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Genetic structure of Tibetan 
populations in Gansu revealed by 
forensic STR loci
Hong-Bing Yao1,*, Chuan-Chao Wang2,3,*, Jiang Wang4, Xiaolan Tao1, Lei Shang5,  
Shao-Qing Wen2, Qiajun Du6, Qiongying Deng7, Bingying Xu8, Ying Huang8,  
Hong-Dan Wang9, Shujin Li10,  Bin Cong10, Liying Ma1, Li Jin2,11, Johannes Krause3 & Hui Li2

The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot 
debates. However, the limited genetic information of Tibetan populations keeps this topic far from 
clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 
803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) 
in northwest China. We combined these data with published dataset to infer a detailed population 
affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan 
populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The 
Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. 
The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. 
Although the among-population variances are relatively small, the genetic components for Tibetan, 
Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-
Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with 
southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland 
East Asian populations, which implies there might be extensive gene flow between those lowland 
groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in 
present study is also valuable for forensic identification and paternity tests in China.

The Sino-Tibetan languages, spoken by over a billion people all over East Asia and Southeast Asia, have been clas-
sified into two subfamilies, namely Chinese and Tibeto-Burman1. The linguistic connection between Chinese and 
Tibeto-Burman are well established. Chinese was suggested to split away from Tibeto-Burman around 6 thousand 
years ago (kya) based on lexical evidence2.

During the past two decades, genetic evidence, especially from the maternal mitochondrial DNA (mtDNA) 
and the paternal Y chromosome, has shed more light on the history of Sino-Tibetan populations. MtDNA 
evidence reveals a northern Asian origin of Tibetans, due to the high frequencies of northern Asian specific 
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haplogroup A, D, G, and M83–5. The genetic relics of the Late Paleolithic ancestors of Tibeto-Burman popu-
lations have also been reported, such as haplogroup M625. Y chromosome suggested Tibeto-Burman popula-
tions are an admixture of the northward migrations of East Asian initial settlers with haplogroup D-M175 in 
the Late Paleolithic age, and the southward Di-Qiang people with dominant haplogroup O3a2c1*-M134 and 
O3a2c1a-M117 in the Neolithic Age6–8. Haplogroup O3a2c1*-M134 and O3a2c1a-M117 are also characteristic 
lineages of Han Chinese, comprising 11.4% and 16.3%, respectively9,10. However, another dominant paternal 
lineage of Han Chinese, haplogroup O3a1c-002611, is found at very low frequencies in Tibeto-Burman popula-
tions, suggesting this lineage might not have participated in the formation of Tibeto-Burman populations6,9–11. 
Sex-biased admixture has also been observed during the formation of Tibeto-Burman populations. Southern 
Tibeto-Burman populations exhibit a stronger influence of northern immigrants on the paternal lineages and a 
more extensive contribution of southern natives to the maternal lineages12. Likewise, the southern natives have 
made a greater contribution to the maternal lineages of southern Han Chinese13. Tibeto-Burman populations 
tend to cluster with North Asian and Tai-Kadai populations rather than Han Chinese based on the frequency data 
of 15 autosomal short tandem repeats (STRs)14. A genome-wide study of PanAsia SNP project reveals that Han 
Chinese populations show varying degrees of admixture between a northern Altaic cluster and a Sino-Tibetan/
Tai-Kadai cluster15. But Tibetan populations were not included in the PanAsia project. The analyses of more than 
30 deeply sequenced genomes of Tibetans in Tibet Autonomous Region give consistent results with Y chromo-
somes that most of the Tibetan gene pool diverged from that of Han Chinese about 15 kya to 9 kya. The shared 
ancestry of Tibetan-enriched sequences dates back to 62–38 kya, representing Paleolithic colonization of the pla-
teau16. An ancient DNA-based study using ancient Nepalese genomes of the Chokhopani, Mebrak and Samdzong 
sites spanning 3 to 1 kya demonstrates that the Tibetan Plateau experienced millennia of genetic continuity which 
continues until the present day17.

From previous studies, the origin of Sino-Tibetan populations seems to involve substantial genetic admixture 
with surrounding populations. However, the limited markers of mtDNA and Y chromosome and small sample sizes 
and insufficient sampling of genome-wide study are far from enough to give a comprehensive understanding about 
the genetic history and admixture process of Sino-Tibetan populations. In addition, Tibetan populations of Gansu 
province, the key area for the diversification of Amdo Tibetans, have seldom been studied genetically. Therefore, 
we analyze 15 autosomal STRs in 635 and 168 unrelated individuals from two Tibetan populations in Gannan and 
Tianzhu of Gansu province to explore the genetic structure of Tibetan populations in northwest China and to test 
population affinities and the level of admixture of Sino-Tibetan populations with surrounding populations.

Methods
We collected blood samples of 635 and 168 unrelated individuals from two Tibetan populations in Gannan 
and Tianzhu, Gansu province. Our study was approved by the Ethnic Committee of Gansu Institute of Political 
Science and Law. The study was conducted in accordance with the human and ethical research principles of 
Gansu Institute of Political Science and Law. All individuals were adequately informed and signed their informed 
content before their participation. For each sample, genomic DNA was extracted according to the Chelex-100 
method and proteinase K protocol18. The 15 most widely used forensic loci were amplified simultaneously using 
AmpFlSTR Sinofiler PCR Amplification Kit (Applied Biosystems, Foster City, CA, USA) at the D8S1179, D21S11, 
D7S820, CSF1PO, D3S1358, D13S317, D16S539, D2S1338, D19S433, vWA, D18S51, D5S818, FGA, D6S1043 and 
D12S391 STR loci. The PCR products were analyzed with the 3500XL DNA Genetic Analyzer and Genemapper 
ID-X software (Applied Biosystems, Foster City, CA, USA).

Allele frequency, heterozygosity, polymorphism information content (PIC), discrimination power (DP), prob-
ability of paternity exclusion (PPE) were calculated using PowerStatesV12 (http://www.promega.com/). Tests 
for Hardy–Weinberg equilibrium were performed in Arlequin v3.5.1.319. Since the statistical analyses in this 
study were on the basis of Bayesian-clustering algorithm, raw genotypic data of 13 STRs (excluding D6S1043 
and D12S391) from 59 populations all around the world were extracted to determine population affinity14,20–50. 
Analysis of molecular variance (AMOVA), average number of pairwise differences, pairwise Fst, Slatkins line-
arized Fst, and coancestry coefficients were all calculated in Arlequin v3.5.1.319 using genotype data. The detailed 
population genetic structure was performed using model-based clustering method implemented in Structure 
2.3.451,52 under assumptions of admixture, LOCPRIOR model, and correlated allele frequencies. Each run used 
100,000 estimation iterations for K =​ 2 to 12 after a 20,000 burn-in length with several replicates. Posterior prob-
abilities for each K were computed for each set of runs. Graphical display for Matrix plot of genetic distance and 
population structure were carried out in R statistical software v3.0.253 and Distruct v1.154.

Results
Forensic parameter analysis.  Fifteen STR loci were genotyped in two populations sampled from 
Gannan and Tianzhu of Gansu province and their allele frequencies along with a number of genetic and forensic 
parameters of interest are provided in Supplementary Table 1 and 2. No significant deviation was observed for 
Hardy–Weinberg equilibrium tests, indicating that our samples well represent the populations. The loci in both 
populations were highly discriminating with DP ranging from 0.852 to 0.974, demonstrating that those loci are 
useful for forensic identification.

Interpopulation genetic distances.  We performed various parameters of genetic diversity and distances 
to infer population structure between Tibetans in Gannan and Tianzhu, as well as compared them with previously 
studied populations. The Tibetans in Gannan and Tianzhu fall into the general profile of Tibetan groups, showing 
extremely small genetic distances with other Tibetan populations. The within-population component of genetic 
variation, estimated here as 99.14% (Table 1), accounts for most of genetic diversity of the 20 Sino-Tibetan popu-
lations. The small among-population and among-group variance components support the genetic affinity among 
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the Sino-Tibetan populations. The pairwise Fst comparisons in Fig. 1 also confirm the genetic similarity between 
Tibetan and Han Chinese populations, with almost all the values below 0.01. However, Deng, Nu, and Derung 
seem like to be outliers of the Sino-Tibetan profile due to almost all the Fst values between each of them with 
other Sino-Tibetan populations are above 0.03. The Fst between other Lolo-Burmese populations with Tibetan 
or Han Chinese were also slightly higher than the values between Tibetan and Han Chinese. Tibetan and Han 
Chinese also show close genetic relationship with Russian samples collected from Inner Mongolia in north China 
and Korean in East Asia, but not with the population in South Siberia, such as Buryat, Altay, Tofalar, Sojot, and 
Khakas. The genetic distances between Tibetan and Han Chinese with Tai-Kadai speaking (Maonan, Mulam, and 
Thai) or Hmong-Mien speaking (She) populations were also larger than those between Tibetan and Han Chinese. 
The Muslim populations in northwest China exhibited relatively small genetic distances with Tibetan and Han 
Chinese, revealing the substantial gene flow from Sino-Tibetan populations into Muslim people during their 
Islamization. Average number of pairwise differences, Slatkins linearized Fst, and coancestry coefficients also 
reveal a very similar pattern with the pairwise Fst (Supplementary Table 3).

Clustering by structure analysis.  We then applied a model based clustering algorithm in Structure to infer 
the detailed genetic ancestry at individual level. This approach will place individuals into K clusters, where K is set 
in advance but can be varied. The results for K =​ 2 to 7 are shown in Fig. 2 and Supplementary Table 4. At K =​ 2, 
a clear distinction is observed between the present-day Europeans and Africans with populations from Asia. At 
K =​ 3, a component maximized in present-day Lolo-Burmese populations separates especially Deng, Nu, and 

Source of variation d.f.
Sum of 
squares

Variance 
components

Percentage of 
variation

Among group 2 175.190 0.01925 0.37

Among populations within 
groups 17 306.945 0.02549 0.49

Within populations 11204 58131.8 5.18848 99.14

Total 11223 58613.9 5.23323

Table 1.   AMOVA results for 13 autosomal STRs at population and group scales. 20 Sino-Tibetan 
populations have been classified into 3 groups: Han Chinese, Tibetan, and Lolo-Burmese.

Figure 1.  Plots of pairwise Fst of Tibetan in Gannan, Tianzhu and other 59 worldwide populations. 
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Derung from other Asian populations. At K =​ 4, a component maximized in present-day Tibetan populations 
appears, which also comprises about 20–50% of Han Chinese and southern Siberian populations, but is greatly 
reduced in present-day Maonan samples. At K =​ 5, Europeans are separated from Africans. The present-day 
Uygur and southern Siberian populations seem to have half of this European maximized component. The next 
cluster at K =​ 6 corresponds to present-day Tai-Kadai and Hmong-Mien speaking populations in south China 
with a component maximized in those southern native groups. This southern native component comprises almost 
half of the Han Chinese and Siberian gene pool. At K =​ 7, the supposed southern native genetic component 
in present-day Han Chinese and Siberian populations forms a new cluster. It’s quite clearly from the Structure 
analysis that Han Chinese, Korean and populations in northwest China share the similar membership, but the 
Siberian groups share more genetic component with Europeans. The origin of Tibetan populations seemed to 
involve extensive gene flow with Han Chinese. Southern natives, such as Tai-Kadai and Hmong-Mien speaking 
groups, share substantial genetic component with Han Chinese, Muslim populations in northwest China, and 
Yi in Yunnan, but not with Tibetan populations. The Tibetans in Gannan of Gansu province are genetically very 
similar with Tibetans in Tibet, Qinghai and Yunnan, but Tibetans in Tianzhu of Gansu province seem to have 
more lowland East Asian genetic components than other Tibetan populations have.

Discussion
The origin and diversification of Sino-Tibetan populations have become long-standing hot topics among linguists, 
population geneticists, anthropologists, and archaeologists. However, the limited genetic information of Tibetan 
populations in northwest China has made this topic far from clear. Here, we genotyped 15 forensic autosomal 
STRs from 635 and 168 unrelated Tibetan individuals from Gannan and Tianzhu of Gansu province, together 
with published forensic dataset to infer a detailed genetic structure of Sino-Tibetan populations. The Tibetans in 
Gannan share a very similar genetic makeup with other Tibetan populations from Tibet, Qinghai, and Yunnan. 
While Tibetans in Tianzhu County seem like to share more genetic component with lowland East Asians, such as 
Han Chinese, Muslim and Korean populations, which is understandable as those Tibetans are surrounded by Han 
Chinese and Chinese Muslims. The genetic structure of studied Sino-Tibetan populations is strongly correlated 
with linguistic affiliations, as we can detect three distinctive genetic components for Tibetan, Lolo-Burmese, and 
Han Chinese although the among-population variances are relatively small. The Yi of Yunnan province, one of 
Lolo-Burmese speaking populations, is found out to be an admixture between Tibetan, Han Chinese, and south-
ern natives (Tai-Kadai and Hmong-Mien speaking groups). However, other Lolo-Burmese populations, such as 
Deng, Nu, and Derung, form a distinctive cluster, which is probably due to long-term isolations and genetic drift 
as those populations are all small and living on hunting and gathering12.

Previous studies, especially using mtDNA and Y chromosome, had suggested the North Asian origin of Tibetan 
populations55,56. Our results show that the Tibetans are quite distinctive from Siberian populations. The Siberian 
populations, such as Buryat, Altay, Tofalar, Sojot, and Khakas, share substantial genetic components with European 
groups which are rarely seen in Tibetan populations. The results are consistent with genome-wide evidence that 
there is no significant gene flow from West Eurasians into Tibetans14,15. We suspect that the proposed northern 
ancestral group that leaded to present-day Tibetan populations was probably separated with the lineage that later 
became the East Asian part of the Siberian groups earlier before the Siberian groups were extensively admixed with 
West Eurasian lineages. We caution that the geographical distribution of past populations is probably not accurately 
reflected in present-day distributions. An important direction for future work is to work out the exact phylogenetic 
relationship of the proposed ancient population branch leading to present-day Tibetan populations to other extant 
Eurasian groups by sequencing ancient samples from Tibetan Plateau and the Upper-Middle Yellow River Basin.

The genetic makeups of the Tai-Kadai and Hmong-Mien speaking populations in south China are similar with 
Han Chinese rather than with Tibetan groups. The Muslim populations in northwest China and Korean people 
also exhibit the similar component cluster pattern. The possible scenario for this observation is that those low-
land populations might have extensive gene exchange with Han Chinese after Han Chinese were separated from 
Tibetans. The autosomal STR results are consistent with uniparental Y chromosomal and mtDNA evidence that 
southern natives made a greater contribution to the maternal lineages of southern Han Chinese11.

Figure 2.  Estimated population genetic structure of Tibetan in Gannan and Tianzhu and other 36 
worldwide populations. Note that the bold names “Tibetan”, “Lolo-Burmese”, “Han Chinese”, “northwest 
China”, “Korean”, “Siberian”, “Tai-Kadai Hmong-Mien”, “European”, and “African” refer to the group 
classifications of present-day populations based on language and geographic affinity. Those names are not the 
labels for the inferred ancestral population in Structure analysis.
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