
Heliyon 5 (2019) e02560
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.heliyon.com
Research Article
A Python-based laboratory course for image and video signal processing on
embedded systems

Karina Jaskolka *, Jürgen Seiler, Frank Beyer, Andr�e Kaup

Multimedia Communications and Signal Processing, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
A R T I C L E I N F O

Keywords:
Image and video signal processing
Laboratory course
Python
Embedded system
Computer science
Education
* Corresponding author.
E-mail address: karina.jaskolka@FAU.de (K. Jask

https://doi.org/10.1016/j.heliyon.2019.e02560
Received 2 August 2018; Received in revised form
2405-8440/© 2019 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

The usage of embedded systems is omnipresent in our everyday life, e.g., in smartphones, tablets, or automotive
devices. These devices are able to deal with challenging image processing tasks like real-time detection of faces or
high dynamic range imaging. However, the size and computational power of an embedded system is a limiting
demand. To help students understanding these challenges, a new lab course "Image and Video Signal Processing
on Embedded Systems" has been developed and is presented in this paper. The Raspberry Pi 3 Model B and the
open source programming language Python have been chosen, because of low hardware cost and free availability
of the programming language. In this lab course the students learn handling both hard- and software, Python as an
alternative to MATLAB, the image signal processing path, and how to develop an embedded image processing
system, from the idea to implementation and debugging. At the beginning of the lab course an introduction to
Python and the Raspberry Pi is given. After that, various experiments like the implementation of a corner detector
and creation of a panorama image are prepared in the lab course. Students participating in the lab course develop
a profound understanding of embedded image and video processing algorithms which is verified by comparing
questionnaires at the beginning and the end of the lab course. Moreover, compared to a peer group attending an
accompanying lecture with exercises, students having participated in this lab course outperform their peer group
in the exam for the lecture by 0.5 on a five-point scale.
1. Introduction

Embedded systems are used in many different areas like medical
engineering (Mastinu et al., 2017), aeronautics (Sharp et al., 2010),
water and energy supply (Raghunathan et al., 2005; Stoianov et al.,
2007), transportation (Bernini et al., 2014; Castellanos et al., 2011),
automotive industry (Bhat et al., 2017), and information and commu-
nication technology (Rupniewski et al., 2016). Moreover, in everyday life
embedded systems are omnipresent, e.g., in smartphones or tablets.
These devices contain usually an integrated camera and deal with chal-
lenging tasks, like the calculation of high dynamic range images (Tsai
et al., 2014) or the detection of faces in real-time (Mao et al., 2017).
Although, the performance of the embedded systems is limited because of
size and mobility, the systems are used in many applications for image
and video signal processing. To show these challenges to the students, a
lab course seems to be the best way because of practical and illustrative
presentation (Hodson, 1993; Hofstein and Lunetta, 1982, 2004; Lunetta
et al., 2007; Schwartz, 1959). Currently, the lecture "Image, Video, and
Multidimensional Signal Processing" and the supplements to this lecture
olka).

13 March 2019; Accepted 27 Sep
vier Ltd. This is an open access ar
are offered at the Friedrich-Alexander-University (FAU) Erlangen-Nürn-
berg. In this lecture, the basic understanding in processing of image and
multidimensional data like interpolation, feature detection, segmenta-
tion, and transformation are explained. In the supplements, these topics
are enlarged by different blackboard and computer (MATLAB) exercises.
However, a laboratory course for signal processing on embedded systems
was missing in the course catalog of the FAU. So, the new lab course
"Image and Video Signal Processing on Embedded Systems" has been
developed. In this paper, this lab course is presented and the benefits for
students are shown.

Different definitions of an embedded system exists, e.g., Wang de-
scribes a medium-scale embedded system as a microprocessor with
programming tools (debugger, simulator, integrated development envi-
ronment), which typically possesses an operating system (OS) (Wang,
2017). By the definition of Vahid and Givargis an embedded systemmust
be cheap, fit on a single chip, process data in real time, and consume
minimum power to prevent a cooling fan. In addition, embedded systems
are present in several common electronic devices, such as digital cam-
eras, calculators, home security systems, washing machines, printers,
tember 2019
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:karina.jaskolka@FAU.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e02560&domain=pdf
www.sciencedirect.com/science/journal/24058440
www.heliyon.com
https://doi.org/10.1016/j.heliyon.2019.e02560
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2019.e02560


K. Jaskolka et al. Heliyon 5 (2019) e02560
product scanners, etc (Vahid and Givargis, 2002). All compared systems
fulfill both definitions and are classified as embedded system in (Abbot,
2018).

Some requirements for the choice of the embedded system for the
new lab course are given. The handling of the system should be possible
with display, mouse, and keyboard, and a user-friendly OS with a
graphical user interface (GUI) should also be used. The needed connec-
tion for the additional hardware should exist and a connection to a
network should also be possible. For the usage of Python, a Python
interpreter should be present. Finally, the embedded system should be
inexpensive, but capable for the experiments.

Different embedded systems exist, but not every of those fulfills these
requirements. The BeagleBone Black (BeagleBoard.org Foundation,
2018) provides a processor with 1 GHz and 512 MB RAM, a micro-HDMI,
USB 2.0 ports and an own OS. The Raspberry Pi Foundation provides six
different embedded systems (Raspberry Pi Foundation, 2018). The
Raspberry Pi 1 Model A has been introduced in February 2012 as first
embedded system and has been replaced by the successor Raspberry Pi 1
Model Aþ in November 2014 (Raspberry Pi Foundation, 2018). The
latest model is the Raspberry Pi 3 Model B. It is a cost-effective, up-to--
date and widespread embedded system. The BeagleBone Black and the
Raspberry Pi 3 Model B fulfill all the requirements of the lab course.
However, the BeagleBone Black is twice as expensive as the Raspberry Pi
and, in addition, the Raspberry Pi has a better CPU and RAM. Thus, the
Raspberry Pi is used in the newly developed lab course "Image and Video
Signal Processing on Embedded Systems". In addition, the Raspberry Pi is
so inexpensive that the students can also use the device at home for
further experiments.

This paper is organized as follows. In Section 2 the laboratory
equipment with hardware and software is presented. In Section 3 the
learning objectives and the laboratory properties are explained. In Sec-
tion 4 the laboratory experiments are described. In Section 5 the
assessment of the lab course is shown and the last section concludes this
paper.

2. Instrumentation

At the beginning of the lab course, all groups receive a box with the
required hardware components: mouse, keyboard, HDMI to DVI adapter
cable, power supply, Raspberry Pi 3 Model B, USB camera, and micro SD
card. In the first experiment and before every experiment all the com-
ponents are connected together. The displays are already available in the
laboratory room. The setup is very easy and will be performed by the
students in Experiment I. By this, the students learn the practical set-up
work with embedded systems directly.

First, the micro SD card with the pre-installed OS Raspbian Jessie
(Raspberry Pi Foundation, 2018) is inserted in the SD card slot. After
that, all the other hardware is connected by USB or HDMI with the
Raspberry Pi as depicted in Fig. 1. The OS boots after connecting the
power supply. The whole hardware is recognized instantly. The config-
uration of the system and the connection to the Wi-Fi is done in the first
Fig. 1. Block diagram of the connected components of the workstation.

2

experiment, the camera is connected and tested in the fourth experiment.
Updates are installed regularly by the students to keep the software up to
date. We decided to use an USB camera instead of the Raspberry Pi
camera module (Raspberry Pi Foundation, 2018), so the experiments can
easily be transferred to other embedded systems. Furthermore, USB
cameras are used in many industrial computer vision applications, e.g.,
Basler, an internationally leading manufacturer of high-quality cameras
mostly uses USB as interface (Basler, 2019).

The students perform the whole setup on their own, so they learn how
to handle sensitive hardware. They recognize, that an embedded system
is a circuit board, which must be handled with care. Thus, such an
embedded system should always be operated in its provided case.

2.1. Raspberry Pi 3 Model B

The Raspberry Pi 3Model B is the third generation Raspberry Pi and is
developed by the Raspberry Pi Foundation (Raspberry Pi Foundation,
2018). All necessary components like CPU, GPU etc. are placed on the
Broadcom chip. The embedded system is equipped with following parts
(Raspberry Pi Foundation, 2018):

� Quad Core 1.2 GHz Broadcom BCM2837 64 bit CPU with 1 GB RAM,
� BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board,
� 40 pin extended GPIO and status LEDs,
� 4 � USB 2.0 ports and 10/100 Mbit ethernet port,
� 4 pole stereo output and composite video port,
� CSI camera port for connecting a Raspberry Pi camera and DSI display
port for connecting a Raspberry Pi touchscreen display,

� full size HDMI output and micro USB power input, and
� micro SD card port for loading the OS and storing data (underside).

However, the Raspberry Pi neither possess a non-volatile internal
memory nor an interface for an internal harddisk. Moreover, there is no
on-off switch. So, the power will be switched off when the power supply
will be disconnected from the micro USB power input. Usually, the
Raspberry Pi should be put into a case to protect the system.

2.2. Software

For the lab course, the officially supported operating system Raspbian
Jessie in its newest version is used (Raspberry Pi Foundation, 2018). The
OS is already installed on the micro SD card for the students because the
installation takes a lot of time and is uninformative. The OS supports the
whole hardware of the Raspberry Pi, and provides a desktop interface
and some useful software. By putting the micro SD card into the card slot
the OS will boot immediately after the power supply is plugged in. The
usedmicro SD card can read up to 100MB/s andwrite up to 90MB/s. It is
a Class 10 card and has a capacity of 32 GB. This card has been chosen
because otherwise the update and installation process would take too
long.

The experiments are prepared with the open source programming
language Python (Python Software Foundation, 2018). The readability of
a program has been the most important part during the development of
Python. The language can easily be learned and supports the most
common programming paradigms, e.g., object, aspect, and functional
orientation. Python only needs a few keywords and the syntax is clear
and easy to read. Python 2, Python 3, and the integrated development
environment IDLE for Python are already installed on the OS.

Python was chosen because it is simple to read and to learn, it is open
and free. Moreover, it consists of an extensive standard library, which
aims at programming in general and contains specific modules for
threading, networking, databases, etc. Furthermore, there are a lot of
additional packages, e.g., for plotting and handling images, which are
also used in the laboratory. As a student of a technical study program,
Python serves as a good basis for future jobs, because many companies
use Python as primary programming language (Cass, 2018).



Table 1
Overview of properties and costs of the lab course.

ECTS 2.5
Number of experiments 7
Length of experiment Ca. 4 hours
Group size 2-3 students per

group
Participating students 27
Costs for Raspberry Pi, power supply and case 44 Euro per

device
Costs for additional hardware: USB camera, keyboard, mouse,
micro SD card and HDMI-DVI cable

84 Euro per
device

Costs for the server 1000 Euro
Total costs for lab course hardware for 30 students 2920 Euro

K. Jaskolka et al. Heliyon 5 (2019) e02560
During the lab course various software and Python packages will be
installed. A detailed description can be found in the individual
experiments.
2.3. Server

For the lab course, a network connectivity is necessary for updating,
downloading, and searching in the internet. Therefore, a server with a
wireless network adapter is provided. The adapter sets up a Wi-Fi
network, so the individual Raspberry Pis can establish a connection
with the server and receive internet access. With FileZilla (Kosse, 2018),
which is installed in the third experiment, the students can upload their
generated code and results, and download provided data like the labo-
ratory manual, a pre-compiled OpenCV library, and Python scripts. For
Fig. 2. Overview of the image signal

3

Experiment IV to VII, parts of the Python source code are available on the
server, so the preparation of the tasks is easier for the students. For up-
dates, an internet access is necessary. Furthermore, the students should
be enabled to search the internet for solving a problem or understanding
details. This way, they learn how to solve a problem on their own by
discussing and investigating together. The server is needed since the
Raspberry Pi should not be connected directly to the university network,
because of security reasons. Furthermore, the progress of the groups can
be controlled and an adequate quality of service can be provided.

3. Design

The lab course is based on the successful completion of seven ex-
periments. Therefore, 2.5 ECTS can be achieved, which consists of
around four hours in the lab and around six hours for preparation and
follow-up per experiment. Considering the requirements, teamwork and
cooperation with the other students are strongly encouraged throughout
the course. The students prepare the courses in groups of two in a weekly
session. Some basic programming skills (e.g., MATLAB, C, etc.) and the
participation in a basic lecture for signal processing are recommended for
participating in the lab course. So, bachelor and master students can take
part in the lab course. The following study paths take part at the lab
course: Electrical, Electronics and Communication Engineering (EEI),
Information and Communication Technology (IuK), Advanced Signal
Processing and Communications Engineering (ASC), and Communica-
tions and Multimedia Engineering (CME). The students are normally at
the end of their bachelor's degree or at the beginning of their master's
degree. In the introduction part of the laboratory manual, all information
process for creating a panorama.



Fig. 3. Parts of a conventional lecture (theory and software) and a lab course
(theory, software, and hardware).

K. Jaskolka et al. Heliyon 5 (2019) e02560
for preparation and accomplishment of the lab course are summarized.
Each student receives a printedmanual at the beginning of the lab course.
A digital copy of the laboratory manual is also available in the e-learning
system of the university. Before every experiment, the students should
study the manual at home to be prepared for the current experiment.
Table 1 shows an overview of the properties and costs of the lab course. A
Raspberry Pi 3 Model B, a power supply and a case for the Raspberry cost
around 44 Euro. The additional hardware, like USB camera, keyboard,
mouse, micro SD card and HDMI-DVI cable costs around 84 Euro. If some
students want to use the Raspberry lab system at home, some of the
additional hardware, like keyboard or mouse, does not have to be pur-
chased. So, costs decrease for the use at home. For the laboratory, a server
was purchased for around 1000 Euro.

The fact that no special requirements are necessary for the lab course
Table 2
Summary of the experiments prepared in the lab course.

Experiment
No.

Experiment Title Topics and Learning Objectives

Experiment I Ready, Steady, Go:
Initial Operation of
the Embedded
System

� Connecting and handling the Raspberry
Pi

� Starting and configuring the operating
system

� Updating the software
Experiment II Hello Python:

Introduction to
Python

� Motivation and introduction to Python
� Programming with Python in version 2

and 3
� Understanding the concept of an

algorithm
Experiment
III

Say Cheese:
Introduction to
Image Signal
Processing with
Python

� Properties of digital images
� Creating an image with Python Imaging

Library (PIL)
� Processing of the created image
� Comparing the runtime of different

algorithms
Experiment
IV

Take a Picture:
Image Signal
Processing with a
Camera

� Properties of digital imaging
� Connecting and testing the USB camera
� Application and understanding of

different digital filters
� Implementing algorithms for image

enhancement
Experiment V From Machine's

Point of View:
Introduction to
Computer Vision

� Overview of typical features in images
� Detection of edges
� Comparison of different edge detectors

Experiment
VI

Great View:
Creating a Panorama,
Part 1

� Introduction to panoramic imaging
� Implementing the Harris and Stephens

corner detector
� Analyzing the results

Experiment
VII

Pixel Puzzle:
Creating a Panorama,
Part 2

� Implementation of a user interface
� Introduction to scale-invariant feature

transform algorithm (SIFT)
� Implementation of SIFT
� Testing the program and analyzing

errors

4

affects the first experiments. The commissioning of the embedded system
and the involvement in the laboratory network are the topics of the first
experiment. In the second experiment, the fundamentals of Python are
introduced. Furthermore, the typical path of image signal processing is
passed in the following experiments. In Fig. 2 the red flowchart shows
this typical path with recording, processing, composition and replaying.
The processing part includes many options like converting to grayscale,
scaling, increasing contrast, etc. In Fig. 3 the different parts of a con-
ventional lecture and a lab course are depicted. While in a conventional
lecture ("Image, Video, and Multidimensional Signal Processing") only
the aspects theory and software are used, also the aspect hardware is
considered in a lab course ("Image and Video Signal Processing on
Embedded Systems"). So, these three aspects are weighted in the
different experiments. The aspect software involves the independent
implementation of the different algorithms or the updating process,
hardware involves the independent usage of the different components
like the camera, and theory involves the description and understanding
of different methods and needed knowledge for the various tasks. The
first experiment only contains the aspect hardware, the second only
software. The following experiments combine all three aspects, however
in different relations.

The lab course "Image and Video Signal Processing on Embedded
Systems" imparts knowledge and fulfills the following learning
objectives:

� Students learn how to handle different kind of hardware and under-
stand the importance of a proper handling of the hardware.

� Students learn how to read and write the programming language
Python as alternative to MATLAB.

� Students understand and explain the image signal processing path.
� Students classify and apply different kind of image filters.
� Students are able to create a whole program, from the idea to
implementation and debugging.

� Students learn how to solve a problem on their own and are able to
apply their knowledge.

� Students learn how to handle an operating system and different
software on the embedded hardware, and understand the importance
of periodically updating the software.

After successfully finishing the lab course, the students have obtained
new knowledge and abilities, which they can use in their future profes-
sional careers. A detailed overview of the learning objectives with respect
to each experiment is given in Table 2.

All experiments are identically constructed. The front page of the
description includes a catchy title, a matching image, and an informative
subtitle. In addition, motivation, aim, and thematically background are
described on the first page. On the second page, content overview, re-
quirements for hardware and software, some links for self-study and
comments for the experiment are listed. The detailed description and
tasks of the experiment begin on the third page. The given code and other
commands are marked by a different font or are summarized in tables.
Important chapters are labeled by an exclamation mark. The tasks are
specially separated by a horizontal line. So, the laboratory manual il-
lustrates the topics and aims of the lab course to the students in a clear
and structured way. Experiments I to VI each contain an optional exer-
cise, which is not necessary for passing the lab course. If a group has
completed all tasks of an experiment before the end of time, these
additional tasks can be carried out.

4. Study area

In the following subsections, the seven experiments are explained in
detail. Table 2 shows a summary of the experiments, their topics, and
their learning objectives. The experiments have been especially created
for the Raspberry Pi, however, they are not bounded to it. They can also
be solved on other embedded systems with different operating systems.



K. Jaskolka et al. Heliyon 5 (2019) e02560
However, it is important that Python, the needed Python libraries, and
OpenCV are installed on the system. So, the whole laboratory tasks are
transferable.

4.1. Experiment I: Initial operation of the embedded system

In the first experiment, the whole setup is put into operation after
explaining the physical structure of the Raspberry Pi, as depicted in
Fig. 1. The display, mouse, and keyboard are connected with the Rasp-
berry Pi and the micro SD card with the current OS Raspbian Jessie is put
into the micro SD slot. After booting the Raspberry Pi, the system is set
up, i.e., changing hostname, keyboard layout, expanding filesystem, etc.
Also a connection to the Wi-Fi is established and the OS is upgraded. The
aspect hardware dominates this experiment. So, the students learn the
handling with the Raspberry Pi. A simple introduction to the lab course is
possible because of the low level of difficulty.

4.2. Experiment II: Introduction to Python

In this experiment, the programming language Python is introduced
on the embedded system. The aspect software dominates this experi-
ment. A motivation for learning Python, an introduction to the syntax,
and the first tasks are part of this experiment. In addition, the students
learn the difference between version 2 and version 3 of the programming
language. The print function and the keywords of the different versions
are used mainly to show the varieties. The understanding of the devel-
opment of algorithms is taught by implementing small coding functions,
Fig. 4. Example images of the result plo

5

e.g., the transfer of data is implemented in Python. So, the import and
export of image data is introduced in a simple way. The students learn the
basics of the programming language and enlarge their knowledge in the
additional experiments. Furthermore, they learn the basics for devel-
oping a complete program.
4.3. Experiment III: Introduction to image signal processing with Python

In the third experiment, the fundamentals of image signal processing
with Python are introduced. The path of the image signal processing is
explained in detail (Fig. 2, red flowchart). The recording is the conver-
sion of an analogous light signal into a digital representation. Each pixel
possesses a value for the color information, the number of pixels in
horizontal or vertical direction represent the resolution of an image. The
substantial task of the processing part is to eliminate the errors caused
while recording an image. Therefore, different pre-processing steps like
converting to grayscale, scaling the image, or increasing contrast can be
performed. The goal is to process the data in a way which prevents the
viewer from perceiving errors during the replay. The properties of images
like resolution and color are also described by a coordinate system of a
bitmap and different color spaces. This theoretical description is the
foundation for later computer vision experiments. The aspects software
and theory dominate this experiment. At the beginning, Python Imaging
Library (PIL) (Lundh and Ellis, 2018) and FileZilla are installed. PIL adds
support to Python for opening, saving and changing different image file
formats. To learn and train more Python, a chessboard is created and
modified with the PIL on different ways. The students learn how to save
ts of the Experiments IV, VI and VII.



K. Jaskolka et al. Heliyon 5 (2019) e02560
and open an image, and how to transpose and enframe the created
cheeseboard. The runtimes of the different implementations are
measured and compared. Thus, the students figure out how challenging
image signal processing on an embedded system can be. This experiment
benefits the understanding of a general implementation of functions. The
more general a function is implemented, the easier the post-processing
and the usage.

4.4. Experiment IV: Image signal processing with a camera

In this experiment the camera is connected to the Raspberry Pi before
the properties of digital imaging are explained. At the beginning, Nu-
merical Python (NumPy) (NumPy Developers, 2018), Python for Science
(SciPy) (SciPy Developers, 2018) andMatplotlib (Hunter et al., 2018) are
installed. NumPy is an effective library for displaying and calculating
N-dimensional arrays. SciPy expands Python by many efficient mathe-
matical functionalities. Matplotlib is a comprehensive and efficient li-
brary for plotting different images and graphs. After the installation, the
students take some pictures while changing the parameters brightness
and contrast. The poor quality of the images should be a motivation for
applying some digital filters to the images for improving the quality.
After converting the acquired images into grayscale, the distribution of
the pixel values is shown with the help of a histogram. The students
should realize that depending on the setting of brightness, different pixel
value areas dominate in the histogram. For improving the dynamic range
of the image, a histogram equalization should be implemented and
applied to the different images. The implementation of the algorithm is
getting more complex. Thus, to compare the calculated results some plots
with the correct results are included in the laboratory manual. To in-
crease the level of difficulty, less source code is given in this experiment.
The focus in this experiment is on recording and pre-processing the im-
ages in the path of image signal processing (Fig. 2, red flowchart).
Furthermore, it is shown, that efficient pre-processing methods are
necessary for complex computer vision algorithms. The students also
understand how digital imaging is working in theory and practically. All
three aspects are present in this experiment, however, the aspect soft-
ware dominates.

In Fig. 4a, a captured image with a logo is used to demonstrate the
histogram equalization. Before, the values of the images range from
around 0 to 175 with two peaks at around 30 and 125. After the equal-
ization, the whole value range is used uniformly and the contrast is
higher. The reflection in the cup is better recognizable and the color fan is
illustrated with more shades of gray and is more distinguishable.

4.5. Experiment V: Introduction to computer vision

In the fifth experiment, an introduction to computer vision is given.
Before the students can begin with the experiment, the Python library
OpenCV version 2.4.13.3 is installed (OpenCV team, 2018). OpenCV is an
Fig. 5. Python code fragments for the E

6

open and free Cþþ library for computer vision tasks. It has been designed
for computational efficiency and real-time applications. Since the
compilation of this packet takes several hours on the Raspberry Pi, a
pre-compiled version of OpenCV is provided on the server, which has to
be installed. OpenCV contains a lot of computer vision algorithms which
will be used in this and the following experiments. The image signal
processing in Fig. 2 (red flowchart) will be extended by the content-based
signal analysis (blue flowchart). After pre-processing, the image signal
will be analyzed by extraction, recognition, and comparison of features in
images, and the images will be composed for replaying. The experiment
focuses on feature recognition. Therefore, typical features in an image are
introduced and different methods for edge and corner detection are
implemented in this experiment. A horizontal and vertical gradient
operator, the Sobel operator, the Laplace operator, and the Laplacian of
Gaussian operator are implemented and compared (Ziou and Tabbone,
1998). Advantages and disadvantages of the different operators are
shown on images taken by the students. So, a filter can improve the
detection of edges and corners. This experiment is mathematically
demanding, so new Python elements are not introduced. In addition, the
students understand the theory of features and test different edge de-
tectors. Thus, the aspect theory dominates this experiment.

On the left side of Fig. 5, a Python code fragment of the implemented
Sobel operator is depicted. In this exercise, the students implement their
own Sobel filter and for comparison use the provided Python Sobel filter.
Different possible rotations of the filter should be tested to see that the
Sobel filter is able to identify not only horizontal and vertical edges but
also diagonal structures. Furthermore, the students learn that the Sobel
filter outperforms the gradient operator.

4.6. Experiment VI: Creating a panorama, part 1

In this experiment, the fundamentals of panoramic imaging are
explained. In a panorama, a broader range from a scene is captured than a
human eye can perceive or a camera can capture. For creating a pano-
rama, several single images are captured and stitched together, while the
shooting location of the camera stays the same for all images. Motion in a
scene, different illumination, or perspective distortion cause problem and
errors in a panorama. The distortion can be eliminated by a correct
projection. Therefore, unique features have to be found in the captured
images and compared with each other. After finding some matches, the
images can be warped and combined. Detecting unique features in an
image is necessary for a good panorama. So, the students are imple-
menting the Harris and Stephens corner detector (Harris and Stephens,
1988). To illustrate the corner detection, different plots of a synthetic and
a noisy image are made. Thereby, also a 3D plot is implemented by the
students. However, the Harris and Stephens corner detector finds way too
many corners in a synthetic image and thus, it is not a good detector for
creating a panorama. The level of difficulty for the theory of the algo-
rithm and the mathematical description is high. So, new Python elements
xperiments V (left) and VI (right).



Fig. 6. Boxplot of the linked lecture “Image, Video, and Multidimensional
Signal Processing”. The black crosses indicate the mean value. The grades range
from 1 to 5, whereby 1 is the highest and 5 is the lowest grade.

Fig. 7. Boxplot of the tests before and after the lab course. The black crosses
indicate the mean values.

Fig. 8. Average student evaluation of the individual experiments of the
lab course.

Table 3
Average student evaluation of the lab course.

Evaluation questions Average

For these questions: 1-excellent … 3-fair … 5-very poor
How would you evaluate the handling with the Raspberry? 1.41
How would you evaluate the laboratory manual? 1.33
How would you evaluate the experiments? 1.33
How would you evaluate the organization of the laboratory? 1.19
Overall, how would you evaluate the laboratory? 1.30
For these questions: 1-too high … 3-about right … 5-too low
The time spent in the laboratory was: 2.59
The time spent for preparation was: 2.78

K. Jaskolka et al. Heliyon 5 (2019) e02560
are also not introduced in this experiment. However, the students learn
the theory of creating a panorama. In addition, the aspects theory and
software dominate this experiment.

In Fig. 4b, the original image of a chessboard, the corner response
function R of the Harris and Stephens corner detector (Harris and Ste-
phens, 1988), and the detected corners are shown. R is negative in edge
regions, positive in corner regions and almost zero in flat regions. So, the
corners of the chessboard are marked with a white dot in the upper right
image. Around 14000 corners can be found in this example, however,
some corners in the top of the chessboard cannot be recognized. A zoom
into the chessboard depicts why so many corners can be found. In the
zoomed in area around 264 possible corners are detected. Thus, the
Harris and Stephens corner detector is not a reliable detector for creating
a panorama and should be replaced by more advanced features.

Furthermore, on the right side of Fig. 5 the Python code of the Harris
and Stephens corner detector is depicted.With the support of the paper of
Harris and Stephens (Harris and Stephens, 1988), the students implement
the detector gradually. For the corner response function R the determi-
nant and the trace of the matrix elements are used. With the value of the
response function R, a specific pixel can be defined as edge, corner, or
flat. By thresholding the response function R, the corners in the image
can be detected and used for further processing.

4.7. Experiment VII: Creating a panorama, part 2

In the last experiment, the final algorithm for creating a panorama is
implemented as shown in Fig. 2. An interface (green dashed flowchart)
enables the user to configure essential parameters and to control the
whole process of the algorithm. In the first step, single frames are taken
with the USB camera. Pre-processing with conversion to grayscale,
downsampling and increasing contrast, feature extraction and feature
recognition are done by the scale-invariant feature transform (SIFT)
(Lowe, 2004). After that, the images are stitched together and can be
replayed on the Raspberry Pi. In the first step, the scale-space extrema
detector is used for feature extraction, i.e., the grayscale image is
convolved with a Gaussian filter at different scalings, the differences of
successive blurred images are taken, and then maxima and minima
(keypoints) are detected in the difference of Gaussian. The found key-
points are characterized by a descriptor vector, i.e., magnitude and angle
are describing the keypoints. The detected keypoints are compared by
nearest neighbor distance ratio (NNDR), i.e., the ratio of the distance to
the two nearest neighbor is calculated. A good match is found, if the ratio
is smaller than 0.8, i.e. 90 % of false positive and less than 5 % of true
positive are eliminated (Lowe, 2004). The good matches are used for
calculating the homography matrix. To eliminate occurring outliers, the
random sample consensus (RANSAC) is further applied (Fischler and
Bolles, 1981). After calculating and optimizing the homography matrix,
the panorama can be created. At the end, a load test for the RAM of the
Raspberry Pi is performed. Therefore, a panorama with different reso-
lutions is created while the used RAM is observed. If the resolution is set
too high (about 1920� 1080 pixels), the Raspberry Pi will be stretched to
its limits, i.e., there is no freely avaible memory left and the Raspberry Pi
crashes. Thus, the students learn that an embedded system has its limi-
tation in memory and performance. In this experiment the students learn
to create a whole program, and how to analyze errors.

In Fig. 4c the individual steps of the program are shown with two
images. First, the images are taken with the USB camera (top left). After
that, the images are converted into grayscale and the keypoints are
detected in both images with SIFT and marked with red circles (bottom
left). The bigger a circle, the more important this keypoint is for further
processing. Good matches are found by NNDR and connected by a green
line (top right). However, not every connection is a good one, like the
connection between the corner of the right house and a tower, which will
be eliminated by RANSAC. In the end the two images are scaled and
combined to a panorama by the calculated homography matrix (bottom
right).
7



K. Jaskolka et al. Heliyon 5 (2019) e02560
5. Results & discussion

At the Faculty of Engineering of the FAU, every semester an evalua-
tion of the different lectures, tutorials, seminars, and laboratories takes
places. Therewith, the students have the opportunity to contribute to the
improvements of teaching at the FAU. The "Image and Video Signal
Processing on Embedded Systems" lab course has also been evaluated by
the evaluation system of the university. The students have rated the lab
course with a 1.15, whereby 1 is the highest and 5 is the lowest grade.
This is much higher than the average voting of 2.09 for all lab courses at
the FAU and leads to a third place out of in total 50 in the category lab
courses at the FAU. The consent for collecting the data and publishing
these results is given by the Evaluation Board and the managing Officer.

To ensure that the lab course can improve the students’ knowledge
about image and video signal processing, the grades of the exam of the
linked lecture "Image, Video, and Multidimensional Signal Processing"
are analyzed. Since the content of the lecture and the laboratory largely
overlap, the knowledge in image and signal processing can be improved
by participating in the lab course. Altogether, 44 students have partici-
pated in the exam and 27 have participated in the lab course. Altogether,
6 out of these have participated in both the exam and the lab course. The
exam was performed after the lab course, so the impact of the lab course
for learning the topics of image and video signal processing can be
evaluated. In Fig. 6 the performance of the different groups of students
are depicted as boxplot. The central red mark indicates the median value,
the blue bottom and top edges of the boxes the 25th and 75th percentiles,
respectively, and the black whiskers the most extreme data points. The
black crosses indicate the mean value. The grades ranges from 1 to 5,
whereby 1 is the highest and 5 is the lowest grade. It can be seen that the
students who participated in the lab course perform better with a grade of
1.67 than the peer students (average grad 2.13). Evidently, the students
seem to memorize the content better, because they learn it not only in
theory but also practically.

Furthermore, before and after the lab course a test with 15 questions
about image and video signal processing on embedded systems was
performed. 27 students have participated in the lab course and have
taken part in the test. Thus, it can be seen how the students have
improved in this topic during the lab course. In Fig. 7 the results of both
tests are depicted as a boxplot. The description of the boxplot can be
found in the previous section. It can be seen, that the students have been
able to improve their knowledge about image and video signal process-
ing. On average, the students could answer around 47.80 % of the
questions in the entrance test, and around 70.02% in the second test. The
lowest performance for the entrance test is 21.88 % and the highest is
84.38 %. For the second test both values could be outperformed with
40.63 % and 96.88 %.

In addition, each experiment as well as the whole lab course have
been evaluated by the students using an evaluation sheet. 27 students
took part in this evaluation again. In Fig. 8 the evaluation of the indi-
vidual experiments is shown. The students have evaluated the experi-
ments in the aspect of time, difficulty, effort, hardware, software, and
mentoring. All aspects were rated between 1 and 1.96 on a five-point
scale. In Table 3 the questions and results of the evaluation of the
whole lab course are summarized. The handling with the Raspberry Pi,
the laboratory manual, the experiments and the organization of the lab
course have been evaluated between excellent and good. Overall, the lab
course has been evaluated with 1.30. The time spent in the laboratory
and for preparation has been evaluated between "about right" and "high".
For all test results described above the consent for publication was given
by the participating students.

Overall, the effectiveness of the lab course can be confirmed by
comparing the grades of the exam of the linked lecture and by the results
of the test before and after the lab course. Furthermore, the lab course has
been self-evaluated by the students as very good.
8

6. Conclusion

In this paper the newly developed lab course "Image and Video Signal
Processing on Embedded Systems" has been presented. The Raspberry Pi
3 Model B has been chosen as embedded system because of property,
availability, and cost-efficiency. Different programming tasks have to be
solved by the groups on the Raspberry Pi in the programming language
Python. Python has been chosen because of readability, easy learning,
and clearness. In addition, Python is an open source programming lan-
guage. The requirements and the seven different experiments that have
to be prepared are presented in this paper. Furthermore, the learning
objectives were highlighted in the paper. The students learn the handling
with hardware and software, to read and write in Python, the image
signal processing path, and the development of a program. The
improvement of the students in image and video signal processing was
verified by the grades of the exam of the linked lecture and the assess-
ment of a test before and after the lab course. Furthermore, the lab course
has been evaluated by the participating students in the evaluation system
of the university and in a self-developed evaluation sheet. Overall, in
both evaluation systems the lab course has been rated between excellent
and very good. The lab course can easily be extended by further exper-
iments. In the future it is planned to add two new experiments. The first
one will deal with object detection and the other one with background
replacement. So, the aspect of video signal processing will be given more
weight in the lab course.

Declarations

Author contribution statement

Karina Jaskolka: Conceived and designed the experiments; Performed
the experiments; Analyzed and interpreted the data; Contributed re-
agents, materials, analysis tools or data; Wrote the paper.

Jürgen Seiler: Conceived and designed the experiments; Analyzed
and interpreted the data; Contributed reagents, materials, analysis tools
or data; Wrote the paper.

Frank Beyer: Conceived and designed the experiments.
Andr�e Kaup: Conceived and designed the experiments; Analyzed and

interpreted the data; Contributed reagents, materials, analysis tools or
data.

Funding statement

This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abbot, D., 2018. Linux for Embedded and Real-Time Applications. Newnes.
Basler, A.G., 2019. Basler the Power of Sight. Retrieved from. https://www.basl

erweb.com.
BeagleBoard.org Foundation, 2018. BeagleBone Black. Retrieved from. http://beagle

board.org/black.
Bernini, N., Bombini, L., Buzzoni, M., Cerri, P., Grisleri, P., 2014. An embedded system for

counting passengers in public transportation vehicles. In: Proc. IEEE/ASME 10th
International Conference on Mechatronic and Embedded Systems and Applications,
pp. 1–6.

Bhat, A., Samii, S., Rajkumar, R., 2017. Practical task allocation for software fault-
tolerance and its implementation in embedded automotive systems. In: Proc. IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 87–98.

http://refhub.elsevier.com/S2405-8440(19)36220-6/sref1
https://www.baslerweb.com
https://www.baslerweb.com
http://beagleboard.org/black
http://beagleboard.org/black
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref4
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref5


K. Jaskolka et al. Heliyon 5 (2019) e02560
Cass, S., 2018. The 2017 Top Programming Languages. Retrieved from. https://spectr
um.ieee.org/computing/software/the-2017-top-programming-languages.

Castellanos, J.C., Susin, A.A., Fruett, F., 2011. Embedded sensor system and techniques to
evaluate the comfort in public transportation. In: Proc. 14th International IEEE
Conference on Intelligent Transportation Systems, pp. 1858–1863.

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM 24
(6), 381–395.

Harris, C., Stephens, M., 1988. A combined corner and edge detector. Proc. Fourth Alvey
Vis. Conf. 147–151.

Hodson, D., 1993. Re-thinking old ways: towards a more critical approach to practical
work in school science. Stud. Sci. Educ. 22 (1), 85–142.

Hofstein, A., Lunetta, V.N., 1982. The role of the laboratory in science teaching: neglected
aspects of research. Rev. Educ. Res. 52 (2), 201–217.

Hofstein, A., Lunetta, V.N., 2004. The laboratory in science education: foundations for the
twenty-first century. Sci. Educ. 88 (1), 28–54.

Hunter, J., Dale, D., Firing, E., Droettboom, M., 2018. Matplotlib. Retrieved from. http://
www.matplotlib.org.

Kosse, T., 2018. FileZilla - the Free FTP Solution. Retrieved from. https://filezilla-pro
ject.org/.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vis. 60 (2), 91–110.

Lundh, F., Ellis, M., 2018. Python Imaging Library (PIL). Retrieved from. http://www
.pythonware.com/products/pil.

Lunetta, V.N., Hofstein, A., Clough, M.P., 2007. Learning and teaching in the school
science laboratory: an analysis of research, theory, and practice. Handb. Res. Sci.
Educ. 393–441.

Mao, H., Yao, S., Tang, T., Li, B., Yao, J., Wang, Y., 2017. Towards real-time object
detection on embedded systems. IEEE Trans. Emerg. Top. Comput. 1-1.

Mastinu, E., Doguet, P., Botquin, Y., Håkansson, B., Ortiz-Catalan, M., 2017. Embedded
system for prosthetic control using implanted neuromuscular interfaces accessed via
an osseointegrated implant. IEEE Trans. Biomed. Circuits.Syst. 11 (4), 867–877.

NumPy Developers, 2018. NumPy. Retrieved from. http://www.numpy.org.
9

OpenCV team, 2018. OpenCV. Retrieved from. http://www.opencv.org.
Python Software Foundation, 2018. Python. Retrieved from. https://www.python.org/.
Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M., 2005. Design

considerations for solar energy harvesting wireless embedded systems. In: Proc.
Fourth International Symposium on Information Processing in Sensor Networks,
pp. 457–462.

Raspberry Pi Foundation, 2018. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi.
Retrieved from. https://www.raspberrypi.org/.

Rupniewski, M., Mazurek, G., Gambrych, J., Nałęcz, M., Karolewski, R., 2016. A real-time
embedded heterogeneous GPU/FPGA parallel system for radar signal processing. In:
Proc. Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress, pp. 1189–1197.

Schwartz, R.F., 1959. Laboratory: its scope and philosophy. IRE Trans. Edu. 2 (4),
120–122.

SciPy Developers, 2018. SciPy. Retrieved from. https://www.scipy.org.
Sharp, D.C., Bell, A.E., Gold, J.J., Gibbar, K.W., Gvillo, D.W., Knight, V.M.,

Weismuller, S.P., 2010. Challenges and solutions for embedded and networked
aerospace software systems. Proc. IEEE 621–634.

Stoianov, I., Nachman, L., Madden, S., Tokmouline, T., 2007. PIPENET: a wireless sensor
network for pipeline monitoring. In: Proc. 6th International Symposium on
Information Processing in Sensor Networks, pp. 264–273.

Tsai, W.K., Lai, C.J., Sheu, M.H., Chen, T.H., 2014. High dynamic range image based on
block-based edge strength for embedded system design. In: Proc. Tenth International
Conference on Intelligent Information Hiding and Multimedia Signal Processing,
pp. 329–332.

Vahid, F., Givargis, T., 2002. Embedded System Design: A Unified Hardware/Software
Introduction. John Wiley & Sons.

Wang, J., 2017. Real-Time Embedded Systems. John Wiley & Sons.
Ziou, D., Tabbone, S., 1998. Edge detection techniques-an overview. Pattern Recognition

and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii 8,
537–559.

https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref7
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref8
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref9
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref10
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref11
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref12
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref12
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref12
http://www.matplotlib.org
http://www.matplotlib.org
https://filezilla-project.org/
https://filezilla-project.org/
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref15
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref15
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref15
http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref17
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref18
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref18
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref19
http://www.numpy.org
mailto:http://www.opencv.org
https://www.python.org/
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref23
https://www.raspberrypi.org/
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref25
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref26
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref26
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref26
https://www.scipy.org
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref28
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref29
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref30
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref31
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref32
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref32
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33
http://refhub.elsevier.com/S2405-8440(19)36220-6/sref33

	A Python-based laboratory course for image and video signal processing on embedded systems
	1. Introduction
	2. Instrumentation
	2.1. Raspberry Pi 3 Model B
	2.2. Software
	2.3. Server

	3. Design
	4. Study area
	4.1. Experiment I: Initial operation of the embedded system
	4.2. Experiment II: Introduction to Python
	4.3. Experiment III: Introduction to image signal processing with Python
	4.4. Experiment IV: Image signal processing with a camera
	4.5. Experiment V: Introduction to computer vision
	4.6. Experiment VI: Creating a panorama, part 1
	4.7. Experiment VII: Creating a panorama, part 2

	5. Results & discussion
	6. Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References


