70). We can speculate that ferritin
extracellular vesicles can halt ferroptosis in health and in
disease. They show potential in becoming biomarkers for disease
diagnosis, notably cancer.

Transferrin receptor carrying
extracellular vesicles

Transferrin receptor expression was also detected in
exosomes. The presence of Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), which has been characterized as a
transferrin receptor (71, 72), in exosomes from different cell
lines was confirmed by Malhotra et al. along with its ability to
bind transferrin (10). They also reported that iron preloaded
exosomes delivered more iron into various cells, thus raising
an interesting chance of exosomes playing a role in the delivery
of iron and iron homeostasis. Interestingly a recent study
conducted by Dar et al. demonstrated that GAPDH also induces
clustering of EVs in vitro and in vivo (73). Further, Mattera
et al. identified the expression of TFR1 in extracellular vesicles
derived from human and mouse plasma, rat oligodendroglioma
cells, mouse neuroblastoma cells, and rat astrocytes (8).
However, no research has been conducted on the presence of
TFR2, that induces hepcidin expression upon binding diferric
transferrin, in hepatocytes and erythroblasts derived EVs.

Extracellular vesicle-mediated
hepcidin modulation

Hepcidin, the key iron regulator, is produced primarily
by hepatocytes neighboring the portal veins and Kupffer
cells (7), macrophages (74), adipocytes (75), and dendritic
cells (76). Also, several studies have reported local synthesis
of hepcidin by multiple other tissues, notably in disease,
like the and the lungs (77), kidney (78), stomach (79),
adipose tissue (75), brain (80), heart (81), and even the skin
(82). The organ that produces the most hepcidin after the
liver is the heart (83). As mentioned before, under active
erythropoiesis, hepcidin production is somewhat inhibited
via erythroferrone, an erythroid factor produced by the
erythroblasts, that suppresses the BMP/SMAD pathway in the
liver (84). β-Thalassemia patients are known to have ineffective
erythropoiesis and iron overload. This ineffective erythropoiesis
suppresses hepcidin leading to iron overload (85). Ruiz
Martinez et al. hypothesized that bone-marrow derived
exosomes modulate hepcidin expression and regulate iron
metabolism (11); they investigated the link between exosomes
and hepcidin regulation in β-thalassemia. They were able to
demonstrate that those exosomes boost hepcidin expression
by increasing SMAD1/5/8 signaling. Increased hepcidin, in

response to exosomes, will possibly influence several signaling
pathways by an autocrine mechanism. Exosomes compensated
for suppressed hepcidin in the exosome-depleted serum of
β-thalassemic samples. Proteomic analysis of β-thalassemic
patients’ bone marrow derived exosomes can help us better
understand their role in hepcidin regulation. On the other hand,
EVs derived from the plasma of β-thalassemic patients showed
dysregulation of certain miRNAs involved in oxidative stress,
erythropoiesis, and apoptosis- in particular overexpressed miR-
144-3p. They were reported to induce apoptosis in endothelial,
pancreatic, and hepatic cells, possibly contributing to the organ
damage in β-thalassemia (86). Thus, studying EVs derived from
β-thalassemic patients not only can help to understand the
implication of EVs in iron metabolism regulation, but they can
also help to comprehend the health complication associated
with β-thalassemia. They can also serve as biomarkers for β-
thalassemia severity.

Gut microbiota: Modulation of
iron homeostasis

Almost all living organisms require iron in order to
survive. A deficiency or excess in iron is dangerous hence iron
homeostasis is firmly regulated. Iron acquisition takes place
at the level of the small intestine (87). The small intestine
is colonized by symbiotic microorganisms, called the “gut
microbiota,” that share a mutually beneficial relationship with
the host (88, 89). The gut microbiota relies on the host
for nutrients and survival, while it plays an indirect role
in regulating complex endocrine networks. Gut microbiota
compete with the host to acquire iron, for survival. Studies
have reported how iron deficiency/repletion in rats (90) or
genetic modification of iron metabolism in mice (91) affect the
gut microbiota composition and metabolic activity. The fecal
microbiota has even been proposed as a non-invasive biomarker
for tissue iron accumulation prediction in intestine epithelial
cells and liver (92).

The gut microbiota must in turn also impact the iron
absorption process and play an indirect role in regulating iron
homeostasis. Most studies, however, focus on the strategies
used by microbiota to acquire iron, studies on the possible
role of microbiota in regulating iron homeostasis are scarce.
Deschemin et al. were the first to investigate the impact of
microbiota on host iron sensing (93). They demonstrated that
gut microbes induce a specific iron-related protein signature and
revealed a new feature of the microbiota – intestinal epithelium
crosstalk. Further, Das et al., in their turn, then studied the
impact of gut microbiota on iron intestinal absorption, and
discussed its unforeseen role in regulating host iron homeostasis
(94). They identified that the host iron-sensing mechanism is
connected to the gut microbiome and regulated by it. They
reported that, intestinal iron deficiency leads to the positive
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FIGURE 2

Summary of the achieved relationship between the gut microbiota and systemic/local iron levels. (A) The gut microbiota releases 1,3
diaminopropane (DAP) and reuterin in case of iron overload and decreases systemic iron levels. DAP and reuterin induce ferritin expression, and
cause the degradation of HIF-2α consequently blocking the expression of the iron transporters (Dcytb, DMT1, and FPN). (B) Hematopoietic
stress leads to the release of butyrate by the gut microbiota. Butyrate decreases local iron levels by promoting iron recycling
(erythro-phagocytosis) in order to allow hematopoietic stem cells differentiation. ©Created with BioRender.com.

selection of Lactobacillus species that produce reuterin and
1,3 diaminopropane (DAP). Those microbiota metabolites (a)
suppress iron absorption, by inhibiting the transcription factor
HIF-2α that targets the expression of key iron transporters (34,
35, 95), and (b) induce ferritin expression to eventually lead to
its degradation by the host in due to the iron overload caused
- in order to maintain homeostasis (34); thereby indirectly
preventing tissue iron accumulation (94).

From another perspective, Zhang et al. also reported that
microbiota derived short chain fatty acids (SCFAs), specifically
butyrate, can lead to iron distribution, for fueling hematopoietic
regeneration, by promoting emergency erythro-phagocytosis by
bone marrow macrophages (96). However, it is important to
note that microbiota depletion resulted in only reduced local
iron levels without affecting systemic iron homeostasis (96). Yet,
future studies should further explore a possible involvement of
a microbiota-macrophage-iron axis in iron homeostasis. All the
current knowledge on the relationship between gut microbiota
and host iron levels is summarized in Figure 2.

In reality, we are still in the infancy of understanding
the metabolic crosstalk between gut microbiota and the host
intestinal epithelium- in terms of iron homeostasis. A lot of

studies are required to identify the role of microbiota-derived
metabolites in context of iron homeostasis, and to determine
whether microbiota commensals can secrete hormones that
directly regulate or impact iron metabolism. Additionally, it is
important to study the potential of targeting gut microbiota
therapeutically via prebiotics, probiotics, or fecal microbiota
transplant for iron-related diseases.

Gut microbiota and hepcidin
production: An intriguing question

As explained before, hepcidin is the central iron regulator, it
is overexpressed in response to iron overload and inflammation
(97); it blocks iron export (98) and degrades the iron exporter
ferroportin (45), thereby reducing iron absorption by duodenal
cells and iron recycling macrophages. The microbiota produces
a wide range of metabolite-derived humoral agents including
SCFA, secondary bile acids, and neurotransmitters all of which
play important body functions (99). As mentioned above,
Lactobacillus derived metabolites were lately reported to play an
indirect role in regulating iron homeostasis.
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The secretion of hepcidin by myeloid cells occurs via
the toll-like receptor 4-hepcidin pathway as a host response
to bacterial pathogens (100). Layoun and Santos showed
that bacterial cell wall lipopolysaccharide induced hepcidin
expression in macrophages (101). Microbiota dysbiosis in the
inflamed intestine of humans was found to induce the release
of hepcidin by conventional dendritic cells, for tissue repair (76).
However, one intriguing question that remains to be answered is
whether the microbiota can modulate iron homeostasis, directly,
by producing hepcidin.

Gut microbiota derived extracellular
vesicles: Players in iron homeostasis?

Iron is essential for the majority of microorganisms. Some
bacteria have evolved efficient strategies to acquire iron from the
host. The microbiota acquires iron from the host by using host
iron compounds (e.g., heme, transferrin, lactoferrin ferritin),
producing high-affinity iron chelators called siderophores,
and/or uptaking ferrous iron (102). Gram-negative bacteria
derived outer membrane vesicles (103) and gram-positive
bacteria derived extracellular vesicles (104) are well reported to
play significant roles in bacterial survival, material exchange,
cell-to-cell communication, and pathophysiology. EVs of some
pathogenic bacteria are known to help them acquire iron from

the host (105). Additionally, bacteria-derived EVs (Diaetzia
sp.) were found to allow homologous bacterial species to share
iron (106).

Microbiota-derived EVs are involved in inter-kingdom
communication with host cells in the gut (107, 108). They were
reported to deliver to host cells effector molecules that modulate
host signaling pathways and cell processes (108). The probable
effects of gut microbiota–derived EVs on metabolic diseases
such as obesity and diabetes have been reviewed (109). Knowing
that the gut microbiota plays an indirect role in regulating
the host’s iron homeostasis, no research has yet addressed the
potential role of microbiota-derived EVs in the regulation of
iron homeostasis.

Bacteria can store iron in the form of bacterial ferritin,
heme-containing bacterioferritin, and DNA binding
dodecameric ferritin (110). The existence of bacterial ferritin,
the prototype of ferritin that possesses a classical ferritin
H-chain with ferroxidase activity (111), in microbiota-
derived EVs might suggest their interference in host iron
homeostasis. In fact, Zakharzhevskaya et al. were able to
identify non-heme ferritin with special oxidoreductase activity
in toxigenic Bacteroides fragilis (112). Further research is
required to test for the presence of bacterial ferritin in
microbiota-derived EVs and unravel the possibility of the
association of bacterial ferritin-carrying vesicles with host
iron homeostasis.

FIGURE 3

Schematic representation of the putative role of metabolite carrying microbiota-derived extracellular vesicles (EVs) in modulating iron
homeostasis. Gut microbiota metabolites mainly interfere in iron homeostasis by acting on iron absorption at the level of the gut. They may
possibly interfere with heme recycling at the level of the macrophages. We propose that those metabolites can be released in EVs. ©Created
with BioRender.com.
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The presence of iron modulating microbial metabolites in
microbiota-derived EVs should also be addressed. The potential
implication of metabolite-carrying microbiota-derived EVs in
the microbiota host iron regulatory mechanisms is depicted in
Figure 3. As reported above, the gut microbiota plays a role in
regulating the host’s iron homeostasis via Lactobacillus derived
metabolites reuterin and DAP (94). Moreover, proteomic
analysis of L. reuteri derived EVs revealed the presence of
different functional and structural proteins signifying the
possible involvement of L. reuteri EVs in metabolism, transport,
and signaling (113). Further studies ought to specifically test
for the presence of the bacteriocins reuterin and DAP in
L. reuteri-derived EVs, taking into consideration that species like
Lactobacillus acidophilus can carry bacteriocin peptides via EVs
in order to deliver them to opportunistic pathogens (114).

The presence of SCFAs specifically butyrate in EVs
should also be tested to assess the prospective involvement
of bacteria-derived EVs in modulating the iron recycling
process. Streptococcus pneumoniae derived EVs for example
were enriched in short chain saturated fatty acids (115).

Thus, the characterization of bioactive molecules and
different types of cargo of gut microbiota– and probiotic-
derived EVs is required. Once this is achieved, we can begin
to explore the potential role of microbiota- derived EVs in
regulating the host iron homeostasis. However, it is important
to note that there are current limitations to characterize those
EVs and their cargo due to the similarity between bacterial and
mammalian EVs (107).

Conclusion

Maintaining iron homeostasis is a challenge reflected by the
complexity of iron metabolism. EVs seem to be indispensable
in mediating this process. They appear to be key players in
iron homeostasis, ferritin is released via exosomes under high
iron levels, transferrin receptors are also expressed in exosomes.
The question of the destination of ferritin carrying EVs has
yet to be answered. Is ferritin transferred via EVs to be stored
in hepatocytes? Do they serve in delivering ferritin to free
mitochondria? Do mitochondria export iron via MDVs? On
another note, EVs should be tested for any ability to deliver iron
to distal sites especially to the brain knowing that they can cross
the blood brain barrier (116).

Extracellular vesicles are involved in iron regulation in
health and disease. Bone marrow-derived EVs can regulate
iron homeostasis by compensating for low hepcidin in β-
thalassemic patients. However, plasma-derived EVs were also
reported to contribute to organ dysfunction and complications
of β-thalassemia. A better understanding of EVs composition
and cargo might help identify new mechanisms underlying iron-
overload diseases such as β-thalassemia or even treat them.
Ferritin-containing EVs were reported to suppress ferroptosis in
health, but also promote cell survival and proliferation in cancer.

This opens doors for better diagnostics and therapeutic options
in the future; what if cancer can be diagnosed by identifying
ferritin-containing EVs? What if it can be treated by targeting
those EVs and modulating iron levels?

Achieving iron homeostasis is also linked to the gut
microbiota, the endocrine organ that keeps surprising us with
its importance day by day. Gut microbiota metabolites can
participate in achieving iron homeostasis by acting on intestinal
iron absorption, and can impact local iron levels by affecting
bone marrow macrophage erythro-phagocytosis. Knowing that
the gut microbiota secretes a wide range of metabolite-derived
humoral agents, can it regulate iron metabolism by directly
releasing hepcidin? We are still in the infancy of understanding
the many roles of gut microbiota in achieving/maintaining
iron homeostasis. Later studies should address the effect of
gut dysbiosis on iron homeostasis. They should also investigate
where microbiota-derived EVs stand in this gut microbiota -
iron homeostasis relationship. The future of medicine lies in
the microbiota (117). Microbiota derived EVs might be key
in future therapies for iron related diseases. Targeting host
and gut microbiota-derived EVs will be a huge challenge to
prevent and treat many diseases related to the alteration of iron
homeostasis and metabolism.
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