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Chandra Sripada* and Alexander Weigard
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There is substantial interest in identifying biobehavioral dimensions of individual variation

that cut across heterogenous disorder categories, and computational models can play

a major role in advancing this goal. In this report, we focused on efficiency of evidence

accumulation (EEA), a computationally characterized variable derived from sequential

sampling models of choice tasks. We created an EEA factor from three behavioral

tasks in the UCLA Phenomics dataset (n = 272), which includes healthy participants

(n = 130) as well-participants with schizophrenia (n = 50), bipolar disorder (n = 49),

and attention-deficit/hyperactivity disorder (n = 43). We found that the EEA factor was

significantly reduced in all three disorders, and that it correlated with an overall severity

score for psychopathology as well as self-report measures of impulsivity. Although

EEA was significantly correlated with general intelligence, it remained associated with

psychopathology and symptom scales even after controlling for intelligence scores.

Taken together, these findings suggest EEA is a promising computationally-characterized

dimension of neurocognitive variation, with diminished EEA conferring transdiagnostic

vulnerability to psychopathology.

Keywords: computational psychiatry, evidence accumulation, transdiagnostic, research domain criteria,

schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder

INTRODUCTION

The standard approach to psychiatric nosology, reflected in the widely used DSM (1) and ICD
(2) systems, emphasizes discrete diagnostic categories, each assumed to have its own distinct
pathophysiology. An alternative approach, central to the Research Domain Criteria (RDoC)
initiative (3–5), understands mental disorders in terms of fundamental biobehavioral dimensions
of variation that span disorders (6, 7). In this second approach, there is a critical need to identify
these fundamental dimensions of variation, which are assumed to operate at a latent mechanistic
level and may not have easily appreciated, one-to-one relationships with observable symptoms (3).

Computational psychiatry (8–12) is a research field that aims to formally model complex
behaviors, typically performance during carefully constructed experimental tasks, in order to better
understand abnormal patterns of functioning in psychiatric disorders. Standard models of task
performance used in this field typically feature a small number of parameters that reflect latent
psychological functions, and which might represent candidate biobehavioral dimensions on which
individuals vary in clinically-significant ways. Here we focus on sequential samplingmodels (SSMs)
(13–16), a class of models developed in mathematical psychology that are widely-used in cognitive
neuroscience and have a substantial track record of success in explaining behavioral and neural
phenomena on choice tasks (17–19).

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2021.627179
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2021.627179&domain=pdf&date_stamp=2021-02-17
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sripada@umich.edu
https://doi.org/10.3389/fpsyt.2021.627179
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.627179/full


Sripada and Weigard Evidence Accumulation in Psychopathology

FIGURE 1 | The diffusion decision model (DDM). The model explains

performance in a simple decision task in which participants must decide

whether the stimulus presented was an “X” or “O.” Following stimulus

presentation, the decision process drifts between the boundaries for each

possible response. Gray traces represent the paths of the stochastic decision

processes for individual trials. The black arrow represents the critical drift rate

parameter, v, which determines the average rate at which the process drifts

toward the correct response boundary (e.g., toward an “X” response on a trial

in which an “X” stimulus was presented). The z parameter represents the

starting point bias of the process (in the example, it is set midway between the

two decision boundaries representing absence of bias). The a parameter

determines where the upper boundary is set (with the lower boundary always

set at 0) and can be used to index “response caution,” the quantity of

evidence that is required before the decision boundary is reached. The model

also includes a parameter for time spent on processes peripheral to the

decision (Ter).

SSMs aim to capture performance on forced choice tasks in
which subjects select from two or more response options—a class
of tasks that subsumes a large portion of experimental cognitive
paradigms. In the diffusion decision model (DDM) (14, 15, 20),
a popular and well-validated SSM, task performance is described
by a noisy decision process that drifts over time toward one of two
decision boundaries. The average rate at which the process moves
toward the correct decision boundary is determined by the “drift
rate” parameter v. The model also includes several additional
parameters that determine other aspects of the decision process,
which are discussed in Figure 1.

Although the DDMand related SSMs are used in experimental
contexts to simulate and measure a wide variety of latent
neurocognitive processes, the drift rate parameter is often of key
interest. Individual differences in this parameter reflect the ability
of the system to efficiently accumulate stimulus information
that is relevant to selecting an appropriate response in the
context of noisy information. Importantly, SSMs allow the drift
rate to be disentangled from multiple other factors that affect
task performance, which are indexed with the other model
parameters, yielding much more precise estimates.

Trait efficiency of evidence accumulation (EEA), as indexed
by the drift rate in SSMs, has several properties that make
it attractive as a candidate transdiagnostic dimension. First,
people exhibit stable individual differences in EEA (21, 22),
suggesting it has trait-like qualities. Second, EEA manifests
across a wide variety of tasks, and individual differences in
EEA are correlated across these tasks (22, 23). This suggests
EEA has some generality in influencing performance across
multiple psychological domains. Third, EEA has been observed

to be diminished in several psychiatric disorders (16, 24,
25), though most studies thus far have examined attention-
deficit/hyperactivity disorder (ADHD) (26–29), and different
tasks were used across these studies, making comparisons
across disorders difficult. Fourth, recent work links EEA
conceptually as well as empirically to poor self-regulation
and impulsive decision-making (“impulsivity”) (30–32). Since
impulsivity is itself found to be elevated across multiple
psychiatric disorders (33, 34), a connection between EEA and
impulsivity adds to the evidence that EEA might be implicated
in psychopathology transdiagnostically.

The present study investigates EEA across multiple psychiatric
disorders, while addressing some of the limitations in previous
research. We take advantage of the publicly-available UCLA
Phenomics dataset, a large sample (n = 272, with 142 having
schizophrenia, bipolar disorder, or ADHD) that was extensively
characterized with structured clinical interviews, self-report
scale measures of symptom dimensions, behavioral measures
of cognition, and a number of forced choice tasks that can be
analyzed in an SSM framework (35). We constructed an EEA
factor from three behavioral tasks available in this sample, the
Stroop task, Go/No Go task, and the Stop Signal task. We
hypothesized that EEA would be significantly reduced across
three disorder categories, and that it would be significantly
negatively associated with global psychopathology severity and
trait impulsivity.

METHODS

Participants
Participants were recruited as part of a larger study within the
Consortium for Neuropsychiatric Phenomics at University of
California, Los Angeles (www.phenomics.ucla.edu). Healthy
controls were recruited through community advertisements
from the Los Angelos area, while patients were recruited
through outreach to local clinics and online portals. All
participants were between ages 21 and 50, had no major
medical illnesses, and provided urinalyses negative for drugs.
Healthy controls in addition were excluded if they had a lifetime
diagnosis of schizophrenia, bipolar disorder or substance
abuse/dependence, or current diagnosis of other psychiatric
disorders. All participants underwent structured clinical
interviews, neuropsychological testing, and administration of a
number of behavioral tasks. They in addition underwent two
fMRI scanning sessions, but imaging data is not part of the
present analysis. Comprehensive descriptions of the sample and
measures collected are available elsewhere (35). Study procedures
were approved by the UCLA institutional review board and all
participants provided written informed consent.

The present analysis relies on a sample of 272 subjects.
Psychiatric diagnosis was established by the Structured Clinical
Interview for DSM-IV (36). Primary diagnoses and demographic
information are shown in Table 1. As shown in this table,
participants with schizophrenia and participants with bipolar
disorder were younger than healthy participants. In addition,
participants with schizophrenia were more likely to be male and
had fewer years of school. Thus, we report results with statistical
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TABLE 1 | Demographic characteristics of the UCLA Phenomics sample.

Healthy Schizophrenia Bipolar I ADHD

n 130 50 49 43

Age (mean, sd) 31.3 ± 8.7 36.5 ± 8.9*** 35.3 ± 9.0** 33.1 ± 10.8

Gender (#male) 68 38** 28 21

Years schooling 15.0 ± 1.7 12.6 ± 1.7*** 14.6 ± 2.0 14.6 ± 1.8

Statistically different than healthy controls at: ***p < 0.001, **p < 0.01.

correction for these demographic factors. Some subjects were
missing data for certain measures (Stroop Task n= 2, Stop Signal
Task n = 2). As a result, the sample size available for most
comparisons was 268 subjects.

Behavioral Tasks and Construction of an
Evidence Accumulation Factor
Three behavioral tasks in the UCLA Phenomics dataset met the
basic assumptions of SSMs. In particular, they were all choice
tasks with discrete response alternatives, all afforded relatively
rapid responses (under 1.5 s mean reaction time), and all had
sufficient number of trials (ranging from 54 to 360 trials per
task/condition). Full descriptions of all measures are available
at the UCLA Phenomics Wiki page (http://lcni-3.uoregon.edu/
phenowiki/index.php/HTAC). Brief descriptions follow:

Color/Word Stroop Task–This is a computerized version
of the traditional Stroop task in which individuals are asked
to respond with the ink color (red, green or blue) of a
word stimulus. The meaning of the word is either congruent
with the color (e.g., “RED” in red coloring) or incongruent,
matching a different possible color response (e.g., “BLUE” in
red coloring). Participants were presented with 98 congruent
and 54 incongruent trials in pseudorandom order. Each stimulus
was presented for 150ms following a 250ms fixation cross
and participants were allowed to respond during a subsequent
2,000ms interval. Responses were immediately followed by an
1,850–1,950ms blank screen delay.

Go/No-Go Task–Participants were presented with a sequence
of letters and were instructed to press a button as quickly as
possible after the presentation of any letter except “X,” but
to withhold their response after the presentation of “X.” The
task contained 18 blocks presented in random order, with six
blocks in each of three inter-trial interval (ITI) conditions: 1,000,
2,000, and 4,000ms. Each stimulus was presented for 250ms and
followed by a blank screen response interval of 750, 1,750, or
3,750ms depending on the ITI condition. Each block contained
20 trials (two of which were “X” trials) for a total of 360 trials
across the entire task.

Stop Signal Task–Participants were presented with a series of
“X” and “O” stimuli for 1,000ms and were asked to press a button
corresponding to the stimulus presented on that trial. Trials were
preceded by a 500ms fixation cross and followed by a 100ms
blank screen interval. On a subset of trials (25%, “stop” trials)
an auditory tone which indicated that the participant should
withhold their response to that trial (“stop signal”) was played
following the stimulus presentation. The latency of the stop

signal following the stimulus onset, or “stop signal delay” (SSD),
was determined using a standard staircase tracking algorithm
which dynamically adjusted the SSD on each “stop” trial in 50ms
increments with the goal of obtaining an inhibition rate of∼50%
for each individual. Participants completed two blocks of 32
“stop” trials and 96 “go” (i.e., non-“stop”) trials each. The task’s
primary dependent measure of response inhibition, stop-signal
reaction time (SSRT), which is thought to index the latency of
a top-down process that inhibits responses on “stop” trials (37),
was estimated using a quantile-based method outlined by (38).
For the model-based analysis, we focused exclusively on the 192
“go” trials, following previous applications of SSMs to the stop
signal task (26, 30, 39).

The UCLA Phenomics dataset does not provide trial-
level data for these tasks, but instead provides detailed per-
subject summary statistics characterizing a wide variety of task
dimensions. Thus, we used the “EZ-diffusion model” (EZDM)
approach (40). This method provides a closed-form analytic
solution for estimating the main parameters of the DDM (see
Introduction). Inputs to the EZDM procedure are three subject-
level summary statistics: the proportion of correct decisions, the
mean of correct response times, and the variance of correct
response times. The EZDM procedure produces parameter
estimates for individuals’ drift rate (v), boundary separation
(a: an index of response caution), and non-decision time (Ter:
time taken up by perceptual and motor processes peripheral to
processing of the choice).

EZ-diffusion model has been shown to produce parameter
estimates and inferences that are highly similar to those drawn
from more complex modeling methods (41, 42), and some data
suggests it recovers individual-differences—the main interest in
this study—better than model-fitting methods that use trial-
to-trial data (43). Previous comprehensive simulation studies
suggest that EZDM can precisely recover drift rate with roughly
70 trials per task (44). Since the trial counts (i.e., 98, 54,192, and
360) for our task conditions typically exceed this number, we
can be reasonably confident that drift rates for these tasks were
accurately recovered, and even more confident that the latent
factor, which draws strength across trials in all four conditions,
was accurately recovered. We also note that, although the DDM
is intended to describe two-choice tasks, it is possible to obtain
comparable parameter estimates for three-choice paradigms,
such as the current study’s Stroop task, under the assumption
that correct and error responses are similar across trials requiring
different choices (15). Hence, we adopted this simplifying
assumption in order to allow drift rate estimates to be obtained
from the Stroop task in this unique data set.

EZ-diffusion model was applied separately to four task
conditions: Stroop congruent trials, Stroop incongruent trials,
Go/No-Go trials, and Stop Signal “go” trials. Parameters were
estimated in R (45) using the code from the original EZDM
manuscript (40) with the scaling parameter (within-trial drift
variability) set at 1. For the Go/No-Go task, proportion correct
was computed by considering all trials (i.e., both “X” and non-
“X”), and the response time mean and variance was set to the
values for correct hits (trials on which individuals correctly
inhibited their response do not have an observed response time),
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FIGURE 2 | Factor models for EEA and impulsivity. Factor analysis yielded

latent variables for efficiency of evidence accumulation (EEA) and impulsivity.

MPQ, Multidimensional Personality Questionnaire.

a method similar to that used in (27). For participants with
perfect accuracy on any task, the edge correction recommended
in the original article was used: We replaced the proportion
correct value of 1 with a value that corresponds to the output of
the following equation, where n is the number of trials in the task:

1−
1

2n

Next, factor analysis, implemented in SPSS 25 (IBM, Armonk,
NY), was used to produce an EEA factor from the drift rate
parameters derived from the four task conditions. This factor
accounted for 50% variance of the variance in the drift rates.
Factor loadings were, respectively, for the four task conditions
listed above: 0.82, 0.71, 0.73, and 0.61. Cronbach’s alpha was
0.69, and it did not increase by dropping any items (Figure 2,
top panel).

Additional Neuropsychological and
Symptom/Trait Factors
General Intelligence Factor
We produced a general intelligence factor from scores from
nine cognitive tasks: WAIS-letter number sequencing, WAIS-
vocabulary, WAIS-matrix reasoning, color trails test, WMS IV-
symbol span, WMS IV-digit span, WMS IV-visual reproduction
1, WMS IV-visual reproduction 2, and California Verbal
Learning Test. We used bifactor modeling, given prior results
supporting the superiority of this type of model in this domain
(46). In particular, we utilized code from Dubois and colleagues
(47), which in turn uses the omega function in the psych (v 1.8.4)
package (48) in R (v3.4.4) (45). The code performs maximum
likelihood-estimated exploratory factor analysis (specifying a
bifactor model), oblimin factor rotation, followed by a Schmid-
Leiman transformation (49), yielding a general factor (“g”) as well
as specific factors.

Using this code, we found a bifactor model fit the data
very well by conventional standards (CFI = 0.991; RMSEA
= 0.030; SRMR = 0.019; BIC = 7.23). The solution, which

FIGURE 3 | Bifactor model of general intelligence. Bifactor modeling was

performed on nine cognitive tasks in the UCLA dataset. The resulting model

consisted of a general factor (“g”) and four group factors and exhibited

excellent fit with the data. WMS, Wechsler Memory Scale; Repro,

Reproduction; WAIS, Wechsler Adult Intelligence Scale; Reason, Reasoning.

included a general factor and four group factors, is depicted in
Figure 3. The general factor accounts for 72.2% of the variance
[coefficient omega hierarchical ω (50)], while the four specific
factors accounted for 16.7% percent of the variance.

Trait Impulsivity Factor
We used factor analysis to produce a trait impulsivity factor from
scores on three self-report scales measuring impulsivity: Barratt
Impulsivity Scale (total score) (51, 52), Dickman Impulsivity
Scale (total dysfunctional) (53), and Multidimensional
Personality Questionnaire (self-control subscale) (54). This
factor accounted for 85% variance of the variance in the
scores. Factor loadings for these scales, respectively, were:
0.91, 0.92, and −0.94. Cronbach’s alpha was 0.77 and did not
improve appreciably by removal of any of the scales (Figure 2,
bottom panel).

General Severity Score for Psychopathology
Participants completed the Hopkins Symptom Checklist (55),
a 56-item validated scale for symptoms associated with a
broad range of psychiatric disorders. We used the global
severity of psychopathology score from the Hopkins checklist,
which is a summary score of total symptom load across all
scale items.

RESULTS

Evidence Accumulation Is Reduced Across
Three Mental Disorders
As shown in Figure 4, Table 2, the EEA factor was significantly
reduced in all patients (collapsing across the three diagnoses)
in comparison to healthy controls. It was also significantly
reduced in each patient group separately in comparison to
healthy controls. Effect sizes ranged from large (schizophrenia) to
medium (all diagnoses and ADHD) to small-to-medium (bipolar
disorder). We repeated these analyses controlling for age, gender,
and years schooling and differences remained highly statistically
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significant. Mean and standard deviations per group for all
task summary metrics and clinical score variables are shown in
Supplementary Table 1.

Evidence Accumulation Is Inversely
Associated With the Global
Psychopathology Severity Score and
Self-Reported Impulsivity
Across the whole sample, the EEA factor was inversely correlated
with the global psychopathology severity score (r = −0.20, p
= 0.001; Figure 5), and this relationship remained significant
after controlling for age, gender, and years of schooling [t(263)
= 2.6, p = 0.009]. The EEA factor was also inversely correlated
with the impulsivity factor (r = −0.22, p < 0.001; Figure 5),
and this relationship remained significant after controlling for
age, gender, and years of schooling [t(263) = 3.3, p = 0.001].

FIGURE 4 | Impaired evidence accumulation across psychiatric diagnoses.

The evidence accumulation factor is significantly reduced in all patients,

collapsing across the three diagnoses, in comparison to healthy controls. It is

also reduced in each patient groups separately in comparison to healthy

controls. HC, Healthy Controls; ALL DX, All three patient groups combined;

SZ, Schizophrenia; BP, Bipolar Disorder; ADHD, Attention-deficit/hyperactivity

Disorder; a.u., arbitrary units. Error bars reflect represent standard error. ***p <

0.001, **p < 0.01, *p < 0.05.

We also performed analyses that, in addition to demographic
variables, include categorical regressors that control for the effect
of individual psychiatric diagnoses (i.e., schizophrenia, bipolar,
and ADHD). The relationship between EEA and impulsivity
remained statistically significant [t(259) = 2.0, p = 0.04], but the
relationship between EEA and global psychopathology was not
[t(259) = 0.65, p= 0.52].

Evidence Accumulation Remains
Associated With Psychopathology After
Controlling for General Intelligence
The EEA factor was correlated with general intelligence (r =

0.43, p < 0.001), consistent with EEA playing a general role
in diverse forms of cognitive processing. Given this correlation,
we assessed whether after controlling for general intelligence,
the EEA factor remained related to psychopathology, the global
psychopathology severity score, and impulsivity. We found that
even after these controls, EEA remained statistically significantly
reduced in all patients (collapsing across the three diagnoses) in
comparison to healthy controls [F(1, 265) = 34.4, p < 0.001, eta2

= 0.10]. It was also reduced in schizophrenia [F(1, 173) = 47.7, p
< 0.001, eta2 = 0.20], bipolar disorder [F(1, 175) = 6.5, p = 0.01,
eta2 = 0.03], and ADHD [F(1, 171) = 9.8, p = 0.002, eta2 = 0.05].
Additionally, the EEA factor remained statically significantly
associated with the impulsivity factor (standardized beta =

−0.17, p = 0.003) and the global psychopathology severity score
(standardized beta=−0.12, p= 0.03).We additionally examined
all the preceding relationships with demographic controls (age,
gender, years schooling), and found they all remained with levels
of statistical significance that were essentially unchanged.

Additionally, we assessed the preceding relationships in
healthy controls alone. In healthy controls, EEA remained
significantly correlated with general intelligence (r = 0.40, p <

0.001), but not global psychopathology (r=−0.10, p= 0.22) and
impulsivity (r =−0.08, p= 0.31).

Evidence Accumulation Is More Reliably
Linked to Psychopathology Than
Traditional Dependent Measures From the
Three Behavioral Tasks
We additionally assessed the relationship between more
traditional dependent measures from the three behavioral tasks

TABLE 2 | Reduced efficiency of evidence accumulation (EEA) in healthy controls vs. patients with psychiatric disorders.

Comparison w/healthy controls w/demographic controls

EEA mean (sd) t df p-value Cohen’s d F df p-value

HC 0.3 (0.9)

ALL DX −0.3 (0.9) 5.48 266 <0.001 0.67 30.8 1,263 <0.001

SZ −0.7 (1.0) 6.57 174 <0.001 1.12 43.5 1,171 <0.001

BP −0.04 (0.9) 2.38 176 0.02 0.40 5.9 1,173 0.02

ADHD −0.1 (0.7) 2.91 170 0.004 0.51 8.9 1,167 0.003

EEA was significantly reduced across all disorder categories. HC, Healthy Controls; ALL DX, All three patient groups combined; SZ, Schizophrenia; BP, Bipolar Disorder; ADHD,

Attention-deficit/hyperactivity Disorder. Demographic control variables are age, gender, years schooling.
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FIGURE 5 | Evidence accumulation is related to global psychopathology and impulsivity. The efficiency of evidence accumulation (EEA) factor was statistically

significantly correlated with a global psychopathology severity score derived from a self-report general symptom scale. The evidence accumulation factor was also

significantly correlated with an impulsivity factor derived from three self-report scales of trait impulsivity. Confidence intervals represent 95% predictive intervals, a.u.,

arbitrary units.

TABLE 3 | Relationship between standard dependent measures in three behavioral tasks and measures of psychopathology.

Stroop reaction time effect Stroop accuracy effect Go/No-Go false alarms Go/No-Go d prime Stop signal SSRT

HC vs. ALL DX d = 0.12; p = 0.30 d = 0.17; p = 0.16 d = 0.12; p = 0.30 d = 0.33; p = 0.008 d = 0.43; p = 0.001

HC vs. SZ d = 0.06; p = 0.70 d = 0.44; p = 0.009 d = 0.14; p = 0.39 d = 0.51; p = 0.001 d = 0.91; p < 0.001

HC vs. BP d = 0.07; p = 0.66 d = 0.11; p = 0.49 d = −0.04; p = 0.81 d = 0.23; p = 0.14 d = 0.21; p = 0.20

HC vs. ADHD d = 0.23; p = 0.18 d = 0.17; p = 0.33 d = 0.21; p = 0.24 d = 0.23; p = 0.17 d = 0.17; p = 0.32

We computed Cohen’s d for five standard dependent measures. Positive d (observed in 19 out of 20 cases) refers to better performance in healthy controls (HCs) compared to patients

(specifically: smaller Stroop reaction time and accuracy effect, fewer Go/No-Go false alarms and higher d prime, and smaller Stop Signal SSRT. Of 20 comparisons, just five were

statistically significant (highlighted in bold). Stroop Reaction Time Effect, difference in reaction time between the incongruent and congruent condition; Stroop Accuracy Effect, difference

in accuracy between the incongruent and congruent condition; d prime, signal detection sensitivity parameter; SSRT, stop signal reaction time, i.e., the latency in initiating a stopping

process after the presentation of the stop signal (this latency is inferred based on a model of task performance). ALL DX, All three patient groups combined; SZ, Schizophrenia; BP,

Bipolar Disorder; ADHD, Attention-deficit/hyperactivity Disorder.

and measures of psychopathology. Table 3 shows five traditional
dependent measures for these tasks (further clarification of these
measures is found in the Table caption). We found that across
20 total comparisons, just five were statistically significant. It is
also notable that in all five cases, the corresponding relationship
between EEA and the respective measure of psychopathology
was larger (compare Cohen’s d values from Tables 2, 3).

DISCUSSION

Computational psychiatry opens up opportunities to rigorously
identify and characterize clinically-significant biobehavioral
dimensions of individual variation using precisely-specified
mathematical models (8–12). This study appears to be the
first to examine in a single group of subjects the relationships
between evidence accumulation (EEA), a key computational
parameter in sequential sampling models (SSMs) of choice
tasks, and multiple measures of psychopathology diagnosis and
symptoms. Our major findings are that: (1) EEA is significantly
reduced in schizophrenia, bipolar disorder, and ADHD; (2)
It is significantly negatively correlated with a global severity
of psychopathology score as well as self-reported impulsivity;
(3) EEA outperforms traditional metrics from behavioral tasks,
such as reaction time and accuracy difference scores, in being

more strongly associated with psychopathology and symptom
scales. Taken together, these findings suggest diminished EEA
is a promising computationally characterized transdiagnostic
vulnerability factor in psychopathology.

Sequential sampling models are among the most widely used
computational models in psychology and neuroscience (13–16).
Key advantages of these models are that they capture complex
and subtle features of response profiles across a broad range
of psychological tasks (56). Previous studies have also found
that EEA values, as indexed by drift rate parameters in SSMs,
are related across tasks (21, 22) and stable across sessions
(22, 23), suggesting they have trait-like properties. The current
study extends these results by showing that EEA has broad,
transdiagnostic relationships with psychopathology: It is reduced
across all three disorder categories present in this sample, and it
is inversely correlated with clinically relevant symptom scales.

Interestingly, while the EEA construct has been extensively
invoked to explain task performance in hundreds of studies, the
mechanistic basis of individual-differences in EEA, and how these
differences relate to differences in other cognitive constructs, are
much less explored; but see (39, 57, 58). Several studies using
perceptual decision tasks find drift rates are related to general
intelligence (59–62), similar to the pattern we found in the
present study. But, again, similar to prior work, the correlations
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we found in this study between EEA and general intelligence
were moderate in size, with individuals’ general intelligence
explaining <25% of the variance in EEA in this sample.
Furthermore, we found that EEA continued to be related to
multiple measures of psychopathology, including schizophrenia,
ADHD, trait impulsivity, and global psychopathology severity,
even after adjusting for individuals’ general intelligence. Hence,
although additional research is needed, current evidence suggests
that EEA and intelligence are related, but psychometrically
dissociable, individual-difference dimensions.

In contrast to EEA, standard dependent measures from the
Stroop, Go/No-Go, and Stop Signal tasks performed relatively
poorly in terms of being associated with psychopathology
measures, with just five significant effects observed in
20 comparisons (without applying multiple comparisons
correction), and these effects were scattered across different
comparisons (see also (63, 64). We propose two explanations for
why EEA was more strongly related to psychopathology than
traditional metrics.

First, a recent pair of influential studies, each examining
multiple behavioral tasks, found that standard dependent
measures from these tasks exhibit relatively poor test-retest
reliability (65, 66). These observations are further supported by
theoretical work with simulations that shows that difference score
metrics (for example, Stroop interference effects) fare particularly
poorly (67, 68). One reason is that subtracting scores from
one condition against another will, given plausible assumptions,
increase noise relative to signal, thus diminishing test-retest
reliability (67). Since the reliability of a measure sets a ceiling
on how well it can correlate with another variable (69), the low
reliability of standard metrics derived from these tasks could help
to explain their weaker relationship with psychopathology. In
contrast, EEA estimates from tasks with sufficient numbers of
trials have generally been demonstrated to exhibit good reliability
(e.g., rs >0.70) (21), thus potentially enabling higher correlation
with psychopathology.

A second possible interpretation for the lack of predictivity
of standard metrics, one that is not mutually exclusive with the
first, is that these metrics reflect complex interactions among
multiple factors, some of which relate to psychopathology but
others of which do not (67). Computational modeling can
play a key role in disentangling these interacting factors,
allowing researchers to identify underlying parameters
that are more directly associated with clinically-significant
dimensions (24–26, 70).

For example, standard dependent measures from behavioral
tasks, such as task accuracy or reaction time, cannot distinguish
whether lower values in an individual are due to lower intrinsic
ability on the task or preferences to trade off lower accuracy
for greater speed (or lower speed for greater accuracy) (71).
Sequential sampling models, in contrast, provide an explicit
model of this tradeoff (14, 56, 70), which allows the rate of
evidence accumulation for the correct response option to be
distinguished from the threshold of evidence at which a response
is selected (where higher evidence thresholds correspond to
greater preference for accuracy over speed). The results of
this study provide support for the view that computational
models enable better quantification of underlying dimensions of

inter-individual variation and yield stronger relationships with
measures of psychopathology (16, 25–27).

We found that EEA is reduced transdiagnostically, and the
nature of EEA may shed light on why it manifests across diverse
disorder types. Evidence accumulation is conceptualized as a
basic ability to rapidly extract information from a stimulus to
select contextually appropriate responses. This is a highly general
ability and thus reductions in EEA would be expected to increase
the probability that inappropriate responses are produced across
diverse psychological domains (attention, threat detection, and
motivation). Consistent with recent hierarchical models of
psychopathology, which posit abnormalities at multiple levels
of generality, other abnormalities might operate more locally
in individual psychological domains (e.g., enhanced sensitivity
of threat detection systems). Together, interactions between
high-level abnormalities such as impaired EEA and more
local domain-specific abnormalities could produce the actually
observed clinical pattern involving both substantial covariance as
well as specificity in psychiatric symptoms.

The current study has several limitations. First, we used an
EEA factor derived from three tasks in the UCLA Phenomics
sample that met basic assumptions of SSMs. Future studies
should extend this work by examining a more diverse range
of tasks. Second, given the availability of subject-level summary
statistics, we used the EZDM approach for calculating SSM
parameters, rather than performing trial-by-trial modeling.
EZ-diffusion model results, however, usually correlate highly
with results from trial-by-trial approaches, and some studies
suggest EZDM can be more effective in quantifying individual
differences (41–43). We also note that newer specialized
modeling approaches are emerging for modeling “conflict” (e.g.,
Stroop) tasks in which unique features of these tasks are
explained by a process in which correct responding requires
overriding a pre-potent response (72–74). This is a fast-evolving
area of research and future studies could employ these newer
approaches. Relatedly, it is also possible that performance in the
go/no-go task analyzed in this paper is affected by processes
that are not described well by the simple EZDM model, e.g.,
response bias toward the upper boundary (75). However, we note
that for tasks that similarly encourage response biases, such as
the continuous performance task (CPT), initial findings of EEA
deficits in ADHD from simple EZDM fits (27) have been strongly
upheld after more comprehensive modeling (76). Finally, this
sample included three major mental disorders, schizophrenia,
bipolar disorder, and ADHD. A number of others disorders—
for example, major depression, obsessive compulsive disorder,
autism—were not well-represented in this sample, and future
studies should examine a wider range of clinical populations to
assess the robustness of our results across disorder categories.

In sum, this study demonstrates that EEA holds promise as
a basic dimension of inter-individual neurocognitive variation,
and impaired EEA may be a transdiagnostic vulnerability factor
in psychopathology.
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