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Chemotherapy is widely used in the treatment of cancer patients, but the cardiotoxicity

induced by chemotherapy is still a major concern to most clinicians. Currently, genetic

methods have been used to detect patients with high risk of chemotherapy-induced

cardiotoxicity (CIC), and our study evaluated the correlation between genomic variants

and CIC. The systematic literature search was performed in the PubMed, Cochrane

Central Register of Controlled Trials (CENTRAL), China Biology Medicine disc (CBMdisc),

the Embase database, China National Knowledge Internet (CNKI) andWanfang database

from inception until June 2020. Forty-one studies were identified that examined the

relationship between genetic variations and CIC. And these studies examined 88 different

genes and 154 single nucleotide polymorphisms (SNPs). Our study indicated 6 variants

obviously associated with the increased risk for CIC, including CYBA rs4673 (pooled

odds ratio, 1.93; 95% CI, 1.13–3.30), RAC2 rs13058338 (2.05; 1.11–3.78), CYP3A5

rs776746 (2.15; 1.00–4.62) ABCC1 rs45511401 (1.46; 1.05–2.01), ABCC2 rs8187710

(2.19; 1.38–3.48), and HER2-Ile655Val rs1136201 (2.48; 1.53–4.02). Although further

studies are required to validate the diagnostic and prognostic roles of these 6 variants

in predicting CIC, our study emphasizes the promising benefits of pharmacogenomic

screening before chemotherapy to minimize the CIC.
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INTRODUCTION

The burgeoning field of cardio-oncology is continuing to grow in step with major scientific
developments in oncology that have improved cancer prognosis and survivorship (1).
Cardiotoxicity has long been considered one of the main side effects of chemotherapy in
cancer patients (2–6). Now, more effective therapies and some forms of radiotherapy may also
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have multiple cardiovascular (CV) secondary effects, in
particularly left ventricular dysfunction (LVD) and heart failure
(HF) (7–12). Some of the data from studies on the genetic
defects and pharmacological interventions suggested that many
molecules, primarily those regulating oxidative stress (OS),
autophagy, apoptosis, and metabolism, contributing to the
pathogenesis of cardiotoxicity induced by cancer treatment.
Treatment with anthracyclines has been reported to increase
the risk of cardiotoxicity and death by more than five times
(13–15). Early diagnosis and treatment of cardiotoxicity can
increase the chances of recovery (16, 17), which highlights the
urgent need to develop new technologies and programmes for
the early management of cardiotoxicity caused by chemotherapy
and for a multidisciplinary clinical approach throughout the
chemotherapy process (18–20).

Early identification of the CIC is essential to minimize the
harmful side effects of cancer treatment, and could provide
oncologists and cardiologists with an ideal choice to allow
personalized antitumor treatment strategies or interventions
(21). Although some factors may make some patients more
susceptible to the severity of toxicity, individual differences in
toxicity manifestations still remain large, which will significantly
exacerbate these toxic. Genetics, therefore, could provide insights
into the development of toxicity induced by some cancer
treatments. Identification of the genetic biomarkers that are
able to predict whether the patient is at risk of developing
cancer therapies-induced cardiac dysfunction will allow for the
minimization of cardiotoxicities during cancer treatment by
careful monitoring, applying cardioprotective drugs or using
optimized cancer therapies. Several recent studies have showed
the role of genetic variation as a biomarker for the early detection
of CIC (22–25). The aim of this study was to provide an overview
of studies focusing on the relationship between polymorphic gene
variants and CIC.

METHODS

Search Strategy
Our study searched the PubMed, CENTRAL, CBMdisc, the
Embase database, Wanfang database and CNKI from the
beginning to June 2020. The search terms include chemotherapy,
anthracyclines, doxorubicin, daunorubicin, epirubicin,
idarubicin, trastuzumab, cyclophosphamide, 5-fluorouracil,
methotrexate, adriamycin, cisplatin, cytoxan, cardiotoxicity,
HF, cardiomyopathy, arrhythmia, genetic, pharmacogenomics,
variant and polymorphism. The search is limited to clinical trials
involving human participants. Then, literature titles, abstracts
and subject words are carefully analyzed to further identify
keywords for document retrieval. If the abstract is relevant to
our research, we will read the full text. References in the research
were also analyzed to find out some studies that might have been
missed in the original search.

Study Selection
Studies that met the criteria were as follows: (i) most of
the SNPs were considered as dominant inheritance models
unless specifically notified; (ii) original studies that determine

the relationship between the genetic polymorphism (including
different SNPs in each gene deletions, duplication, and copy-
number variants) and cardiotoxicity; (iii) chemotherapy was
used regardless of the cycle regimen type, timing, and duration
of administration; (iv) in human studies and (vi) in English
language. Exclusion criteria: (i) laboratory studies, case series
and reports, interim studies; (ii) republication literature; (iii) data
with obvious error. The relevance of the article titles and abstract
was filtered by two independent reviewers, and the full text was
retrieved based on inclusion criteria. Any disagreement will be
settled by the third author by decision.

Data Extraction
The authors (GPL and MKG) extracted the data and checked the
qualifications and the methodological quality of each included
study. Any disagreements will be discussed and if the discussion
is not finalized, the disagreements would be resolved by the third
author (XYY). This information extracted from each document
included the name of the first author, the year of publication,
the sample size of the trial, the type of participant, the age of the
participant, the type of cancer, the genotyping technique and the
definition of cardiotoxicity. At last, we assessed the relationship
between different genomic polymorphisms and cardiotoxicity.

Quality Assessment
The STREGA reporting guide was used to assess the quality of
each study report (26, 27). STREGA includes five main categories
of information: reporting possible genotyping methods and
errors, addressing population stratification methods, methods
used to inference haplotypes or genotypes, whether the Hardy-
Weinberg equilibrium was considered and whether this study
is the first to report genetic associations, replication work or
both. The quality of the report is assessed independently by two
investigators, and differences are resolved through the discussion
or through the third author if no consensus is reached between
the two investigators.

Statistical Analysis
The meta-analysis was analyzed using the Review Manager
5.3 packages (http://comunity.cochrane.org/tools/review-
production-tools/revman-5) (28) and STATA version 13.0.
In studies evaluating the same genotype polymorphism, we
performed the meta-analysis using the fixed effects (FE) model
and the random effects model (29), and this study heterogeneity
was evaluated using the I2 statistics. Overall heterogeneity was
quantified with the I2, with p < 0.01 used to indicate significance
(30). Compared with the sampling error in the study, the true
variance ratio of the estimated effects between the included
studies was calculated by using the I2 statistic and moderate
heterogeneity is considered when I2 is between 50 and 75%
and high heterogeneity is considered when I2 >75% (30). The
sensitivity analysis was conducted to evaluate the stability of
this study, namely meta-analysis is performed again after the
exclusion of abnormal results, and the results of meta-analysis
were compared with those of studies that did not exclude
abnormal results.
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RESULT

Study and Patient Characteristics
The study searched 2,277 literatures and 859 that were evaluated.
A total of forty-one studies involving in 9,183 patients, were
included in this study (Figure 1). Table 1 lists the characteristics
of the included studies. Thirteen studies were case-control studies
(22, 23, 32, 35, 36, 39, 44, 51, 53, 54, 60, 63, 64), eight were nested
case-control studies (24, 25, 31, 34, 37, 48, 52, 59). Another eleven
were prospective cohort studies (33, 41–43, 45, 46, 50, 55–57, 62)
while eight were retrospective cohort study (38, 40, 48, 58, 61, 65–
67). The remaining one was a case report (49). An almost equal
number of studies have been performed in children (n= 15) and
adults (n= 19). Seven studies included children and adults in our
study. The most common cancer types examined include breast
cancer (BC) (n = 12), leukemia (n = 9), osteosarcoma (n = 1),
lymphoma (n = 3), and hematological neoplasms (n = 3). In
eleven other studies, mixed cancers were examined.

The blood and buccal cells were themost commonly biological
specimens used for the genotyping. Twenty-six studies used a
single biological sample, including blood (24, 31–33, 35, 38, 40,
42–50, 57, 58, 62, 63, 65–67), bone marrow smear (36, 64) or
buccal swab (34), while seven researches used more than one bio-
specimens (23, 25, 34, 37, 51, 52, 54). Seven studies did not report
the bio-specimens used for genotyping (39, 41, 53, 56, 59–61).
Thirty studies used a single genotyping assay (24, 32, 33, 35, 37,
39–43, 45, 47–57, 59–65, 67) while the remaining studies used
multiple genotyping assays (22, 24, 25, 31, 34, 36, 38, 44, 46,
50, 64). The most common detection technique were Sequenom
MassARRAY (22, 25, 47, 57), (n = 4), Sequenom genotyping
assay (42, 46, 48) (n = 3), TaqMan genotyping assay (22, 24, 36,
41, 44, 46, 50, 53, 55, 59, 65) (n= 11), pyrosequencing (24, 31, 46)
(n = 3) and custom Illumina GoldenGate SNP genotyping assay
(23, 39, 51) (n= 3).

The cardiotoxicity definition varied from study to study,
with most studies using subjective results (n = 5), objective
results (n = 11) or both (n = 24), while one did not define
cardiotoxicity. However, most researches using subjective results
defined cardiotoxicity as the signs and symptoms that required
intervention. Furthermore, some studies have used shortened
fraction (SF) or left ventricular ejection fraction (LVEF) as the
objective indicators, but the critical points vary. For example,
a cut-off value below 40–55% of the LVEF or reduce of more
than 10–15% have been used. Five studies (24, 31, 35, 43, 64)
also included the definition of electrocardiographic changes
in cardiotoxicity, namely arrhythmias and electrocardiogram
(ECG) abnormalities, while one study only detected the
influences of anthracyclines on the QT intervals and arrhythmias.

The Quality of the Reporting in the Studies
Among the studies reviewed (Table 2), there was only one
study met the five main standard for reporting data from the
genetic association studies in the STREGA guidelines. Most
researches (N = 32) did not report the error rates or call
rates related to the genotyping methods. Twenty-six researches
did not indicate whether the genotyping was done in the
batches or simultaneously. Twenty-nine studies did not provide

FIGURE 1 | Selection process and criteria for inclusion in this study.

any information on whether the population stratification was
evaluated in our analysis.

Chemotherapy-Induced Cardiotoxicity
(CIC) and Susceptibility Genes
Our study reported a total of 154 SNPs involving eighty-eight
genes (Supplementary Table 1). Most of the research has focused
on genetic variations linked to chemical synthesis or heart
function. Accessable data was found in 17 studies out of the
included 41 studies and 14 SNPs were consistently detected.
Then these 14 SNPs were subjected to our quantitative analysis
(Figures 2–4). And we searched for these six variants in the
protein-coding region of the gene in the Pubmed (Table 3). The
genes included in the meta-analysis are discussed below.

Cytochrome b-245, Alpha Polypeptide (CYBA) Gene
The CYBA gene encodes a major component of the phagocytes
microbicidal oxidase system.Meanwhile, our study confirmed six
studies that assessed the correlation between CYBA rs4673 and
cardiotoxicity, and four studies (22, 24, 31, 47) were included
in quantitative analysis. In our study, this SNP was found to
increase the risk of developing cardiotoxicity (OR: 1.93; 95%
CI: 1.13–3.30; p = 0.04) with high heterogeneity (I2 = 65%)
(Figure 2.1). We used the random effects model and excluded
individual studies to conduct sensitivity analysis to account for
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TABLE 1 | Genetic polymorphisms in chemotherapy-induced cardiotoxicity (CIC).

Study Participants Gender: male/

female

Age(years):

case/control

Drug used Type of

Cancer

Source of DNA

sample

Genotyping Cardiac toxicity

Wojnowski et al. (31) NCC; 550 50/37; 212/151 62.0 ± 10.9;

61.3 ± 11.0

Doxorubicin Non-Hodgkin

lymphoma

Peripheral blood Pyrosequencing; PCR Arrhythmia, CHF,

myocarditis-pericarditis

Weiss et al. (32) CC; 197 ∼98/99 68 (56–88) Daunorubicin AML Peripheral blood Multiplex PCR SWOG toxicity

Beauclair et al. (33) PC; 61 NR 50.7 (30.5–83.1) Trastuzumab BC Blood PCR Decreased LVEF

Blanco et al. (34) NCC; 145 10/20; 57/58 10.3 ± 6.5;

9.1 ± 5.8

Anthracyclines Childhood

cancer

Buccal cells/saliva PCR-RFLP; allelic discrimination

with specific fluorescent probes

CHF

Rossi et al. (35) CC; 106 55/51; 55/51 66 (56–75) Doxorubicin Large B-cell

lymphoma

Peripheral blood SNP minisequencing Abnormalities ECG

Rajićet al. (36) CC; 76 32/44 25.8 ± 5.3 Anthracyclines ALL Bone marrow

smears

qPCR; TaqMan genotyping assay Cardiac damage, SF<30%,

LVEF < 54%

Blanco et al. (37) NCC; 487 76/94; 162/155 8.3 ± 6; 8.2 ± 6 Anthracyclines Childhood

cancer

Peripheral

blood/buccal

cells/saliva

Allelic discrimination with specific

fluorescent probes

Cardiomyopathy, EF<40%,

SF <28%

Semsei et al. (38) RC; 235 126/109 5.7 ± 3.8 Anthracyclines ALL Peripheral blood Minisequencing; Genome Lab

SNP stream genotyping assay

LV dysfunction; reduced

LVFS

Visscher et al. (39) CC; 440 17/21; 66/52 5.5 (0.04–17.0);

3.9 (0.5–16.5)

Anthracyclines Childhood

cancer

NR Custom Illumina GoldenGate SNP

genotyping assay

CHF; SF <26%

Cascales et al. (40) CR; 97 37/12; 28/20 60 ± 12; 44 ± 18 Anthracyclines Hematological

neoplasms

Blood PCR HF; LVEF decrease; EF

<50%

Volkan-Salanci et al.

(41)

PC; 70 7/63 49.1 ± 13.6 Anthracyclines BC NR TaqMan genotyping assay Cardiac dysfunction; LVEFs

<50%

Lubieniecka et al.

(42)

PC; 185 86/99 46 (14–74) Anthracyclines AML Blood Sequenom genotyping assay LVEF % drop

Kitagawa et al. (43) PC; 34 0/34 49 (21–71) Epirubicin,

cyclophosphamide,

5-fluorouracil

BC Whole blood TaqMan genotyping assay Arrhythmias; QTc interval

prolongation

Windsor et al. (44) CC; 58 34/24 18 (10–51) MAP Osteosarcoma Peripheral blood PCR; Illumina microarray Decreased LVEF

Roca et al. (45) PC; 392 NR 48 (24–65) 5-fluorouracil,

epirubicin,

cyclophosphamide

BC Whole blood PCR CHF; LVEF <50%

Lipshultz et al. (46) PC; 184 101/83 15.2 (3.1–31.4) Doxorubicin ALL Peripheral blood Pyrosequencing; Sequenom

genotyping assay; TaqMan

genotyping assay

Cardiac dysfunction; LVEF,

cTnT, NT-proBNP

Armenian et al. (47) NCC; 255 34/43; 119/59 49.2 (16–68.8);

51.0 (6.4–72.6)

Anthracyclines Hematological

neoplasms

Peripheral blood Sequenom MassARRAY Sign and symptoms

Lubieniecka (48) RC; 91 48/43 48.4 (19–74) Daunorubicin AML Blood Sequenom genotyping assay Decreased LVEF

Sachidanandam

et al. (49)

CR; 2 0/2 NR Doxorubicin Childhood

cancer

Whole blood PCR Sign and symptoms

Vivenza et al. (50) PC; 48 1/47 57.5 (28–73) Anthracyclines BC Blood Allelic discrimination; TaqMan

genotyping assay

Decreased LVEF; LVEF

<50%

Visscher et al. (51) CC; 218 31/25; 75/87 21.7 (1.4–33.8);

16.1 (2.3–33.7)

Anthracyclines Childhood

cancer

Blood/saliva/buccal

swab

Custom Illumina GoldenGate SNP

genotyping assay

SF<24% or symptoms,

CTCAE grade 2–4

(Continued)
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TABLE 1 | Continued

Study Participants Gender: male/

female

Age(years):

case/control

Drug used Type of

Cancer

Source of DNA

sample

Genotyping Cardiac toxicity

Wang et al. (52) NCC; 363 40/53; 94/100 19.4 (0.4–41.7);

18.5 (3.5–49.2)

Anthracyclines Children’s

Oncology

Peripheral blood,

buccal cells/ saliva

Illumina IBC cardiovascular SNP

array

American Heart Association

criteria

Wasielewski et al.

(53)

CC; 21 NR 49 (2–57) Anthracyclines NR NR Targeted next-generation DNA

sequencing

Signs and symptoms;

cardiomyopathy

Krajinovic et al. (54) CC; 295 134/117; 21/23 6.16; 5.27 Doxorubicin ALL Blood, buccal

swabs

PCR Reduction of EF and FS

Visscher et al. (23) CC; 536 64/58; 211/187 7.4 (0.04–17.6);

4.9 (0.1–17.7)

Anthracyclines Childhood

cancer

Blood, saliva,

buccal swabs

Illumina GoldenGate SNP

genotyping assay

FS ≤26%, LV dysfunction

Peña et al. (55) PC; 78 NR 51.72 Trastuzumab BC Saliva TaqMan allelic discrimination

assay

CHF, LVEF <50%

Aminkeng et al. (56) PC; 376 27/27; 174/148 16.5 (7.5–26);

15 (8–21.5)

Anthracyclines Pediatric

oncology

NR Illumina HumanOmniExpress

assay

FS ≤24%, LVEF < 45%

Reichwagen et al.

(24)

NCC; 520 25/31; 46/48 68 (61–80);

67 (62–79)

Doxorubicin CD20+ B-cell

lymphomas

Blood Pyrosequencing; TaqMan

genotyping assays

Arrhythmia, reduced EF

Vulsteke et al. (57) PC; 877 NR 50.3 Epirubicin BC Blood Sequenom MassARRAY Decrease LVEF, LVEF >10%

Stanton et al. (58) RC; 140 0/140 56 (32–85) Trastuzumab BC Peripheral blood PCR LVEF <55%

Hertz et al. (22) CC; 166 0/19; 0/147 50 (35–64); 50

(24–80)

Doxorubicin BC Blood Sequenom MassARRAY; TaqMan

allelic discrimination assay

EF <55%

Reinbolt et al. (59) NCC; 162 0/52; 0/110 51.9 ± 11.9;

50.1 ± 9.3

Adriamycin, and

cytoxan

BC NR TaqMan allelic discrimination

assay

EF <50%

Wang et al. (25) NCC; 385 76/90; 106/113 16.1 ± 10.7;

8.3 ± 5.8

Anthracyclines Childhood

cancer

Blood, buccal

cells, saliva

Illumina HumanOmniExpress

assay; Sequenom MassARRAY

Cardiomyopathy, EF <40%,

SF <28%

Schneider et al. (60) CC; 102 NR NR Anthracyclines BC NR Illumina Genotyping CHF; LVEF <50%

Ruiz-Pinto et al. (61) RC; 154 0/71; 53/30 54.3; 7.8 Anthracyclines BC NR Illumina HumanExome BeadChip

array

Cardiac failure, LVEF

decreased

Pop-Moldovan et al.

(62)

PC; 25 13/12 59.6 Doxorubicin Hematological

neoplasms

Blood qRT-PCR Diastolic dysfunction; LVEF

decreased

Ruiz-Pinto et al. (63) CC; 93 33/25; 25/10 5.1; 10.4 Anthracyclines Pediatric

cancer

Peripheral blood Illumina HumanExome BeadChip

array

LV dysfunction

Huang et al. (64) CC; 36 22/14 7.1 ± 2.3 Daunorubicin ALL Bone marrow PCR Abnormal ECG

Sági et al. (65) RC; 680 NR 6.6 (± 4.3) Anthracyclines ALL Peripheral blood TaqMan® Open- ArrayTM

Genotyping

FS ≤28%, decreased EF

Todorova et al. (66) RC; 30 NR 53.1 (35–76) Doxorubicin BC Peripheral blood RT-PCR; Illumina HumanOmni

BeadChip

Cardiac dysfunction, LVEF

<55%

Garcia-Pavia et al.

(67)

RC; 213 33/66; 0/73;

17/24

48.7 ± 17.1;

49.6 ± 10.8;

10.8 ± 5.6

Anthracyclines Diverse cancers Peripheral blood Illumina TruSight Cardio

Sequencing

Cardiomyopathy; LVEF

<50%

The characteristics of included studies. AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; BC, breast cancer; EF, ejection fraction; CC, case-control; LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional

shortening; SF, shortening fraction; CHF, congestive heart failure; CTCAE, National Cancer Institute Common Toxicity Criteria; PC, prospective cohort; NCC, nested case control; NR, not reported; RC, retrospective cohort; RFLP,

restriction fragment length polymorphism; ECG, echocardiography.
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TABLE 2 | The quality assessment of reporting in each study (N = 41).

Studiesa 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Genotyping methods and errors

Describe the laboratory methods: state the source and storage of

DNA, the genotyping methods and the platforms

√ √ √ √ √ √ √ √ √ √ √ √ √ √

Describe the laboratory methods: state the error rates and call

rates

√ × × × × × × × × × × × × ×

State the laboratory/center where the genotyping was done
√ × × √ × × √ √ √ × × × √ ×

Specify whether genotypes were assigned using all of the data

from the study simultaneously or in smaller batches

√ × × × × × × × × × × √ √ ×

Report the numbers of individuals for whom genotyping was

attempted and the numbers of individuals for whom genotyping

was successful

√ √ √ √ √ √ √ √ √ √ √ × √ √

Modeling population stratification

Describe any methods used to assess or address population

stratification

√ × × × × × × × √ × × × × ×

Modeling haplotype variation

Describe any methods used for inferring genotypes or haplotypes
√

NA NA NA NA NA NA
√

NA
√

NA NA NA NA

Hardy–Weinberg equilibrium

State whether the Hardy–Weinberg equilibrium was considered
√ × √ √ √ √ √ √ √ √ √ √ × √

Replication

State if the study is the first report of a genetic association, a

replication effort or both

√ × √ √ × × × × × √ √ × × ×

Studiesa 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Genotyping methods and errors

Describe the laboratory methods: state the source and storage of

DNA, the genotyping methods and the platforms

√ √ √ √ √ √ √ √ √ √ √ √ √ √

Describe the laboratory methods: state the error rates and call

rates

× × √ √ × × × × × √ √ × √ ×

State the laboratory/center where the genotyping was done × √ × × √ × × √ × × × × √ ×
Specify whether genotypes were assigned using all of the data

from the study simultaneously or in smaller batches

× √ × √ √ × × √ × √ √ × × √

Report the numbers of individuals for whom genotyping was

attempted and the numbers of individuals for whom genotyping

was successful

√ √ √ √ √ √ √ √ √ √ √ √ √ √

Modeling population stratification

Describe any methods used to assess or address population

stratification

× × × √ × × √ √ × × √ × √ ×

Modeling haplotype variation

Describe any methods used for inferring genotypes or haplotypes NA NA NA
√

NA NA
√

NA NA NA
√

NA
√

NA

Hardy–Weinberg equilibrium

State whether the Hardy–Weinberg equilibrium was considered
√ × √ √ × √ √ √ × × √ √ √ √

Replication

State if the study is the first report of a genetic association, a

replication effort or both

× × × × √ × × × × × √ × × √

Studiesa 29 30 31 32 33 34 35 36 37 38 39 40 41

Genotyping methods and errors

Describe the laboratory methods: state the source and storage of

DNA, the genotyping methods and the platforms

√ √ √ √ √ √ √ √ √ √ √ √ √

Describe the laboratory methods: state the error rates and call

rates

× √ × × × × × × × × √ √ ×

State the laboratory/center where the genotyping was done
√ √ √ √ √ × √ × √ √ × × ×

Specify whether genotypes were assigned using all of the data

from the study simultaneously or in smaller batches

× √ √ × √ × √ √ √ × × × ×

(Continued)
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TABLE 2 | Continued

Studiesa 29 30 31 32 33 34 35 36 37 38 39 40 41

Report the numbers of individuals for whom genotyping was

attempted and the numbers of individuals for whom genotyping

was successful

√ √ √ √ √ √ √ √ √ √ √ √ √

Modeling population stratification

Describe any methods used to assess or address population

stratification

× × × × √ √ √ × √ × × × √

Modeling haplotype variation

Describe any methods used for inferring genotypes or haplotypes NA NA NA NA NA
√

NA NA NA NA
√

NA NA

Hardy–Weinberg equilibrium

State whether the Hardy–Weinberg equilibrium was considered × √ √ × √ × √ × √ × √ × ×
Replication

State if the study is the first report of a genetic association, a

replication effort or both

× × × √ √ × √ × × × × × √

a1. Wojnowski et al., 2005; 2. Weiss et al., 2006; 3. Beauclair et al., 2007; 4. Blanco et al., 2008; 5. Rossi et al., 2009; 6. Rajić et al., 2009; 7. Blanco et al., 2012; 8. Semsei et al.,

2012; 9. Visscher et al., 2012; 10. Cascales et al., 2012; 11. Volkan-Salanci et al., 2012; 12. Lubieniecka et al., 2012; 13. Kitagawa et al., 2012; 14. Windsor et al., 2012; 15. Roca

et al., 2013; 16. Lipshultz et al., 2013; 17. Armenian et al., 2013; 18. Lubieniecka et al., 2013; 19. Sachidanandam et al., 2013; 20. Vivenza et al., 2013; 21. Visscher et al., 2013; 22.

Wang et al., 2014; 23. Wasielewski et al., 2014; 24. Krajinovic et al., 2015; 25. Visscher et al., 2015; 26. Peña et al., 2015; 27. Aminkeng et al., 2015; 28. Reichwagen et al., 2015;

29. Vulsteke et al., 2015; 30. Stanton et al., 2015; 31. Hertz et al., 2016; 32. Reinbolt et al., 2016; 33. Wang et al., 2016; 34. Schneider et al., 2017; 35. Ruiz-Pinto et al., 2017; 36.

Pop-Moldovan et al., 2017; 37. Ruiz-Pinto et al., 2017; 38. Huang et al., 2017; 39. Sági et al., 2018; 40. Todorova et al., 2018; 41. Garcia-Pavia et al., 2019.

the heterogeneity, and these results show that excluding the study
of Armenian et al. can alter heterogeneity (I2 = 0%).

Ras-Related C3 Botulinum Toxin Substrate 2

(RAC2) Gene
The RAC2 gene encodes proteins that regulate a variety of
processes including secretion, phagocytosis, cell polarization,
and ROS production. Four of the six studies indicated that the
SNP rs13058338 on the RAC2 obviously increased the risk of
cardiotoxicity (22, 24, 31, 47). We used the random effects model
and the analysis of this variant in four studies suggested that the
RAC mutation significantly increased the risk of cardiotoxicity
by nearly twice (OR: 2.05; 95% CI: 1.11–3.78; p = 0.02), but
with moderate heterogeneity (I2 = 68%) (Figure 2.2). Sensitivity
analyses were conducted to explore the potential sources of
heterogeneity, but these results did not change substantially
[I2 = 74% (47), 74% (22), 60% (24), 66% (31)].

Cytochrome P450 Family 3 Subfamily A Member 5

(CYP3A5) Gene
The CYP3A5 gene is involved in the metabolism and clearance
of daunorubicin (DNR), but the activity of CYP3A5 is impacted
on the gene polymorphism, which has individual differences
(68). Meta-analysis of two studies (22, 64) reported that the
rs776746 on CYP3A5 increased cardiotoxicity risk, including
a total of 232 patients (54 in the case group and 178 in the
control group). Using the FE model, our study suggested that
the missense mutation was related to an obviously increase in the
risk of cardiotoxicity [OR= 2.15 [95% CI (1.00–4.62)], P= 0.05]
(Figure 2.3).

ATP Binding Cassette (ABC) Genes
The ABC transporter gene encodes a superfamily of
transmembrane proteins that can use adenosine triphosphate

to actively transport substrates including doxorubicin through
the membrane (69). Meta-analysis of three studies (24, 31, 47)
reported that the ABCC1 rs45511401 increased cardiotoxicity
risk, including a total of 1,023 patients (363 in the case group
and 660 in the control group). Using the random effects model,
we found that missense mutations were related to a significant
increase in risk [OR = 1.46 [95% CI (1.05–2.01)], P = 0.02]
with moderate heterogeneity (I2 = 70%) (Figure 2.4). The
study conducted by Semsei et al. (38) were excluded, changing
the results and addressing heterogeneity (I2 = 0%). And
three studies (24, 31, 38) indicated that the ABCC2 rs8187710
significantly augmented the risk of cardiotoxicity (OR: 2.19; 95%
CI: 1.38–3.48; p= 0.0009) (Figure 2.5).

Human Epidermal Growth Factor Receptor 2

(HER2) Gene
The HER2 is a proto-oncogene that encodes transmembrane
proteins that have tyrosine kinase activity, but have not been
identified as the physiological ligand. Four included studies (33,
45, 55, 58) revealed Ile655Val rs1136201 on HER2 significantly
increase risk for cardiotoxicity, including a total of 480 patients
(118 in the case group and 362 in the control group). Using the
FE model, the result indicated that the missense mutation was
related to a significant increase in the risk of cardiotoxicity [OR
= 2.48 [95% CI (1.53–4.02)], P= 0.0002] with low heterogeneity
(I2 = 12%) (Figure 2.6).

Neutrophil Cytosolic Factor 4 (NCF4) Gene
The NCF4 gene encode the p40phox subunit of the NAD(P)H
oxidase (NOX) (70). The rs1883112 polymorphism of NCF4
promoter blocks the oxidase activation of the enzyme, thus
reducing the formation of active oxidant intermediates (71).
Three (22, 24, 31, 47) of the six researches (22, 24, 31, 35, 39, 47)
studied the roles of SNP rs1883112, and found that this SNP
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FIGURE 2 | Forest plot of meta-analysis for 6 SNPs. Six variants, CYBA rs4673, RAC2 rs13058338, CYP3A5 rs776746, ABCC1 rs45511401, ABCC2 rs8187710,

and HER2 rs1136201 are significantly increased the odds for chemotherapy induced cardiotoxicity.
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FIGURE 3 | Forest plot of meta-analysis for 4 SNPs. Four variants, NCF4 rs1883112, SLC28A3 rs7853758, SOD2 rs4880, and NQO1 rs1800566, are not statistically

significant for chemotherapy induced cardiotoxicity.

was related to cardiotoxicity, but the combined effect of this
synonymous substitution indicated no significant relevancy (OR:
1.13; 95% CI: 0.72–1.77; p= 0.59) (Figure 3.1).

Solute Carrier Family 28 Member 3 (SLC28A3) Gene
It has been previously reported that SLC28A3 (rs7853758)
has cardioprotective effects in the multiple patient cohorts
with an odds ratio of 0.35–0.42 (39, 51). We identified five
studies that assessed the association between rs7853758 missense
SNP on SLC28A3 and cardiotoxicity, and three studies (22,
24, 65) were included in the quantitative analysis. We used
the random effects model. But the SNP rs7853758 was not

statistically significant difference (OR: 1.77; 95% CI: 0.44–
7.13; p = 0.42) (Figure 3.2) with high heterogeneity (I2 =
70%). Therefore, we excluded individual studies to conduct
sensitivity analyses to account for the heterogeneity, and
the result suggested no significant differences between the
selected studies.

Superoxide Dismutase II (SOD2) Gene
SOD2 exists in the mitochondria and metabolizes superoxide
radicals formed when anthracycline compounds are oxidized
to hydrogen peroxide. Meta-analysis of two included studies
(36, 47) revealed rs4880 on SOD2 significantly increase risk
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FIGURE 4 | Forest plot of meta-analysis for five SNPs. Five variants, AGT rs699, AGTR1 rs5186, CBR1 rs9024, CBR3 rs1056892, and ABCC2 rs8187694, are not

statistically significant for chemotherapy induced cardiotoxicity.

for cardiotoxicity including a total of 407 participants (153 in
the case group and 254 in the control group). But the FE
model indicated that the missense mutation was not statistically
significant [OR = 1.65 [95% CI (0.94–2.88)], P = 0.08]
(Figure 3.3).

NAD(P)H Quinone Dehydrogenase1 (NQO1) Gene
The NQO1 gene is involved in the protection of intracellular
OS, and many pro-oxidant drugs induced basic NQO1 activity
(34). Two included studies (34, 47) revealed SNP rs1800566 on
NQO1 significantly increase risk for cardiotoxicity, including a
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TABLE 3 | The 6 variants, annotations and meta-analysis OR and p-value.

Gene SNP Variant type Alleles Chromosome Functional consequence Clinical significance Odds ratio p-value

CYBA rs4673 SNV A>G,T 16:88646828 (GRCh38) Coding sequence variant Benign, likely-pathogenic 1.93 0.02

RAC2 rs13058338 SNV T>A,G 22:37236730 (GRCh38) Intron variant Not report 2.05 0.02

CYP3A5 rs776746 SNV T>C 7:99672916 (GRCh38) Intron variant Benign, drug-response 2.15 0.05

ABCC1 rs45511401 SNV G>T 16:16079375 (GRCh38) Coding sequence variant Not report 1.46 0.02

ABCC2 rs8187710 SNV G>A 10:99851537 (GRCh38) Coding sequence variant Likely-benign 2.19 0.0009

Her2 rs1136201 SNV A>G,T 17:39723335 (GRCh38) Coding sequence variant Benign, not-provided 2.48 0.0002

total of 395 patients (106 in the case group and 289 in the control
group). Using the FEmodel, the result indicated that themissense
mutation was not statistically significant [OR = 1.56 [95% CI
(0.75–3.24)], P= 0.24] (Figure 3.4).

Angiotensinogen (AGT) Gene
Association between AGT P.m.ET235THr gene polymorphism
and cardiovascular disease concluded that there was a positive
correlation between essential hypertension (72, 73) and
myocardial infarction (74). Two included studies (44, 47)
revealed SNP rs699 AGT significantly increase risk for
cardiotoxicity, including a total of 303 participants (90 in the case
group and 213 in the control group). The FE model indicated
that the missense mutation was not statistically significant [OR
= 1.93 [95% CI (0.60–1.79)], P= 0.91] (Figure 4.1).

Angiotensin II Type-1 Receptor (AGTR1) Gene
Angiotensin II is the main ligand of AGTR1A, which adjusts the
intravascular volume and the blood pressure (75). And functional
polymorphisms in the ACE, AGT, and AGTR1 can impact the
expression or the function of encoded proteins, and are related to
stroke, coronary heart disease, vascular dysfunction and diabetes
(76). Meta-analysis of two included studies (47, 50) revealed SNP
rs5186 significantly increase risk for cardiotoxicity, including a
total of 303 patients (90 in the case group and 213 in the control
group). But the FE model indicated that the missense mutation
was not statistically significant difference [OR = 0.66 [95% CI
(0.40–1.10)], P= 0.11] (Figure 4.2).

Carbonyl Reductases (CBR) Genes
The enzyme encoded by the CBR genes catalyzes the reduction
of the endogenous aliphatic aldehydes and ketones as well as
various xenobiotic, and thus has a cardioprotective effect against
cardiotoxicity. Four SNPs on CBRs were studied, one on carbonyl
reductase 1 (CBR1) gene and three on carbonyl reductase 3
(CBR3) gene. However, two SNPs, rs9024 of CBR1 (22, 37, 47,
59) and rs1056892 of CBR3 (22, 34, 37, 41, 47, 59) were not
statistically significant (OR: 1.19; 95% CI: 0.86–1.64 and 0.88;
0.65–1.20, respectively) (Figures 4.3,4.4).

ATP Binding Cassette (ABC) Gene
Two studies (24, 31) reported that the ABCC2 rs8187694
increased cardiotoxicity risk, including a total of 600 patients
(457 in the case group and 143 in the control group). Using the FE
model, we found no statistically significant difference (OR: 1.67;

95% CI: 0.94–2.98; p = 0.08) with low heterogeneity (I2 = 0%)
(Figure 4.5).

Sensitivity Analyses
We excluded each study in order, and the rest reported
inconsistent results between ABCC1 and CYBA. In this meta-
analysis, the studies that included Semsei et al. (38) and Armenia
et al. (47) obviously distorted these results, suggesting that the
two reports may be statistically unstable (Figures 5A,B). Other
results showed consistent results (Figures 5C,D).

DISCUSSION

Our study analyzed the association between genetic
polymorphism and CIC. We included a total of 41 studies
that screened 88 different genes. Gene variation may promote
OS, metabolic disorders, mitochondrial dysfunction, calcium
overload, myocardial fibrosis, sarcoplasmic reticulum structure
and function destruction, cardiomyocyte autophagy and
apoptosis in CIC (77, 78). The results of our meta-analysis
showed that the polymorphisms in six (6.8%) of eighty-eight
genes were obviously associated with the risk of cardiotoxicity in
patients receiving chemotherapy.

For genes with positive associations, mechanism studies
have indicated that these alleles can alter the encoded proteins
expression or activity, leading to cardiotoxicity. The ABCC1
transporter plays an important function in the OS, and is
involved in maintaining the adequate levels of glutathione, which
is essential for ROS defense. In addition, ABCC1 also requires
glutathione to transport anthracycline antibiotics (79–81), which
may also affect the OS response induced by anthracycline
antibiotics (82). The ABCC2 gene encoded proteins involved
in the efflux of substances from cells, and ABCC2 mutation
obviously decrease the ATPase-activity, leading to reduce in the
efflux activity resulting in the accumulation of anthracyclines
in cells (83). CYBA encodes p22phox, which is one of the two
subunits of the NOX located in the cell membrane. And the
reduced activity of inherited NOX may lead to impaired ROS
defense capacity, thus increasing ROS levels under chemotherapy
exposure. Similarly, RAC2 encoded by the RAC2 gene is a
mitochondrial protein required for the electron transfer reaction
of NOX (84) during OS formation (85). Genetic alteration leads
to mitochondrial dysfunction, which leads to an increase in
ROS production and ultimately cardiomyocyte damage. There is
also evidence that the CYP3A5-mediated oxidative metabolism
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FIGURE 5 | Sensitivity analyses plot of ABCC1 (A), CYBA (B), RAC (C), and SLC28A3 (D).

of anthracyclines may induce drug-induced cardiotoxicity by
generating OS (86). Taken together, these gene mutations are
believed to cause cardiotoxicity on account of the accumulation
of chemotherapy and excessive ROS in cardiomyocytes.

Some other genes were also observed to be associated with
CIC, such as HER2-Ile655Val rs1136201. The most studied
germline polymorphism in the clinical level is associated with
the transmembrane domain of HER2 protein 655 A>G Ile/Val
(87, 88), which may be related to a high risk of BC (89). The Val
allele presence may make cardiomyocytes especially dependent
on HER2-Ile655Val rs1136201 signaling and the highly sensitive
to trastuzumab (33). This mechanism of cardiotoxicity induced
by trastuzumab is unknown, however, HER2/neu has been
shown to be critical for cardiomyocytes in animal model.
Our meta-analysis also confirmed the role of HER2-Ile655Val
polymorphism as a genetic predictor of cardiac toxicity induced
by trastuzumab in the BC patients.

There are some limitations to this study that deserve
discussion. Firstly, the sample size of the study was small.
This is particularly important for genome-wide association
study (GWAS), with some literature advocating 10,000 cases
to gain sufficient statistical power to detect causality through

meta-analysis and data aggregation. Sixty one percentage of the
included studies had fewer than 200 people. Secondly, there is
selection bias in this study. Most literature used a retrospective
method, usually by convenience sampling to recruit patients who
were still in the hospital system, thereby further limiting the
choice to participants who are still alive. In addition, the analysis
was based on previous reports, which may not be complete or
accurate. Finally, due to the lack of raw data, studies on drug
dosage protocols and study periods varied widely. In addition,
patient cohorts were often heterogeneous in terms of disease,
drug dose, drug route, and administration, all of which may
confuse toxicity associated with the target drug.

CONCLUSIONS

This study suggests that the polymorphisms in multiple
pharmacogenetic in the biochemical and cardiotoxicity pathways
may be predictors of CIC. However, for limited quantitative
analysis, the evidences are limited and too diverse. Further
researches are needed to produce reliable genetic predictors of
CIC in order to achieve the goal of individualized chemotherapy.
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