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This review presents a retrospective of the studies carried out in the last 10 years (2006—2016) using
spectroscopic methods as a research tool in the field of virology. Spectroscopic analyses are sensitive to
variations in the biochemical composition of the sample, are non-destructive, fast and require the least
sample preparation, making spectroscopic techniques tools of great interest in biological studies. Herein
important chemometric algorithms that have been used in virological studies are also evidenced as a
good alternative for analyzing the spectra, discrimination and classification of samples. Techniques that
have not yet been used in the field of virology are also suggested. This methodology emerges as a new
and promising field of research, and may be used in the near future as diagnosis tools for detecting
diseases caused by viruses.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this review is to present a great tool to the sci-
entific community working in the field of virology for detecting the
biochemical changes caused by the presence of viruses in biological
samples. Blout and Mellors [1], and Woernley [2] were pioneers in
using spectroscopy with biological perspectives. They investigated
IR spectra of homogenized tissues to find disease indicators, but
used a single beam and manually scanned instruments which
resulted in low sensitivity and reproducibility. In addition, the field
was abandoned [3] due to a lack of development in interpretation
of observed spectra.

With the advancement of technology and consequently
advanced spectroscopy, the interest of researchers in spectroscopic
techniques in biological studies has grown. This field of science is
known as biospectroscopy, and means the use of spectroscopy to
analyze biological samples [4]. Several studies have been conducted
involving identification of bacteria [5,6], viruses [7,8], cancer diag-
nosis [9], and even in the field of forensic entomotoxicology [10],
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demonstrating that spectroscopic techniques are capable of
detecting biochemical changes in biological matrices.

Viruses are submicroscopic infectious agents and obligate
intracellular parasites. They are totally dependent on a host cell
because they are not able to generate energy to conduct all bio-
logical processes. There is no structural pattern among all existing
viruses, but usually the nucleic acid (RNA for retrovirus, and DNA
for adenovirus) is surrounded by a protein membrane arranged in
either helical or icosahedral symmetry called the capsid (or
nucleocapsid), which in turn may be protected by a lipid bilayer
called the envelope, and which may have encrusted spicules usu-
ally formed of glycoproteins [11].

Virus infections can cause various health damage, from a simple
fever to death. Viral haemorrhagic fevers (VHFs) are examples of
acute infections with high death rates caused by different viruses
such as the Marburg virus (MBGV), Ebola virus (EBOV), Lassa virus
(LASV), Junin, Machupo, Sabia, Guanarito viruses, Crimean-Congo
hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV),
Hanta viruses, Yellow fever virus (YFV) and Dengue virus (DENV)
[12]. The two methods most commonly used in clinical diagnoses of
viruses are enzyme-linked immunosorbent assay, with the best
known being the ELISA method and real-time polymerase chain
reaction (PCR). These methods have brought benefits such as high
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levels of repeatability and reproducibility, ease in handling and
robustness. However, they have also some negative points [13].
Table 1 summarizes some advantages and disadvantages of these
methods.

Thus, there is a need for techniques that are as advantageous as
ELISA and PCR techniques, and which have fewer disadvantages.
The potential of spectroscopic techniques in the detection and
identification of virus-infected cells has been studied using statis-
tical methods as a sensitive, rapid and reliable methodology. The
ability to discriminate between contaminated and non-
contaminated samples in a short time with good sensitivity and
specificity is pragmatic, suggesting that biospectroscopy is a field
that should be more studied in virology [7,8,14].

An expected difficulty in the use of biospectroscopy in virology
is related to the fact that humans have a great diversity of virus
circulating in their organism, and each human has a unique
microbiome. With this, obtaining a fingerprint would be more
difficult in view of the specificity of each organism. The solution to
this problem seems to be the use of a broad and well-trained
database, and a correct evaluation of biomarkers changes ob-
tained by multivariate statistical analysis, differentiating these al-
terations [15].

The main spectroscopic techniques that have been used in
virological studies are nuclear magnetic resonance (NMR) spec-
troscopy [16], Raman spectroscopy [7], infrared spectroscopy (IR)
[8] and molecular fluorescence spectroscopy [ 17]. These techniques
are known to provide rapid responses and reliable data, as well as
having powerful structural elucidation capability.

For example, Shanmukh et al. [18] used surface-enhanced
Raman spectroscopy (SERS) and multivariate statistical analysis
techniques to identify and classify respiratory syncytial virus (RSV).
The multivariate statistical methods used were principal compo-
nent analysis (PCA) and hierarchical cluster analysis (HCA). The
results showed that SERS combined with these multivariate
methods can be used as a rapid methodology for identification and
viral classification. In the study by Moor et al. [14] on non-invasive
and label-free determination of virus-infected cells by Raman
spectroscopy, it was also observed that Raman spectroscopy is a
powerful tool for detecting virus-infected cells. In this study, 293
human embryonic kidney cells were infected by an adenovirus and
were successfully detected at 12, 24 and 48 h after infection started.
The PCA algorithm was able to discriminate infected cells from
uninfected cells, providing a rapid, non-invasive and non-
destructive method for virus detection.

Such advantages highlight the possibility of identifying and
classifying different types of virus using spectroscopic techniques.
In this paper, studies using biospectroscopy coupled to statistical
methods of classification in virological investigations are empha-
sized. First, we will discuss the most commonly used spectroscopic
techniques, then we will discuss the computational processes used

Table 1
Advantages and disadvantages of ELISA and PCR methods in virus diagnosis.

Method  Advantages Disadvantages

ELISA Cost effective; robust; easy to Requires high quality antisera;
use; scalable to testing large in some situations it is not
numbers of samples; high suitable for identifying specific
levels of repeatability and viral species/strains; and is
reproducibility. destructive to the samples.

PCR High specificity and sensitivity; Problems with post-PCR

high levels of repeatability and
reproducibility; ease in
handling; robust.

contamination due to high
sensitivity (false positive
problems, except for RT-PCR
and g-PCR); and destructive to
the samples.

to extract useful information from the obtained spectra (spectral
preprocessing, multivariate classification algorithms, performance
evaluation), and finally we will discuss some works published in
the period from 2006 to 2016 using spectroscopy and multivariate
analysis in studies involving viruses.

2. Spectroscopic techniques

The main spectroscopic techniques that have been investigated
in virological studies are nuclear magnetic resonance (NMR)
spectroscopy [16], Raman spectroscopy [7], infrared spectroscopy
(IR) [8] and molecular fluorescence spectroscopy [17].

Spectroscopic methods of analysis are based on the ability of
atoms or molecules to interact with electromagnetic radiation. The
electromagnetic spectrum covers a large range of energy, where the
wavelength, frequency and energy are characteristic of each tech-
nique. The most widely used spectroscopic techniques in virology
studies are presented hereafter.

2.1. Nuclear magnetic resonance (NMR) spectroscopy

NMR is a spectroscopic technique based on the magnetic
properties of some atoms. The principle behind this technique is
that a specific isotope has a nuclear spin value and is electrically
charged so that when exposed to an external magnetic field,
transitions between fundamental and excited spin states are
possible [19]. In these transitions, energy transfers occur at wave-
lengths that correspond to radio frequencies, and the spin returns
to the fundamental state, therefore energy of the same frequency is
released [19]. This transfer can be measured, yielding an NMR
spectrum. From the produced spectrum, it is possible to identify
information regarding the chemical structure of the samples being
analyzed.

Many applications of NMR spectroscopy in biological matrices
are in the field of metabolomics, which is defined as the quantita-
tive measure of dynamic multiparametric metabolic response of
living systems to pathophysiological stimulus or genetic modifi-
cation [19]. This technique is recognized as a promising tool in the
evaluation of global metabolic changes, and it can be very useful in
the process of clinical diagnosis to distinguish diseases, determine
disease severity, and evaluate therapeutic response, among others.
The rationale for metabolomics is that a disease causes changes in
the concentrations of metabolites in biological fluids or tissues. Key
steps in this approach are patient fluid collection, sample prepa-
ration, NMR signal acquisition, data processing, and analysis [19].

Examples for virological studies include the use of NMR spec-
troscopy in determining of membrane topology of NS2B from
dengue serotype 4 (DENV-4) [16], where very useful results were
obtained for additional functional and structural analysis of NS2B.
Meyer and Peters (2003) [20] in their review on the use of NMR
spectroscopy techniques in screening and identifying ligand bind-
ing to protein receptors make a good discussion on the use of the
transferred NOE effect for detecting and characterizing the ligand
binding, the use of chemical-shift changes in identification of the
ligand binding and the binding pocket of the receptor, as well as the
use of relaxation times and diffusion to identify ligand binding and
the conditions for NMR spectroscopy screening and binding char-
acterization [20]. Wang et al. (2014) [21] in their study compared
the plasma metabolic profiles of patients with Autoimmune Hep-
atitis (AIH), primary biliary cirrhosis (PBC), PBC/AIH overlap syn-
drome (OS) and drug-induced liver injury (DILI) with those from
healthy individuals attempting to identify biomarkers for AIH. From
the information obtained by NMR, it was concluded that there are 9
biomarkers with greatest discriminant significance: citrate, gluta-
mine, acetone, pyruvate, B-hydroxyisobutyrate, acetoacetate,
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histidine, dimethylamine, and creatinine. Significantly higher
amounts of these metabolites were found in patients with AIH
compared to healthy controls or other diseases. The diagnostic
capacity based on these biomarkers was evaluated, where sensi-
tivity, specificity and accuracy were obtained above 93% in
discriminating the AIH from PBC, DILI and OS [21]. In addition, Galal
et al. (2016) [22] in their study on chronic viral hepatitis C in the
pediatric age group used 'H magnetic resonance spectroscopy
(MRS), where they concluded that 'H MRS is a non-invasive tech-
nique that has good potential as a diagnostic tool for evaluating
staging and fibrosis chronic asymptomatic hepatitis C [22].

2.2. Raman spectroscopy

Raman is a non-invasive, high performance spectroscopic
technique capable of obtaining spectra from chemical entities ac-
cording to its polarizability changes [23]. Using Raman spectros-
copy it is possible to detect the presence of a wide range of polar or
non-polar chemical bonds, including cellular changes. In this
technique, the photons from a monochromatic light source interact
with the chemical bonds present in the sample. These photons are
absorbed (increasing the vibrational energy of the molecules), and
then released (causing the vibrational energy of the molecules to
return to their initial state). In this process an inelastic scattering
phenomenon can occur, which is when the molecule does not re-
turn to a vibratory state of initial energy; then the released photon
has a frequency deviation, which maintains the equilibrium of the
system. This happens with less than 1% of absorbed photons and
99% are emitted due to elastic scattering. This anomalous scattering
can be measured to give what is known as a Raman signal [24]. The
inelastic scattering is composed of Stokes and anti-Stokes scat-
tering, which occurs in 1 in 10 million absorbed photons; where the
first (Stoke scattering) occurs when the molecule absorbs part of
the energy of the incoming wavelength, thereby emitting a wave-
length of less energy than the wavelength received; and the anti-
Stokes scattering occurs when the molecule releases a wave-
length of greater energy than that absorbed. This happens under
certain circumstances where the molecule is in a partially excited
energy state before absorbing the wavelength received.

Elastic scattering is filtered so that only Raman scattering is
detected and used in the production of a spectrum containing
bands with information corresponding to the wavelengths at which
Raman scattering occurred. An important feature of this technique
is that water has insignificant Raman scattering, making this
approach more feasible in biological studies.

There are several technologies for many applications that make
use of Raman spectroscopy, including spatially offset Raman spec-
troscopy (SORS) and surface-enhanced Raman spectroscopy (SERS)
[23,24]. For example, the potential of Raman spectroscopy followed
by statistical methods in detecting and identifying Herpes Simplex
Virus type 1 (HSV-1) infections as a sensitive, rapid and reliable
method has been evaluated by Salman et al. [25]. Differentiation
between a control group and infected cells was observed with
sensitivity close to 100%. The main structural changes were mainly
related to structures of proteins, lipids and nucleic acids
(1195—1726 cm™~! range of the Raman spectrum) [25]. Fig. 1 shows
the characteristic bands of biomolecules in a Raman spectrum.

In their paper, Butler et al. (2015) [26] demonstrated the po-
tential of 150 nm gold nanoparticles to generate surface-enhanced
Raman spectroscopy (SERS) signals to analyze biological samples,
noting that high Raman regions co-localize with the presence of
these nanoparticles. Compared with smaller nanoparticles (40 nm),
the larger nanoparticles (150 nm) are more easily detectable.
Moreover, instead of the signal spreading throughout the cell sur-
face, it appears to be highly localized in the regions surrounding
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Fig. 1. Peak assignments in the fingerprint region of biochemical species for a Raman
spectrum.
Taken from Kelly et al. [23].

these nanoparticles, giving support to the SERS effect theory.
Another advantage of larger nanoparticles is that although their
aggregates, even individual particles can be optically observed. This
allows areas with abundance of these nanoparticles to be manually
oriented for analysis, making it possible to acquire highly enhanced
spectra more easily [26]. However, in view of the nanoscale
dimension of the viral particle, the use of nanoparticles is incon-
sistent in the reproducibility of spectral enhancement. As a solution
to this inconsistency, a specific marker such as made by Fogarty
et al. (2014) [27] can be used, where a two-step protocol with
cationic gold particles followed by silver intensification to generate
silver nanoparticles on the cell surface was used with SERS of
endothelial cell membrane, facilitating the collection of enhanced
spectra. This methodology generates a 100-fold increase of the
SERS spectral signal [27]. Thus, one way of indirectly identifying the
presence of a specific virus would be to detect the presence of
antibodies induced by the virus tagged with nanoparticles through
SERS signals.

Raman spectroscopy has already been used in virological studies
as a structural characterization of 5’ untranslated RNA from hepa-
titis C virus [28], investigation of a single tobacco mosaic virus [29],
study of chicken embryo cells infected with ALVAC virus [30],
characterization of different virus strains [31] and identification of
new emerging influenza viruses [32]. All these studies proved that
Raman spectroscopy is a powerful technique in virus studies, as
well as being non-destructive, fast and having a simple procedure.

2.3. Infrared (IR) spectroscopy

Chemical bonds have vibratory motions like bending, stretching,
rocking or scissoring that allow the molecules to absorb infrared
radiation related to its specific vibrational energy levels. This ab-
sorption is only active if the molecular bonds have an electric dipole
moment changeable by atomic displacement due to its vibrations
[33]. Spectral acquisition is made using a Fourier transform (FT)
filter to change the time domain to frequency, thus generating the
term FT-IR.

The infrared region can be subdivided into near-IR, far-IR
and mid-IR. Among these regions, the mid-IR region
(7 = 400—4000 cm™1) is of particular interest in biological studies
because in this range there is the fingerprint region of biological
samples (7 = 900—1800 cm~1), also called the “biofingerprint” re-
gion; that is, the region where there are spectral bands related to
biomolecules such as lipids (~1750 cm™'), carbohydrates
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(~1155 cm™1), proteins (Amide I, ~1650 cm~", Amide II, ~1550 cm ",
Amide 111, ~1260 cm~'), and DNA/RNA (~1225 cm™', 1080 cm™ 1),
among others [23,33,34]. Table 2 shows these principal absorptions
and Fig. 2 shows a mid-IR spectrum at the fingerprint region with
the bands corresponding to the main biomarker fragments [23,35].
Although mid-IR (MIR) spectroscopy is more widely used in
studies with biological samples, near-IR (NIR, 700—2500 nm)
spectroscopy is also commonly used. NIR spectroscopy is a tech-
nique based on the overtones of the fundamental vibrational
modes observed in the mid-IR region, and it provides fast data
acquisition combined with no reagent requirements and minimum
sample preparation. These characteristics make NIR spectroscopy a
reliable and non-invasive approach with potential for rapid diag-
nosis of viral diseases and infections. When working with NIR
spectroscopy in the investigation of biological samples, the most
useful region is between 650 and 1000 nm (called the “optical
window”), because there is great absorption of hemoglobin and
water below 650 nm and above 1000 nm, respectively, hindering
other signals in these regions. Therefore, in the clinical diagnostic
perspective the use of the 650—1000 nm region is more suitable for
virological studies to analyze biochemical alterations [36].

2.4. Molecular fluorescence spectroscopy

Although molecular fluorescence spectroscopy has been little
used in studies in the field of virology, it is also an interesting
approach with great potential in this perspective. This technique
analyzes the fluorescence capacity of a sample [17], where a beam
of high energy light (usually in the ultraviolet region) is irradiated
on the sample to be excited into a higher electronic energy level;
then the fluorophore molecule will rapidly lose energy to this
environment through non-radiative modes (called internal con-
version) and will return to the lowest vibrational level of the lowest
electronic excited state. The molecule persists at this vibronic level
for a period of time known as the fluorescence lifetime, and then
returns to the fundamental electronic state by emitting a photon
with energy lower than the irradiated one [37]. The excitation and
emission spectrum are recorded by the instrument and is generally
used to build excitation-emission (EEM) fluorescence matrices.

Another commonly-employed form of fluorescence technique is
fluorescence correlation spectroscopy (FCS), which is used for
temporal and spatial analysis of molecular interactions of bio-
molecules present in solution at extremely low concentrations. This
technique is based on the principle that a fluorophore molecule has
a specific free diffusion rate that is directly related to its size. This
basic principle, for example, can be used to study protein in-
teractions. As with other spectroscopic techniques, molecular
fluorescence spectroscopy provides rapid results with high sensi-
tivity and specificity, and is non-destructive, making this technique
a tool of interest in the field of virology [17].

Table 2
Tentative assignment of principal absorptions at biofingerprint region
(900—-1800 cm™') [23,35].

Band Assignment

970 cm™! VS(R—POﬁ’) of phosphorylated proteins

1030 cm™! Glycogen

1080 cm™! v5(PO3 ) of phosphodiester groups of
nucleic acids

1155 cm™! »(C—0) of carbohydrates

1225 cm™! v25(PO3 ) in RNA and DNA

1260 cm™! Amide III: »(C—N) in proteins

1550 cm ™! Amide II: 6(N—H) coupled to »(C—N)

1650 cm ™! Amide I: y(C=0)

1750 cm™! »(C=C) of lipids

vs = symmetric stretching; v,s = asymmetric stretching; 6 = bending.
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Fig. 2. Peak assignments in the fingerprint region of biochemical species for an
infrared spectrum.
Taken from Kelly et al. [23].

Table 3 summarizes the main advantages and disadvantages of
NMR, Raman, IR and molecular fluorescence spectroscopy to
analyze biological materials.

3. Computational analysis

When spectroscopically interrogating biological samples,
spectra with a lot of information are generated. To facilitate the
spectral analysis, it is generally necessary to use computational
tools which facilitate the information analysis and extraction. For
this, pre-processing and multivariate analysis techniques are
employed.

3.1. Preprocessing

The spectrum obtained in spectroscopic analysis is composed of
the analyte information plus noise. The noise can be caused by
chemical interference, which can cause band superposition by ad-
ditive effects; and by physical interference, which can cause base-
line deviations due to light scattering. In addition, random noise
from environmental effects is always present in the spectra of real
samples.

To correct this and improve the signal-to-noise ratio of the
spectrum, pre-processing techniques are commonly employed
before data analysis. To understand the functions of some
commonly used pre-processes, a few examples are shown
hereafter.

3.1.1. Spectral cut

Many times only a region of interest of the spectrum being
analyzed is utilized to build a chemometric model. This occurs
when there is notable interference in other parts of the spectrum,
such as water or solvent absorptions, or when there is irrelevant
information for the analysis being performed. Depending on the
spectroscopic technique used the biological fingerprinting will be
different. For example, in biological samples being analyzed with
FTIR spectroscopy the region of interest (referent to the bio-
fingerprint region) is between 1800 and 900 cm~! due to the
fundamental absorption of fragments of key biochemical molecules
[34]. On the other hand, for Raman spectroscopy the selected re-
gion is between 2000 and 500 cm™! [23].



248

Table 3

M.C.D. Santos et al. / Trends in Analytical Chemistry 97 (2017) 244—256

Some advantages and disadvantages of spectroscopy techniques.

Spectroscopy Advantages Disadvantages

technique

NMR Limit of detection normally Only detects metabolite
micromolar; high if there are specific
reproducibility; easy isotopes in the molecule;
identification of the metabolite expensive
using 1D or 2D spectra and instrumentation.
database; more than 200
known identifiable
metabolites; easy sample
preparation; non-destructive
method; requires small amount
of sample; low cost of sample
analysis; quick results [19].

Raman High molecular specificity; Low sensitivity caused
ability to derivate label-freeand by the low-probability of
non-destructive spectral Raman scattering event;
information; minimal sample fluorescence
preparation; high penetration interference; local
depth [38]. thermal decomposition

of the sample, in
particular when using
ultraviolet or visible
wavelengths lasers [38].
Mid-infrared High signal-to-noise ratio; Pressure over the sample
(MIR) reduced scattering; high spatial ~ when using ATR module

Near-infrared

resolution; analysis of large
target area; nondestructive
data acquisition; minimum
sample preparation; relatively
low-cost instrumentation;
automated stages of analysis
[33].

Fast analysis; low-cost

can be destructive; air
interfering, in particular
CO,; sample thickness
issues [33].

Low signal-to-noise

(NIR) instrumentation; minimum ratio; many spectral
sample preparation; portable superposition;
instruments are highly dependence on
available; small amount of reference methods and
sample is require; high chemometric analysis
resolution; non-destructive [39,40].
analysis; high reproducibility
[39,40].

Molecular High sensitivity and specificity; ~ Sample preparation is
fluorescence  relatively low-cost relatively complex; large

instrumentation; small
concentration of sample is
required; high signal-to-noise
ratio.

time of analysis; signal
saturation is often
observed; presence of
Rayleigh scattering.

3.1.2. Baseline correction

Baseline deviation frequently occurs in first-order spectra. For
each sample there are wavenumbers which are not absorbed;
where their absorbance must have zero value. However, this is
often not observed. Spectra are generally raised to values above
zero due to a phenomenon called Mie scattering [23,41]. This
phenomenon occurs when some biochemical structures through
which IR radiation passes have a size comparable to or greater than
the wavelength of IR light, causing light scattering [25]. In solid
materials, the baseline is also affected by non-homogenous particle
sizes, which likewise cause light scattering. In addition, the baseline
slope is affected by reflection, temperature, concentration or
anomalies of the instrument used. These effects can be minimized
through a variety of baseline correction techniques, such as mul-
tiplicative scatter correction (MSC) [42], standard normal variate
(SNV) [42], and derivative [43], among others [33,44,45].

3.1.3. Normalization
Spectral normalization techniques are used when it is necessary
to remove spectral changes responsible for the thickness or

concentration of the sample, making the normalized spectra
become comparable to each other [23]. Among the possible nor-
malizations, there is the min-max normalization, which can be
applied when there is a known peak that is stable and consistent
between the specimens [23]; or scaling methods to equalize the
importance of each variable in multivariate data [46]. In biological
samples, the amide I (~1650 cm ™) or amide II (~1550 cm™!) peak
normalization [33,34] are typically used; or vector normalization,
where each spectrum is divided by its Euclidean norm (appropriate
normalization after using differentiation as pre-processing) [33,34].

Fig. 3 shows the visual effect after using these pre-processing
techniques on a set of FTIR spectra.

3.2. Multivariate analysis

Multivariate analysis techniques are employed to analyze
multivariate data, meaning data having two or more variables per
object [46]. Examples are first-order data (such as FTIR, NIR, Raman
spectrum) and second-order data (such as EEM fluorescence). Some
multivariate classification algorithms that are widely used in bio-
spectroscopy studies are discussed below, as well as some bio-
spectroscopy studies in which these techniques were used.

3.2.1. Principal component analysis (PCA)

PCA is an unsupervised multivariate analysis technique widely
used in biological studies. This technique is used to reduce the
dimensionality of the sample's data and generate a new visualiza-
tion. Dimensionality reduction occurs through a linear trans-
formation of the original variables, generating orthogonal variables
called principal components (PC). The first main component has a
greater ability to explain the observed variance in the data than the
second PC, which in turn has a greater explanation of the data than
the third PC, and so on. In this way, it is possible to choose the
smallest number of principal components with the largest
explained variance, so that the dimensionality can be reduced with
the certainty that important information of the samples is not lost
[23]. Generally, few PC's (10—20) provide more than 99% of the
observed variance of the original data [47]. Each PC is composed by
a score (projections of the samples on the PC direction) and a
loading (angle cosines of the variables projected on the PC direc-
tion) [48,49]. PCA allows visualization of the data set in reduced
size where segregation between classes can be revealed (Fig. 4)
[47].

When the biological samples are divided into classes (e.g.,
category of samples or patients identity), PCA can be applied to
identify spectra clusters and the main contributory information for
this distribution [49,50]. Cluster vector approaches have been
proposed in combination with PCA to analyze this type of samples
[50]. For this, a median score is calculated for each of the 3 PCs that
represent the best samples' clustering in a tridimensional space;
thereafter, the three loadings vectors for these PCs weighted by the
median scores are summed. As a result, a new loading vector is
generated as an effective loadings plot that represents the cluster.

However, PCA has some disadvantages, such as the risk for
artificial discrimination depending on the number of PCs selected
during model construction, wherein selecting an optimum number
of PCs is a critical and difficult process; and the ambiguity to obtain
an optimum grouping into a specific cluster, since many PCs com-
binations may reveal different clustering [50].

Saade et al. (2008) [7] used PCA in their study on spectral dif-
ferentiation between healthy and contaminated samples with
hepatitis C in vitro based on human serum. In this study, twenty-
nine samples were examined by near-infrared Raman spectros-
copy, being 17 healthy and 12 contaminated; and PCA was used in
extracting the main spectral characteristics for classification.
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type II (green triangles); and type II/mixed carcinoma (red diamonds).

Taken from Martin et al. [47].

Table 4 summarizes the obtained results. As can be seen, a total of
15 out of 17 healthy samples were classified as healthy (88% spec-
ificity), and a total of 11 out of 12 contaminated samples were
classified as actually being contaminated with hepatitis C (92%
sensitivity) [7].

Shanmukh et al. (2008) [18] in their study to identify and clas-
sify respiratory syncytial virus (RSV) also used PCA technique

1600 1400 1200 1,000 1600 1400 1200 1,000

combined with Raman spectroscopy. In this study, Raman spectra
of A/Long, B1, A2 strains and the recombinant A2 G gene deletion
mutant (AG) strain of the respiratory syncytial virus (RSV) were
recorded. Based on the intrinsic spectra for each sample, the 3 virus
strains were detected and identified. Chemometric results showed
that PCA was able to segregate the 3 virus strains (A/Long, Bland
A2), as can be seen in the scores plot of PC1 versus PC2 (Fig. 5),
demonstrating the potential of this technique [18].

Fan et al. (2010) [51] used Raman spectroscopy to detect and
discriminate 7 food and water viruses (including norovirus,
adenovirus, parvovirus, rotavirus, coronavirus, paramyxovirus and
herpes virus). PCA was conducted based on the Raman spectra of 4
non-enveloped virus samples (including norovirus strain — MNV4,
simian rotavirus strain — SA11, adenovirus strain — MAD and
parvovirus strain — MVM). As can be observed in Fig. 6, the two-
dimensional plot of the scores on the two first PCs (PC1 versus

Scores on PC 2 (11.47%)

0
Table 4
Sensitivity and specificity results obtained by PCA for the diagnosis of hepatitis C -1
based on Raman spectroscopy: HS — health serum; CS — hepatitis C serum.
_2 i i n 1 "
Traditional PCA analysis -4 -3 -2 -1 0 1 2
diagnosis . o o o
HS cs Total Sensitivity (%) Specificity (%) Scores on PC 1 (52.18%)
Healthy 15 2 17 88 .
Hepatitis C 1 1 12 92 _ Fig. 5. PCA scores on PC1 versus PC2 calculated from the Raman spectra for ¢ RSV

Obtained from Saade et al. [7].

strains A/Long, ¥ B1, W A2, and the A2 strain-related G gene mutant virus (AG).
Taken from Shanmukh et al. [18].
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Fig. 6. PCA scores based on Raman spectra, using only the spectral range of
200-1800 cm™, acquired from 4 undeveloped virus strains: MAD, MNV4, SA11 and
MVM.

Taken from Fan et al. [51].

PC2) showed good class segregation ability; although some SA11
and MNV4 samples were partially overlapping. Similar results were
obtained for enveloped virus samples [51].

Sakudo et al. (2012) [8] analyzed near-infrared spectra using
molecular clones of various HIV-1 subtypes. The spectra obtained
were subjected to PCA to extract information and exploratory
analysis, where it was observed that the presence of HIV-1 in the
medium altered wavelength absorption at around 950 and
1030 nm, suggesting that HIV-1 changes the vibrations of OH in
water [8]. In addition, absorption variations related to different
subtypes have been observed, suggesting that different subtypes
directly interact with the medium [8]. Still in 2012, Sakudo et al.
[52] performed a study with the objective of discriminating nasal
fluid samples from patients infected with influenza virus through
Vis-NIR spectroscopy. Samples from 33 healthy and 34 influenza
patients were used. The results of the PCA scores (Fig. 7) using the
two-dimensional plot of the scores on PC1 versus PC2 shown good
segregation between the two classes [52].

Moor et al. (2013) [53] analyzed control (uninfected) cell sam-
ples, cells after 24 h of adenovirus infection, and cells after 7 days of
adenovirus infection by Raman spectroscopy. When submitted to
PCA, the Raman spectra of the three-class samples showed results
suggesting that the infection induces rapid (24 h) production of a
specific protein in the cells, which can differentiate infected sam-
ples from uninfected ones [53]. In 2014, Moor et al. [14] continued
their work on the power of Raman spectroscopy as a tool for

A
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‘t2 fos + + Non-influenza
'0
*. N N 2 )
*
R ¢r 0.4 0.6 0.8
Influenza
PC1

Fig. 7. Result of PCA scores employed in the differentiation of patients with ¢ Influenza
and ¢ Non-Influenza.
Taken from Sakudo et al. [52].

detecting virus-infected cells, and developed a study where they
successfully detected embryonic kidney cells of 293 adenovirus-
infected humans at 12, 24 and 48 h after infection onset. The PCA
score plot was effective in discriminating the spectra and segre-
gating the uninfected cell classes of the infected cells after 12 h
(Fig. 8a), 24 h (Fig. 8b) and 48 h (Fig. 8c) [14].

Wood et al. (2014) [54] performed a study of the diagnosis of
malaria-infected cells based on synchrotron Fourier transform
infrared (FTIR) imaging. The images were extracted and pre-
processed by second derivative and normalization. The application
of PCA to spectral data showed the potential of the technique to
identify and discriminate uncontaminated from contaminated
samples [54]. Salman et al. (2014) [25] evaluated the potential of
Raman spectroscopy as a sensitive, reliable and rapid method for
detecting and identifying viral infection by Herpes simplex virus
type 1 (HSV-1) in cell culture. The spectral data were submitted to
PCA, where a good segregation tendency was observed between
the infected and non-infected classes (Vero-HSV-1), mainly when
the region of 600—1726 cm™! (Fig. 9a) and 1195—1726 cm™!
(Fig. 9b) are analyzed [25].

3.2.2. Cluster analysis (CA)
Cluster analysis (CA) techniques are unsupervised methods of
pattern recognition that aim to group the spectra into groups when
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Fig. 8. PCA scores for O control cells and A cells with virus: (a) after 12 h of
infection; (b) after 24 h of infection; (c) after 24 h of infection.
Taken from Moor et al. [14].
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Taken from Salman et al. [25].

there is no information about the classes [23]. These techniques are
exploratory, therefore they group the samples based on their sim-
ilarity between spectra. CA techniques include k-means clustering
(KMC), fuzzy c-means cluster analysis (FCA) and hierarchical cluster
analysis (HCA) [34,55]. HCA (using Ward method [56]) is consid-
ered the most capable of correlating spectral data with histopa-
thology, but is more time-consuming [34]. Another difference
between these techniques is that HCA does not require making
assumptions about the number of data classes, whereas KMC and
FCA require this information. HCA starts with separate clusters, and
merges the clusters that have the closest distance from each other
(usually based on Euclidian distance) in each step, so there is a
reduced number of clusters in each step until only one remains
[34,55].

In the study by Shanmukh et al. (2008) [18], HCA was used to
identify and classify respiratory syncytial virus (RSV) based on
Raman spectroscopy. The results showed that HCA was able to
easily distinguish an A2 strain-related G gene mutant virus (AG)
from an A2 strain. HCA showed good classification results for the
four strain classes [A/Long, B1, A2 and the AG] of the respiratory
syncytial virus (RSV), as can be seen in Table 5 [18].

3.2.3. Partial least squares (PLS)

PLS is a multivariate calibration technique that finds factors
(latent variables, LVs) in the spectra set that explain the maximum
variance in the reference variables set, using the simultaneous

Table 5
Classification of 4 RSV virus strains based on hierarchical cluster analysis (HCA).
Viral strain ~ Correctly Falsely Also Sensitivity®  Specificity”
classified classified classified as
RSV A/Long 17 0 — 1.0 1.0
RSV B1 17 0 — 1.0 0.92
RSV AG 15 2 A2(2) 0.88 0.94
RSV A2 12 7 AG(3),B1(4) 0.63 0.96

2 Probability of assigning a class as positive when it really is positive.
b Probability of assigning a class as negative when it really is negative.
Obtained from Shanmukh et al. [18].

decomposition of the two [46]. For this, PLS finds a set of new
maximally correlated variables orthogonal to each other, similar to
PCA. However, it makes use of the respective object labels for this
decomposition, thus being a supervised technique [23]. For
discriminatory purpose, partial least squares discriminant analysis
(PLS-DA) is employed. PLS-DA is a linear classification technique for
which the classification criterion is obtained by PLS analysis [46].
Therefore, it makes use of PLS to find a straight line that divides the
data space into two-regions, where each region is related to the
space of each class [57].

Lee-Montiel et al. (2011) [58] used ATR-FTIR spectroscopy and
cell culture for detecting and quantifying poliovirus infection in
buffalo green monkey kidney (BGMK) cells. The cells were infected
with different virus concentrations, and after 1-12 h of post-
infection (h.p.i), PLS was used to analyze spectra from different
infection trites. The results of this study showed that the detection
and quantification of poliovirus through ATR-FTIR spectroscopy,
PLS and cell culture is a methodology that could be adapted for use
in areas such as water safety monitoring and clinical diagnosis [58].

Petisco et al. (2011) [59] also implemented PLS in the field of
virology. They developed a rapid method based on near infrared
spectroscopy to detect viral RNA present in Epichloé festucae strains
isolated from Festuca rubra plants. Forty two samples were used as
the data set, where a correct classification of 75% of the uninfected
isolates and 86% of the infected isolates were obtained using PLS-
DA, demonstrating that this technique is also promising for
detecting viral infections in fungus samples, being a faster and a
more cost-saving alternative than the conventional analyzes of
reference [59]. Wang et al. (2014) [21] used NMR spectroscopy in
conjunction with multivariate analysis algorithms such as PLS to
characterize the metabolic profile of Autoimmune Hepatitis (AIH)
and to identify biomarkers with diagnostic potential for AIH. The
results were encouraging and also demonstrate the potential of the
technique [21].

3.24. Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a supervised technique
widely used for class discrimination. It maximizes the between-
class variance over the within-class variance [23] in order to
create a linear decision boundary between them [60]. Additionally,
linear discriminant analysis has its operation enhanced when
associated with other dimensionality reduction algorithms. For
example, LDA is often combined with PCA or PLS in many virology
studies [21,25,58,59,61]. An illustrative result obtained when per-
forming LDA is the scores shown in Fig. 10. It is possible to do some
interpretations on the studied data, such as the number of classes
(groups), which class has the lowest intra-class variance, and which
class has the largest intra-class variance [22].

Examples using PCA-LDA and stepwise-LDA have been also
demonstrated for cluster vector analysis [50]. This can solve the
ambiguity problems generated by PCA providing a more reliable
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Fig. 10. Example of some interpretations that can be taken from the scores produced
by LDA.
Taken from Kelly et al. [23].

class differentiation. For PCA-LDA the cluster vector is obtained by
calculating the mean cluster scores matrix and the loading matrix
for each cluster, and then the cluster loading matrix is obtained by
summing the loadings weighted by the mean cluster scores [50].
On the other hand, for stepwise-LDA the cluster vector is obtained
by firstly selecting a single prominent spectral peak and then LDA
is applied to this wavenumber across all data, generating a
Gaussian posterior density fitted to each group. Thereafter, one
data point is left out and the Gaussian is used to estimate the
predicted posterior class probability for that spectrum across all
class categories (at that one specific wavenumber). This is reaped
for all spectra and after for all wavenumbers. At the end, the
predicted class probability for each data point is compared with
the known true class value (e.g., 0 or 1); and these absolute de-
viations for each wavenumber are summed to give a sum of ab-
solute posterior misclassification, where a plot of this error against
wavenumber are then analogous to peaks on a PCA loadings plot,
in which they indicate wavenumbers that best distinguish one
particular class from the rest [50].

There are other algorithms that have shown excellent results in
several biological studies, but have not yet been used in virological
studies [5,6,9,10,62]. At this point, we would like to suggest two
algorithms that can be used as variable selection techniques in
problems of identification, classification and diagnostics for viruses,
but which have not been used in this perspective; they are the
successive projections algorithm (SPA) and genetic algorithm (GA),
which are discussed below.

3.2.5. Successive projections algorithm (SPA)

SPA is a progressive variable selection technique. This means
that it starts with a variable (wavelength or wavenumber, for
example) and adds new variables in each interaction until an
optimal number is selected. This technique uses multicollinearity
minimization as a criterion for variable selection. For this, each
variable representing a vector during SPA has a projection in an
orthogonal subspace. The variables with the largest projections
(minimum multicollinearity) are selected (as shown in Fig. 11),
where the result of the interaction is the selected vector x; [63—65].

3.2.6. Genetic algorithm (GA)

The genetic algorithm is a technique that mimics Darwin's
theory of evolution, where evolution occurs by natural selection in
which the more adapted organisms have a greater chance of sur-
vival. In the case of GA, the variable selection process begins with a
randomly formed population of variables. This initial population
consists of subsets of variables called chromosomes, where each
variable is assigned a value of 0 or 1, with variables of 0 being the
ones initially not selected by the model, and 1 being those initially
selected to participate in the model. Each chromosome is assigned
an aptitude through a mathematical function called fitness

(X e tarti t,
\I\_3/ starting vector
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Fig. 11. Visual illustration of the projections involved in SPA. The variables in this
technique are seen as vectors (x) with their orthogonal projections (Px), and then
selected to eliminate multicollinearity problems. In this example, the interaction
resulted in selecting the variable related to vector x;.

Taken from Aradjo et al. [64].

function, where chromosomes with the highest fitness value are
copied and the chromosomes with the lowest fitness value are
eliminated in a step called the selection step. After the selection
step, genetic operators are probabilistically applied. The mutation
operator makes a variable that is selected to be unselected or vice-
versa, and the crossover operator crosses the chromosomes. This
process is involved in a generation, and can be repeated for as many
generations as are requested. In the end, the population with the
better variables is selected based on a cost function [66] (see
Fig. 12).

As mentioned earlier, LDA has its operation enhanced when
used in conjunction with other techniques that reduce the size of
the data. Therefore, a good alternative to using SPA and GA is to join
them with LDA (SPA-LDA and GA-LDA). In this, SPA and GA will
reduce the data to a smaller number of selected variables, and the
LDA only based on these more discriminant variables will work on
maximizing the differences between the classes.

4. Performance evaluation techniques

In most of the studies presented in this review, the authors
evaluated their technique based mainly on sensitivity and speci-
ficity. However, other quality measures may be used in order to
assess whether the technique is effective or not. Here we present
seven figures of merit that can be used in the evaluation stage of the
classification technique aiming for its validation. They are the
sensitivity, specificity, positive predictive values, negative predic-
tive values, Youden's index, positive likelihood ratio and negative
likelihood ratio.

Sensitivity (SENS) can be defined as the confidence that a pos-
itive result for a sample of the labeled class is obtained; specificity
(SPEC) is the confidence that a negative result for a sample of non-
labeled classes is obtained; positive predictive value (PPV) mea-
sures the proportion of positives that are correctly assigned;



M.C.D. Santos et al. / Trends in Analytical Chemistry 97 (2017) 244—256 253

010101
001100

Selection

—

111010

Initial population Fitness=0,4
of the first Fitness=0,1
generation Fitness=0,8

010101
111010

111010

Crossover

110101
011010
110010

Mutation .

Initial population
of the second
generation

Fig. 12. Operational scheme of the genetic algorithm (GA). In this scheme an initial population with 3 chromosomes is shown. A fitness value is assigned for each chromosome
through the fitness function (F). Note that the chromosome with less fitness is discarded in the selection stage, while the larger one is doubly copied and the second largest fitness
receives a copy. It is observed that the chromosome is mutated through the mutation operator in the second moment, and the other two chromosomes are crossed through the

crossover operator. This process is repeated for a defined number of generations.

negative predictive value (NPV) measures the proportion of nega-

TN

tives that are correctly assigned; Youden's index (YOU) evaluates SPEC (%) = TN + FP x 100 (2)

the classifier's ability to avoid failure; positive likelihood ratio

(LR+) represents the ratio between the probability of predicting a TP

sample as positive when it truly is positive and the probability of PPV =———x 100 3)

predicting a sample as positive when it is actually not positive; and TP +FP

the negative likelihood ratio (LR—) represents the ratio between the

probability of predicting a sample as negative when it is actually NPV = _IN % 100 (4)

positive and the probability of predicting a sample as negative TN +FN

when it is truly negative [67]. The mathematical formulas for each

of these figures of merit are shown as follows [67]: YOU = SENS — (1 — SPEC) (5)
o P SENS

SENS (/o)_mxloo (1) LR(+):m (6)

Table 6

Categories of testing performed in diagnostic and research virology.

Category of testing Specific viruses Methodology

Influenza A and B, RSV, PIV 1—4, hMPV,
rhinoviruses, enteroviruses, coronavirus
adenoviruses

Respiratory viruses

Gastrointestinal viruses
Mucocutaneous viruses HSV, VZV, HPV

Central nervous system viruses HSV, VZV, CMV, EBV, HHV-6, JCV,

€S,

Rotavirus, norovirus, adenovirus, astrovirus

enteroviruses, parechoviruses, West Nile virus,

other arboviruses

Opportunistic agents CMV, EBV, BKV, HHV-6, adenoviruses

Mononucleosis syndrome in EBV, CMV, HIV
non-immunocompromised
individuals
HIV, HCV, HBV viral loads HIV, HCV, HBV
Viral Genotyping HCV, HBV, HPV
HIV, HCV, HBV diagnosis HIV, HCV, HBV

Systemic infections of childhood
mumps virus
Tropical and emerging infections

Parvovirus B19, measles virus, rubella virus,

Dengue virus, Zika virus, Yellow Fever virus and

other flaviviruses; Chikungunya and other

alphaviruses; hemorrhagic fever viruses

including arenaviruses, bunyaviruses, and

filoviruses; Hendra and Nipah viruses
Unknown virus Any

Rapid antigen tests (influenza A and B, RSV), fluorescent
antibody staining (influenza A and B, RSV, PIV 1-3,
adenoviruses, hMPV), culture, multiplex NAAT, RS [14], SERS [18]
Rapid antigen tests (rotavirus, norovirus, adenovirus), NAAT
Fluorescent antibody staining (HSV and ZVZ), culture

(HSV and VZV), NAAT

NAAT, serology (West Nile and other arboviruses)

NAAT, antigen detection (CMV pp65 assay), cytology (BKV)
Serology, NAAT, IR [8]

NAAT, RS [7]

Nucleotide sequencing, reverse hybridization, NAAT
(Cleavase reaction for HPV)

Serology, NAAT

Serology, NAAT

Serology, culture, NAAT (hemorrhagic fever testing is
done in BSL-4 laboratories), NMR spectroscopy [16]

Culture, microarray, nucleotide sequencing, NGS, MSF [17]

BKV, BK virus; CMV, cytomegalovirus; EBV, Epstein-Barr virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HHV-6, human herpes virus 6; HIV, human immunodeficiency
virus; hMPV, human metapneumovirus; HPV, human papillomavirus; HSV, herpes simplex virus; IR, Infrared spectroscopy; JCV, JC virus; MFS, molecular fluorescence
spectroscopy; NAAT, nucleic acid amplification testing; NGS, next-generation sequencing; NMR, nuclear magnetic resonance spectroscopy; PIV, parainfluenza virus; RS,
Raman spectroscopy; RSV, respiratory syncytial virus; SERS, surface-enhanced Raman spectroscopy; VZV, varicella-zoster virus.

Updated from Storch and Wang [68].
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Table 7
Landmarks in the history of diagnostic virology.
Year Landmark
1892 Intranuclear and intracytoplasmic inclusions noted
at the base of smallpox lesions [70]
1898 Discovery by loeffler and Frosch that foot-and-

mouth disease of cattle is caused by a filterable
agent, referred to as a virus

1929 Complement fixation method described for
detection of antibodies to smallpox, vaccinia, and
varicella-zoster viruses [71]

1948 First growth of pathogenic human viruses in tissue
culture [69]

1949 Use of spectroscopy with biological perspectives [1]

1956 Detection of influenza virus in respiratory
secretions using fluorescent antibody staining
[72,73]

1975 Development of monoclonal antibodies as
diagnostic reagents [74]

1985 Discovery of polymerase chain reaction [75]

1992 Development of real-time PCR [76]

2002 Beginning of systematic approaches to virus

discovery [76—78]

Updated from Storch and Wang [68].

SPEC

LR (=) =1"<ENs

(7)
where TP is defined as true positive, TN as true negative, FP as false
positive, and FN as false negative.

5. Diagnostic virology

Diagnostic virology continues to evolve rapidly. Viral testing is
now essential for the care of a number of patient groups,
including hospitalized patients with acute respiratory infections;
transplant recipients and other immunocompromised patients;
patients infected with human immunodeficiency virus (HIV),
hepatitis C virus (HCV), and hepatitis B virus (HBV); and infants

with possible congenital infection. Multiple test methods
continue to be used, but molecular tests are emerging as the
dominant technology. A variety of commercial molecular assays
have been or are in the process of being approved or cleared as
in vitro diagnostic tests by the Food and Drug Administration
(FDA). This is an important development because it makes viral
diagnostic testing available to more laboratories, and it improves
the standardization of diagnostic testing. The scope of diagnostic
virology has broadened [68]. General categories of viral diag-
nosis/research testing and the viruses included in those cate-
gories are shown in Table 6.

Modern diagnostic virology dates to the first growth of human
viruses in tissue culture reported by Weller and Enders in 1948 [69].
This and other landmarks in the history of diagnostic virology are
shown in Table 7. Table 8 highlights 13 relevant studies carried out
since 2006, making use of biospectroscopy for virological purposes.

6. Conclusions

Diseases caused by viral infections are one of the biggest
problems for global health; and as methods involved in diagnostics
are getting faster and more efficient, treatment is the fastest. This
retrospective study aimed to explore biospectroscopy applications
in studies in the field of virology in order to provide a theoretical
support for the techniques used, and to suggest the applying tools
that have not been used.

Spectroscopic methods have the characteristic of providing fast
results and reliable information related to the composition of the
samples. The studies presented herein have shown promising re-
sults in a field of science that needs to be better explored. It has
been shown that multivariate analysis techniques are of great
importance to analyze spectroscopic data, providing the potential
to identify and classify biological samples. We hope that with
advancement in this field of study, portable spectroscopic devices
could be used in clinics and hospitals in the near future, so that the
samples could be analyzed in loco for screening or diagnosis
strategies.

Table 8
Some relevant biospectroscopy studies carried out in the field of virology since 2006.
Year Spectroscopic technique Virus/class of virus Objective
studied
2006 Raman and FTIR Hepatitis C virus To characterize the structure of the region 5’ untranslated
(5’ UTR, 342-mer RNA) of the HCV genome [24].
2008 Near-infrared Raman Hepatitis C virus To differentiate between healthy human blood serum and
human serum with hepatitis C contamination in vitro [5].
Surface-enhanced RSV Identification and classification of respiratory syncytial
Raman virus (RSV) strains [11].
Tip-enhanced Raman Tobacco mosaic virus To provide spectroscopic vibration information with a
scattering spatial resolution of less than 50 nm to characterize unique
viruses at the molecular level [25].
2010 Surface-enhanced Food and Waterborne To detect and discriminate 7 food and aquatic viruses,

2011

2012

2014
2015
2016
2017

Raman

NMR

FTIR

Near-infrared (NIR)
Near-infrared (NIR)
Raman

NMR

NMR
ATR-FTIR

viruses

Hepatitis C virus

Poliovirus
HIV-1
Influenza virus
Adenovirus
Dengue virus

Hepatitis C virus
Dengue virus

including norovirus, adenovirus, parvovirus, rotavirus,
coronavirus, paramyxovirus and herpes virus [41].

To apply metabonomics to identify patients infected with
the hepatitis C virus (HCV) through an analysis of "TH NMR
spectra of urine samples [48].

To detect and quantify poliovirus infection in cell culture
[46].

To analyze spectroscopic changes caused by the presence of
HIV-1 [6].

To identify nasal fluids contaminated with influenza virus
[42].

To detect adenovirus-infected cells [12].

Reveal NS2B membrane topology of the dengue virus [9].
To assess viral activity and hepatic fibrosis [21].
Identification of Dengue-3 viral load in serum and blood
[79].
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