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Multi-AUV cooperative target search problem in unknown 3D underwater environment is not only a research hot spot but also a
challenging task. To complete this task, each autonomous underwater vehicle (AUV) needs to move quickly without collision and
cooperate with other AUVs to find the target. In this paper, an improved dolphin swarm algorithm- (DSA-) based approach is proposed,
and the search problem is divided into three stages, namely, random cruise, dynamic alliance, and team search. In the proposed
approach, the Levy flightmethod is used to provide a randomwalk for AUV to detect the target information in the random cruise stage.
'en the self-organizingmap (SOM) neural network is used to build dynamic alliances in real time. Finally, an improvedDSA algorithm
is presented to realize the team search. Furthermore, some simulations are conducted, and the results show that the proposed approach is
capable of guiding multi-AUVs to achieve the target search task in unknown 3D underwater environment efficiently.

1. Introduction

Autonomous underwater vehicle (AUV) has a wide range of
applications in the field of science, commerce, and military,
such as searching missing airplanes and ships wreckage,
maritime rescuing, and exploitation of marine resources
[1–4]. Multi-AUV system attracts more and more attentions
recently, due to its high parallelism, robustness, and col-
laboration of high efficiency [5, 6]. Multi-AUV system can
complete difficult tasks more rapidly and efficiently than a
single AUV, so it is a very important development direction
in the research field of AUV [7–9].

Target search is a very important and basic mission in the
applications of multi-AUVs. Also, it is a very challenging task
in the field of multiple AUVs. Lots of work has been done to
deal with the target search problem. For example, Xiao et al.
[10] presented a cooperative multiagent search algorithm to
solve the problem of searching for a target on a 2D plane
under multiple constraints. Li and Duan [11] proposed a
game theoretic formulation for multiple unmanned aerial

vehicle cooperative search and surveillance. Cai and Yang [12]
proposed a novel potential field-based particle swarm opti-
mization approach for a team of mobile robots to co-
operatively search targets in unknown environments. Most of
the existed methods are focused on the search problem for the
ground mobile robot on 2D environments. However, there
are obvious differences between the search tasks for the
ground mobile robot and the underwater robot. 'e un-
derwater environment is three-dimensional (3D) and has lots
of uncertainties [13–15], which is more complicated than 2D
ground environment. So, the general cooperative search
approaches for the ground mobile robot cannot be used
directly for multi-AUVs.

Much research has been done to deal with various tasks
in the cooperative search task of multi-AUVs. For example,
Zhu et al. [16] proposed a biologically inspired self-
organizing map method for the dynamic task assignment
and path planning of multi-AUV system. Cao et al. [17]
proposed an integrated algorithm for a cooperative team of
Multi-AUVs by combining the Glasius bioinspired neural

Hindawi
Computational Intelligence and Neuroscience
Volume 2018, Article ID 2186574, 13 pages
https://doi.org/10.1155/2018/2186574

mailto:njjhhuc@gmail.com
http://orcid.org/0000-0002-7130-8331
http://orcid.org/0000-0002-2966-1676
http://orcid.org/0000-0002-4526-1285
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2186574


network and bioinspired cascaded tracking control ap-
proach to improve search efficiency and reduce tracking
errors. Yi et al. [18] studied the task assignment problem of a
swarm of robots in 3D dynamic environments, and an
improved approach that integrates the advantages and
characteristics of biological neural systems is proposed. Li
et al. [19] presented a bioinspired geomagnetic navigation
method for AUV without using any a priori geomagnetic
information. 'ose methods discussed above are all the key
technologies of the multi-AUV search task, and the research
results provided a good basic for the cooperative search task
of multi-AUVs. However, few of those methods above
considered the cooperative search task as a whole, and the
search task for the dynamic targets is often ignored.

To complete the cooperative search task efficiently for
multi-AUVs, the complexity of the search task in the 3D
unknown underwater environment with great uncertainties
should be considered. 'e safety of the AUVs and the co-
operative efficiency are two main issues in the search task
[20, 21]. Recently, many researchers have done lots of work in
this field. For example, Ni et al. [22] proposed a partition and
column parallel search strategy and a formation search
control algorithm based on an improved spinal neural system
in 3D underwater environment with obstacles. Abreu et al.
[23] presented a coverage path planning technique for search
operations, which takes into account the uncertainties of the
vehicle position and detection performance. Cao et al. [24]
studied the problem of the target search in 3D underwater
environments, and an integrated strategy is proposed in-
cluding the map building based on the Dempster-Shafer
theory of evidence and the path planning based on a bio-
inspired neurodynamics model. However, there are still some
shortcomings in the existing methods that should be solved,
such as the low efficiency of the dynamic targets search in the
complex 3D underwater environment.

'emethods of cooperative search for multiple AUVs can
be divided into two types according to the target information.
One is based on known information of target prior distri-
bution, such as heuristic search methods [25, 26].'e other is
based on sensor information without any target information,
such as the region search methods [27]. 'is paper is focused
on the sensor information-based cooperative search task
based on the swarm intelligence algorithm.

In the proposed approach, a novel integrated search
method is proposed, including the random cruise strategy,
the dynamic alliance construction, and the method to find
the position of target. Firstly, a Levy flight-based random
cruise strategy is proposed to give AUV a random walk to
cruise in the underwater environment [28, 29]. In this study,
the Levy flight algorithm is improved by an adjustment
module based on fuzzy rules, to make it suitable for the
movement characteristics of AUV and the complexity of the
underwater environment [30]. After retrieving the target
information, a dynamic alliance for the team search is de-
termined using the SOM neural network algorithm [31, 32].
'en, an improved dolphin swarm algorithm- (DSA-) based
approach is used to plan the path for each AUV to search the
target [33, 34].'e cooperative search approach in this paper

takes full consideration of the obstacles, making the search
task more in line with the actual situation and improving the
practicality of the method.

'e main contributions of this paper are summarized as
follows. (1) A cooperative search task in 3D unknown un-
derwater environment is presented, which is completed by a
multi-AUVs system. (2) An improved DSA-based method is
proposed formulti-AUV target search, which is an integration
of several methods, such as the fuzzy rules-based Levy flight
algorithm for AUVs cruising and the improved DSA-based
team search method. (3)'e ability of the DSA-basedmethod
is improved. 'e calculation time of the algorithm is reduced,
and the search efficiency and the adaptivity of the algorithm
for AUVs in 3D underwater environment are increased. (4)
Some simulations are conducted in 3D underwater envi-
ronments, where the situations of the search task for static
targets and dynamic targets are simulated. And the proposed
algorithm is compared with the general dolphin swarm al-
gorithm and PSO algorithm in these simulations.

'is paper is organized as follows. Section 2 presents the
problem statement. 'e proposed cooperative search ap-
proach for multiple AUVs based on the improved DSA is
given in Section 3. Section 4 gives out the simulation studies
and the result analysis. 'e performance of the proposed
approach is discussed in Section 5. Finally, conclusions are
given in Section 6.

2. Problem Statement

In this paper, the multi-AUV cooperative target search
problem in unknown 3D underwater environment is
studied. 'e technical details are not focused in this study,
including the shape and movement of the AUV, environ-
ment detection, and communication problems. 'e search
task in this paper is that an AUV system is used to find some
targets in this underwater environment. 'e problems are
introduced as follows:

(1) 'e AUVs are labelled as ai, i � 1, 2, . . . N, and the
set of targets are denoted as ti, i � 1, 2, . . . M. N is
the number of the AUVs used in the search task, and
M is the number of the targets.

(2) 'e target has some information that can be detected
by the AUVs (such as the infrared radiation of the
heat source, the radiation of the radioactive source,
or the odour of the odorous source), and the in-
tensity of the target information in the environment
is defined as follows:

It ti, pe(  �

St, if D pti, pe ≤ 1,

St

D pti, pe 
, if 1<D pti, pe ≤Rt,

0, if D pti, pe >Rt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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where It represents the intensity of target information; pt
and pe are the coordinates of the target Ti and a point Pi in
the environment, respectively; St is the largest information
intensity; Rt represents the propagation radius of the target
information; and function D(pi, pj) defines the distance
between the position pi and pj.

(3) Each AUV is considered as an omnidirectional ro-
bot, having a 360° visual capability and the abilities to
communicate with other AUVs, recognize each
other, identify the information of target, detect
obstacles, and determine their locations in real time.
For simplification without losing generality, the
AUV can change the moving direction without
delay. 'e movement speed of the AUV can be
changed in a certain range around the standard
speed (defined as va).

(4) 'e AUVs have no knowledge about the environ-
ment and the locations of targets, except the number
of targets to be searched.'e closer the AUV is to the
target, the bigger the intensity of the target in-
formation is. If the target is in the visual range of the
AUV (denoted as Rv, which is very small, because the
underwater environment is dark), it is found and
locked by this AUV.

'e search task of the targets based on multi-AUVs is
shown in Figure 1.'e work flow and the proposed solutions
for the three main stages in this study are shown in Figure 2,
which will be introduced in detail as follows.

3. Proposed Approach

In order to complete the cooperative search task for multi-
AUV system in an unknown 3D underwater environment,
some key problems should be solved efficiently, including
the random cruise strategy, the dynamic alliance con-
struction, and the way to find the position of target
according to the target information. In this paper, a multi-
AUV cooperative target search approach based on an im-
proved DSA algorithm is proposed.

Before the introduction of the proposed approach, it is
necessary to define some flags. One flag is denoted by f1(ai),
indicating the AUV status as cruising, searching, or locking.
Another flag is denoted by f2(ti), indicating the target status
as unknown, known, or locked:

f1 ai(  �

1, if it is cruising,

2, if it is searching,

3, if it is locking a target,

⎧⎪⎪⎨

⎪⎪⎩

f2 ti(  �

1, if it is unknown,

2, if it is known,

3, if it is locked.

⎧⎪⎪⎨

⎪⎪⎩

(2)

3.1. Levy Flight-Based Random Cruise. When the AUV ai

does not find any target information, set f1(ai) � 1. 'e
AUV ai is cruising randomly in the underwater

environment, in which an appropriate random cruise
strategy is crucial. In this paper, Levy flight is used to
randomly change the position of the AUV. 'e Levy flight
essentially provides a random walk for robots, while the
random step length L is drawn from a levy distribution
[35]:
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Figure 1: A simple example of underwater target search task based
on multi-AUVs.
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Figure 2: 'e work flow diagram of the search task in this study.
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Levy(L)∼L
−λ

, (1< λ≤ 3), (3)

where λ is an index. 'en the next position of the AUV ai

can be decided by

pai
(t + 1) � pai

(t) + α⊕ L, (4)

where pai
(t) is the position of the AUV ai at the time t; α> 0

is an adjustment parameter which should be related to the
velocity of the AUV; ⊕ means element-by-element multi-
plication; L can be calculated by Mantegna’s algorithm as
[36]:

L �
μ

|]|1/β
, (5)

where μ and v are drawn from normal distributions.
Based on the general Levy flight, the AUV can get a

random path to search for target information. However,
some important things are not considered by the general
Levy flight algorithm, because it is often used in optimization
algorithms. For example, the AUVmay run out of the search
area and collide with the obstacles and other AUVs, and the
step length generated by the levy algorithm is not suitable for
the movement of AUVs. To deal with these problems above,
an adjustment module based on fuzzy rules is introduced
into the general Levy algorithm. 'e structure of it is shown
in Figure 3.

One of the inputs of the proposed adjustment module is
the environment information (including the distance to the
obstacles, the distance to the neighbor AUV, and the dis-
tance to the search area boundary, defined as OD, ND, and
BD, respectively). To consider the real movement of the
AUV, another input of the adjustment module is defined as
follows:

ΔL � L− va ∗Δt, (6)

where Δt is the simulation step length. 'e outputs of the
adjustment module are the adjustment for the step length Al
and the movement direction Ad.

'e adjustment module in this paper is based on some
fuzzy rules. Considering the complexity of the underwater
environment, the membership of the input variables OD,
ND, and BD are divided as three fuzzy sets, which are
N, M, F{ } (representing near, middle, and far). 'e mem-
bership of variables ΔL and Al are divided as five fuzzy sets,
which are NB,NM, Z, PM,PB{ }. 'e membership function
used in this paper is Gaussian function. To make the AUV to
find the target information efficiently, the Ad is defined as
ST,TU{ }, representing going straight and making a turn (the
turning angle is random in the range of [−π, π] ). Based on
the experiences, total nine fuzzy rules are summarized for
the adjustment module, and the style of these rules is as
follows:

If (OD is N) and (ND is N) and

(BD is N) and (ΔL is NB),

Then Al is PB(  and Ad is TU( .

(7)

In this stage, all AUVs move randomly in the search area
to detect the target information until an AUV finds target
information. 'en it goes to the next stage.

3.2. Dynamic Alliance Based on SOM Neural Network.
After the AUV ai finds the target information, the flag of this
AUV is set as f1(ai) � 2 and the flag of the detected target tj

is labelled as f2(tj) � 2. Before the detected target tj is
found, the AUV who finds the target information should
construct a dynamic AUV alliance to search the target faster
and more effectively, which can be seen as a task assignment
problem.

In this study, a dynamic alliance assignment strategy
based on SOM neural network is proposed. 'e SOM neural
network contains two layers, namely, the input layer and the
output layer (Figure 4). Each neuron in the output layer of
the neural network gets the opportunity to respond to the
input through competition. Finally, only one neuron be-
comes the winner. SOM neural network is competitive,
cooperative, and self-organized, which can be used to solve
the task assignment problem for multi-AUV system
efficiently.

In the proposed SOM neural network, the input layer is
made up of a neuron Ai � (xai

, yai
, zai

), which represents the
coordinate of the AUV ai in the 3D underwater environ-
ment. And the coordinates of the other AUVs are denoted as
the output layer neurons: Ak � (xak

, yak
, zak

), k � 1,

. . . , N, k≠ i. Every neuron of the output layer is fully con-
nected to the neurons of the input layer, and for an input
neuron, there is not only one winner.

Winners are chosen during the iterations, and the
number of winners depends on the size of AUV team. For a
given goal as an input, the output neurons compete to be the
winner in an iteration according to a specified criterion
described as [37]:

Environment information
Steps calculated

by levy flight

Obstacles Neighbor AUVs Boundary

Sensor information processing Speed of AUV

Adjustment module based on fuzzy rules

Step length Direction

AUV movement

Figure 3: Flowchart of the adjustment module based on fuzzy rules
for the movement of AUVs.
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Ai, Ak ⇐minD Ai, Ak( , k � 1, . . . , N,

k≠ i, and Ak  ∈ Ω,

(8)

where [Ai, Ak] denotes that the Akth neuron from the Aith
group of the output neurons is the winner; Ω is the set of
neurons that have not been the winner yet in an iteration. If
the Akth neuron is chosen to be a winner, the flag of the
related AUV ak is set as f1(ak) � 2. All the winner AUVs
with f1(ai) � 2 construct the dynamic alliance.

3.3. Team Search Based on an Improved DSA. In this stage,
AUVs in each team will search for the exact location of the
target based on the intensity of the information, which is a
cooperative search problem by optimal solution. Con-
sidering the complex underwater environment and the
cooperation between the AUVs in a team, an improved
dolphin swarm algorithm (DSA) is proposed for multi-
AUV cooperative search, which is an efficient global
search method to solve various optimization problems, by
simulating the dolphin’s actual predatory process [33].
'e main reason to use DSA method in this paper is that
the DSA has better global search ability, better stability,
and higher convergence speed, compared with the con-
ventional evolutionary algorithms. To make the DSA
method more efficient for the team search, some im-
provements are presented in this paper, which are in-
troduced as follows.

In the proposed DSA-based method, each dolphin
represents an AUV, in the 3D search space of the underwater
environment. 'e dolphin is defined as Doli, (i � 1, . . . , N),
and its position is pi � (xi, yi, zi), which is the same as the
coordinate of the AUV ai. For each dolphin Doli, there are
two corresponding variables Qi(i � 1, . . . , N) and
Kj(j � 1, . . . , G), where Qi and Kj represent the optimized
solution obtained by the ith dolphin Doli and by all the
dolphins of the jth group in a single search time, re-
spectively. G is the number of the dolphins in one group,
namely the size of the AUV team. 'e fitness function
Fitness(·) is the basis for judging whether the position is
better, which is defined as follows:

Fitness(p) � 
M

j�1
It tj, p 

−ω · ObstacleCheck(p)

+ NeighborCheck ai, p( ,

(9)

where It(tj, p) is the information intensity of the target tj; ω
is the parameter to adjust the effect on targets by obstacles or
other AUVs; ObstacleCheck(p) is a function to check
whether there is an obstacle, and NeighborCheck(ai, p) is a
function to judge whether there are other AUVs too close to
be collided. 'e two functions are defined as follows:

ObstacleCheck(p) �
1, if there is an obstacle at p,

0, otherwise,


NeighborCheck ai, p(  �
1, if ∃Dik <Dsafe, k � 1, . . . , N, k≠ i,

0, otherwise,


(10)
where Dsafe is the safe distance of two AUVs to avoid col-
liding together.

'ere are four pivotal phases in DSA-based search
process, namely, explore phase (namely, the search phase; to
distinguish between the search phase of DSA and the search
task of the multi-AUVs system, in this paper, we name it as
explore phase), call phase, reception phase, and predation
phase. 'e details of each phase are introduced as follows:

(1) Explore phase. In this phase, each dolphin explores
its nearby area by making sounds Si �

[SX
i , SY

i , SZ
i ], i � 1, . . . , H, towards H random di-

rections, where Si � speed, and speed is a constant
representing the speed attribute of sound. Within the
maximum explore time TM, the sound Sj that the
dolphin Doli makes at the tth time will search for a
new solution Xt

ij:

X
t
ij � pi + Sj × Ts, (11)

where Ts � TM/τ, and τ is the total explore times for the
dolphin. 'en, the value of Qi for the Doli at the tth time is
calculated by

Qi � X
t
ih⇐Fitness X

t
ih  � max

j�1,...,H
Fitness X

t
ij  , (12)

And, the value of Ki for Doli can be obtained:

Ki � Qu ∀Qu ∈ Πi

 , Fitness Qv( ≤ Fitness Qu( , Qv ∈ Πi ,

(13)

whereΠi means the set of the Q of the ith dolphin during the
explore time TM.

In the multi-AUV target search task, the AUV’s motion
characteristic in 3D underwater environment should be
considered. In the general DSA-based method, the di-
rections of sound are random, which will reduce the effects
of the cooperative search. To deal with this problem, the
random directions of sounds in the DSA-based method are

Output layer

Input layer

Figure 4: SOM neural network structure of the proposed approach
for the dynamic alliance of AUVs.
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replaced by a 3D dynamicmoving directions model, which is
shown in Figure 5.

In the proposed direction model, the core of it is the
position of AUV, Ra is the detection range of the onboard
sensors, and Sj represents the jth sound direction. Since all
the possible directions are considered in the directionmodel,
the maximum explore time TM can be not considered and
AUV only needs to search for the optimal direction once in a
single explore time. 'en, the new solution Xij in equation
(11) can be calculated by

Xij � pi + Sj × Ra. (14)

(2) Call phase and reception phase. In the call phase,
each dolphin will make sounds to inform other
dolphins of its result in explore phase. In the re-
ception phase, dolphins will determine if they can
receive information from other dolphins, according
to the transmission time matrix MT. In this study,
for simplification, it is assumed that the commu-
nication between AUVs is normal; that means the
sounds information from the call phase can be re-
ceived by all dolphins in reception phase.

'en in these two phases, the Ki of the ith dolphin is
updated as follows:

Ki �
Kj, If Fitness Ki( < Fitness Kj ,

Ki, otherwise,

⎧⎨

⎩ (15)

where Kj is the valued of K obtained from all the dolphins in
the same group.

(3) Predation phase. In this phase, the dolphins need
to update their position according to Ki calculated
by the previous phases. However, the Ki in one
group is same based on the general DSA method,
which may cause the collision between the AUVs
in the same team. To deal with this problem,
combined with the AUV’s motion characteristics
and the underwater environment, an adaptive
reference point (RP) is proposed in this paper as
follows:

RP �

Ki + η × D pi, Ki(  × 1−
2
ε

 , If D pi, Ki( <Ra,

Qi + η × D Qi, Ki(  × 1−
2
ε

 , otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where ε> 2 is a constant; and η is an arbitrary unit
vector. 'en, the updated formula of the proposed
algorithm is replaced by

pi(new) �

RP, If D pi,RP( < va,

pi +
RP−pi( 

D pi,RP( 
× va, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

After all the dolphins get their new position pi(new),
then update Ki by

Ki �
pi(new), If Fitness Ki( < Fitness pi(new)( ,

Ki, otherwise,


(18)

All the AUV will move towards the new position
pi(new), until the target tj is found. Otherwise, the DSA-
based method will go to the explore phase again. 'e
pseudocode of the whole proposed approach is shown in
Figure 6 and its work flow is summarized as follows.

Step 1. 'e AUVs cruise in the unknown environment
randomly using Levy flight algorithm, and detect the target
information.

Step 2. If the target information is detected, a dynamic AUV
alliance to search the target is constructed by the SOM
neural network algorithm.

Step 3. Each AUV in the dynamic alliance is guided to find
the position of the target using the dolphin swarm algorithm.

Step 4. Once a target is found by an AUV, then an AUV in
the alliance will follow the tracks of this target, and others in
the same alliance go to Step1.

Step 5. If all the targets are found, the search task is ended.

4. Simulation Experiments

To demonstrate the effectiveness of the proposed approach
for cooperative target search of multi-AUVs in unknown 3D
environment, some simulations are carried out by a com-
puter with 4G RAM and i5-2450M 2.5GHz CPU at the
platform of MATLAB. To simplify the realization, the as-
sumptions in this study are as follows: (1) 'e AUVs and
targets are assumed as points without any shapes. (2) 'e
obstacles are enlarged properly in the simulations to deal
with the problem of the real shape and size of AUVs. (3)'e

y x

z

RaXij

Sj

Figure 5: 'e 3D moving direction model of the DSA-based team
search for multi-AUVs.
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targets are assumed to move randomly in the environment
and the AUV velocity is greater than the target velocity;
otherwise, it will be difficult to find the targets. In the
simulations, the step length of AUV is 4m and the step
length of target is 2m. (4) AUVs, obstacles, and target lo-
cations are randomly deployed in the 3D underwater
environment.

'e parameters in all the simulations are the same and
given in Table 1. 'e size of the environment is
100∗100∗100 · (m3). To show the advantages of the pro-
posed improved DSA-based algorithm (I-DSA), it is com-
pared with the general PSO search algorithm (PSO) and the
general DSA method (G-DSA). During the conduction of
the target search task, the methods for the cruise stage and
the dynamic alliance of the three approaches are same,
expect the methods for the final team search are different. In
the general PSO-based team search method, the main pa-
rameters are c1 and c2, which are the cognitive and social
scaling factors [38] and are set as c1 � 1.2 and c2 � 1.2 in this
study.'e G-DSA-basedmethod has the same parameters as
the I-DSA-based method to have comparability, except that
the G-DSA generates the directions randomly and has
multiple iterations in the updating for K.

4.1. Be Targets are Static. In order to test the basic per-
formance of the proposed approach, the first simulation of
searching for the static targets is conducted. 'e search
process based on the proposed I-DSA approach is shown in
Figure 7. Figure 7(a) shows the initial positions of AUVs and
the targets. 'e initial positions of the AUVs are
A1 � (10, 40, 25), A2 � (60, 30, 30), A3 � (15, 75, 25),
A4 � (25, 90, 30), A5 � (80, 35, 60), and A6 � (85, 75, 25).
And the initial positions of targets are T1 � (25, 60, 50) and

Algorithm 1: �e proposed DSA-based team search approach

(1) Initialize: ai, i = 1, 2, ..., N; tj, j = 1, 2, …, M; 

% initialize the information of AUVs and targets;

(2) Calculate: It(tj, pe), f1(ai), f2(tj); 

% calculate the intensity of target signal and the flag of each AUV and target; 
(3) Search process:

End
End

Set f1 (teamMember) = 2;
Search in team by DSA according to intensity of Information (team, It);

For i = 1:N
If  f1(ai) == 1

ai = random cruise by Levy_flight (ai);
If It (tj, pai

) > 0

f1 (ai) = 2; f2 (tj) = 2;

If  f1 (ai) == 2
team = get team by SOM (ai, It);

End
End

If It (tj, pai
) == St

f1 (ai) = 3; f2 (tj) = 3;

(4) End condition:

If f1(ai) = 3 (i = 1, 2, …, n) f1 (tj) = 3 (j = 1, 2, …, m),

�e process is end, and all the targets are found, otherwise, go to (3).

Figure 6: 'e pseudocode of the proposed DSA-based team search approach.

Table 1: Parameters of the proposed method and the simulation
experiments.

Parameters Values Remarks
N 6 Number of search AUVs
M 3 Number of targets
Ra 10m Detection range of AUV
Rv 1m Visual range of AUV
Rt 20m Propagation radius of target information
A 1 Parameter of Levy flight in (4)
β 1.5 Parameter of Levy flight in (5)
ω 1000 Parameter of the fitness function in (9)
ε 2.2 Parameter of DSA method in (15)
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T2 � (60, 55, 55). Figure 7(d) shows the final trajectories
based on the proposed method. 'e results of the com-
parison experiments are shown in Figure 8 and Table 2. In
this study, an index is used to compare the comprehensive
performance of the search methods, namely, the compu-
tation efficiency CE, which is defined as follows:

CE �
Totaltime

Totalsteps
, (19)

where Totaltime is the total time used to find all the targets
and Totalsteps is the total steps of all the AUVs used in the
search task. 'e less the value of CE, the higher computation
efficiency of the search method.

'e results in Figure 7 show that the proposed method
can find the targets effectively. At first time, the AUV knows
nothing about the obstacles and targets in underwater en-
vironment, so each AUV cruises in the underwater envi-
ronment randomly. 'en, the information of T2 is detected
by AUVs, and an alliance searching for T2 is formed by the
AUVs A2, A5, and A6 (Figure 7(b)). When the target T2 is
found and locked by A5 (Figure 7(c)), the other two AUVs in
this alliance cruise randomly again to search the other
targets. Finally, two targets are found and the search task is
finished (Figure 7(d)). 'e results in Figure 8 and Table 2

show that all the three methods can find the static targets
efficiently. Because the targets are static, the G-DSA method
needs less steps and the length of it is less than the proposed
I-DSA method. However, the computation efficiency of the
G-DSA is less than the proposed method.

4.2. Be Targets are Dynamic. To further test the perfor-
mance of the proposed approach in the dynamic targets
search task, this simulation is conducted. In this simulation,
the targets can move randomly in the underwater envi-
ronment. 'e results of the proposed approach are shown in
Figure 9 and the initial positions of the AUVs and targets are
the same as those of the static simulation (Figure 9(a)). 'e
final trajectories based on the PSO method and the G-DSA
method in this simulation are shown in Figure 10. 'e
results of this simulation are listed in Table 3.

In the search process based on the proposed method,
the target T2 is searched by the alliances A2, A5, and A6
firstly. 'en, T2 is found and locked by A5. 'is process is
similar with that of the static simulation (Figure 9(b)).
However, the AUVs A2 and A6 will construct a new alliance
with A1 to search T1, when the information of T1 is de-
tected. Meanwhile, A5 moves following T2 (Figure 9(c)).
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Figure 7: 'e search process of static targets based on the I-DSA method. (a) Initial positions of AUVs and the targets, view � (−77°, 32°).
(b) At the 14th step, view � (−65°, 48°). (c) At the 33th step, view � (−44°, 8°). (d) Final trajectories, view � (−61°, 10°).
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Table 2: Parameters of the proposed method and the simulation experiments.

Search method Length of path (m) Total steps Total time (s) Computation efficiency
I-DSA 401.26 86 8.819 0.102
G-DSA 379.21 83 9.496 0.114
PSO 473.25 86 11.570 0.135
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Figure 9: 'e search process of dynamic targets based on the I-DSA method. (a) Initial positions of AUVs and the targets, view �

(−77°, 32°). (b) At the 27th step, view � (−37°, 28°). (c) At the 41th step, view � (−38°, 30°). (d) Final trajectories, view � (−17°, 44°).
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Figure 8: 'e final trajectories based on the PSO method and the G-DSA method. (a) Based on the G-DSA method, view � (−60°, 10°). (b)
Based on the PSO method, view � (−25°, 32°).
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Finally, T1 is found by A2, the search task finished, and the
final positions of targets are T1 � (41, 74, 64) and
T2 � (76, 69, 69) (Figure 9(d)). 'e results of this simula-
tion show that the proposed approach can search the
dynamic targets in unknown environment successfully
with a relative smooth path than the G-DSA method and
the PSOmethod (Figures 9(d) and 10). In addition, the data
in Table 3 show that the proposed approach has greater
superiority with the shortest path, the shortest time, and
the highest computation efficiency in the dynamic target
search task than the other two methods, which shows the
proposed method has a higher efficiency in the dynamic
target search task.

5. Discussions

'e results of the simulations in Section 4 show that the
proposed method can achieve the multi-AUV cooperative
search task effectively in unknown 3D environment and
shows great superiority comparing with the general DSA
and PSO algorithm. Some performances of the proposed
approach are discussed in this section.

In order to test the effect of the proposed approach in
searching target under a very complex situation, a simu-
lation is conducted, where the parameters of the proposed
approach are the same as those in Section 4, except there
are some dynamic obstacles in the environment (the step
length of the dynamic obstacle is 3m). In this simulation,
the number of AUVs and targets are 3 and 1, respectively,
to show the target search process clearly. 'e initial

positions of AUVs are A1 � (80, 75, 30), A2 � (40, 25, 35),
and A3 � (15, 75, 25), and the initial position of target is
T � (50, 52, 49) (Figure 11(a)). 'e final path generated by
the proposed approach is shown in Figure 11(d). In this
simulation, the total time for the search task is 15.580 (s),
and the path length of all AUVs is 465.19m. 'e com-
putational efficiency of the proposed approach in this task
is 0.146, which increases obviously compared with the tasks
in static environment.'emain reason is that the proposed
method should compute the environment in real-time
during the cruise stage, which need much time in a dy-
namic environment. In spite of this, the results of this
simulation show that the AUVs based on the proposed
approach can find the target efficiently and avoid the
moving obstacles simultaneously, in a dynamic unknown
3D environment (Figures 11(b)–11(d)).

To illustrate the extensive applications of the proposed
algorithm, a simulation is carried out with much more
targets. 'e environment and the parameters of the pro-
posed approach are the same as those in Section 4, except
the number of targets is increased to 4. 'e initial positions
of the AUVs are the same with Section 4, and the initial
positions of targets are T1 � (25, 70, 50), T2 � (65, 60, 30),
T3 � (35, 25, 30), and T4 � (80, 10, 40) (Figure 12(a)). 'e
results of the search process are shown in Figure 12. 'e
total time of the search process is 31.326 (s), and the path
length of all AUVs is 851.47m. 'e computational effi-
ciency of the proposed approach in this task is 0.181; the
main reason is that much time is needed to find the target
information, and the cooperative performance will
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Figure 10:'e final trajectories based on the PSOmethod and the G-DSAmethod. (a) Based on the G-DSAmethod, view � (−12°, 44°). (b)
Based on the PSO method, view � (−6°, 32°).

Table 3: Parameters of the proposed method and the simulation experiments.

Search method Length of path (m) Total steps Total time (s) Computation efficiency
I-DSA 544.80 110 12.506 0.113
G-DSA 617.12 130 18.287 0.141
PSO 703.14 128 19.143 0.150
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Figure 11:'e search process of target based on the I-DSAmethod in a dynamic environment. (a) Initial positions of AUVs and the targets,
view � (6°, 16°). (b) At the 32th step, view � (11°, 12°). (c) At the 44th step, view � (6°, 10°). (d) Final trajectories, view � (9°, 10°).
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Figure 12: Continued.
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decrease obviously when the ratio of the number of target
with the number of AUVs decreases (Figures 12(b)–12(d)).
'e results of this simulation show that the proposed
approach can deal with this challenging task. In addition,
this simulation proves that multiple AUVs can increase the
search efficiency, and the search efficiency and success rate
will be increased greatly if there are much more AUVs
joining the task.

6. Conclusion

'e multi-AUV cooperative target search problem in
unknown 3D underwater environment is studied in this
paper, and a novel integrated method is proposed. In the
proposed method, an improved Levy flight algorithm is
used for the AUV random cruise in the unknown envi-
ronment and the SOM neural network algorithm is used to
construct the dynamic alliance for the AUVs which find the
target information. And an improved dolphin swarm al-
gorithm (DSA) is proposed to realize the final team search
for targets. 'e proposed method can deal with the
problems in the cooperative search task efficiently under
various situations, such as the targets are dynamic and
there are some moving obstacles in the environment.
Furthermore, the movement characteristics of the AUV are
considered in the proposed search method, which make it
easy to apply the proposed method for real applications of
target search task by multi-AUVs. In the future work, the
real experiments for multiple AUVs cooperative search will
be conducted to test the practical performance of the
proposed method. In addition, some other bioinspired
methods will be studied, to realize targets search by multi-
AUVs more efficiently.
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