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Abstract: The use of micrometer-sized droplets for chemical and biochemical analysis has been widely
explored. Photolithography is mainly used to fabricate microfluidic devices, which is often employed
to form monodisperse microdroplets. Although photolithography enables precise microfabrication,
it is not readily available to biochemists because it requires specialized equipment such as clean room
and mask aligners, and expensive consumables such as photoresist and silicon wafers. In this study,
we fabricated a microfluidic device using a consumer laser cutter and applied it to droplet formation.
Monodisperse microdroplets were formed by using an oil phase for droplet digital polymerase
chain reaction (PCR) as the continuous phase and phosphate-buffered saline or polyethylene glycol
solution as the dispersed phase. The droplet size decreased as the flow rate of the continuous phase
increased and approached a constant value. The method developed in this study can be used to
realize microdroplet-based biochemical analysis with simple devices or to construct artificial cells.

Keywords: microdroplets; microfluidics; monodisperse; artificial cell

1. Introduction

Recently, many chemical and biochemical analyses using microdroplets have been
reported [1–4]. A microdroplet is a small droplet with a diameter of from one to several
hundred micrometers. By encapsulating biomolecules such as DNA and enzymes in these
microdroplets, each droplet can be used as a reaction vessel. The typical application of
microdroplets is droplet digital polymerase chain reaction (ddPCR) [5], in which a sample
solution of unknown concentration is diluted with reagents and divided into a thousand of
microdroplets, and each droplet contains one molecule of the target DNA or none at all. When
polymerase chain reaction (PCR) is performed in this situation, DNA is amplified only in the
droplet containing the target DNA, and fluorescence is observed when the fluorescent dye
binds to the amplified DNA. Therefore, the number of droplets where fluorescence is observed
corresponds to the number of target DNA molecules contained in the original sample, which
enables absolute quantification without the need for a calibration curve. Therefore, the
microdroplet is a useful system for the analysis of DNA and other biomolecules.

Another application of microdroplets is to create artificial cells [6,7] by encapsulating
biomolecules inside microdroplets, which can be used to understand the structure and
function of cells. In such microdroplets, it has been reported that the rate of GFP synthesis
depends on the droplet size [8], and that the phase separation rate of a mixture of DNA and
polyethylene glycol (PEG) depends on the droplet size [9]. Therefore, microdroplets are an
extremely useful and promising system for clarifying the science of biochemical analysis.

Various techniques have been used to form microdroplets. Typical methods include
vortexing [9], the use of porous structures [10], and the use of porous membranes [11].
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However, it is difficult to fabricate monodisperse microdroplets with these methods. On the
other hand, monodisperse microdroplets can be formed by using microfluidic devices [12–14].
This is a method to form droplets by dividing the dispersed phase by the continuous phase
using micrometer-scale channels. Monodisperse microdroplets can be obtained by pumping
the solutions at a constant flow rate using a syringe pump to maintain the shear force acting
on the dispersed phase at a constant level.

Photolithography (including soft lithography based on the mold fabricated by pho-
tolithography) is one of the main fabrication methods for microfluidic devices [15,16].
However, although this technique enables accurate microfabrication, it requires expensive
and extensive facilities and equipment such as clean rooms and mask aligners, expensive
consumables such as photoresist and silicon wafers, and specialized software such as CAD.
This is not something that biochemists who do not specialize in microfabrication can utilize.
Recently, many methods for fabricating microfluidic devices other than photolithography
have been reported [17]. A microfluidic device for microdroplet formation has also been
reported [18], but it is not an easy method for biochemists to use because an industrial laser
is used to fabricate the mold for the device.

We have developed an inexpensive and simple method for fabricating microfluidic
devices using a consumer-grade CO2 laser cutter [19–21]. In this method, an acrylic sheet
is cut out using a laser cutter and bonded to another acrylic sheet to make a mold, and
then polydimethylsiloxane (PDMS) is poured into the mold to make a device with the
same channel pattern as the mold. Compared to the conventional method using pho-
tolithography, this method is inexpensive, does not require expertise, and does not require
CAD but employs a standard vector graphics editor (Adobe illustrator®) to design channel
patterns. As described by Qin et al. [16], it takes a few hours to become familiar with
Adobe illustrator®, while it may require a few weeks to learn the basics of CAD. Of course,
various laser-based microfabrication methods have been reported, but, as reviewed recently
in this journal by Puryear III [22], it is important for beginners to utilize the fabrication
process with high familiarity. Unfortunately, current laser-based microfabrication methods
remain complicated and often require expensive machines [22]. Considering the aforemen-
tioned characteristics of laser-based microfabrication methods, it is clear that biochemists
who do not specialize in microfabrication can easily use our method, and that the first
biochemist-friendly microfluidic device for microdroplet formation can be created using
our method.

In this study, a T-shaped microfluidic channel is fabricated using a consumer-grade
laser cutter and applied to the formation of monodisperse microdroplets. The concept is
shown in Figure 1, where the aqueous phase is pumped from the bottom of the T-shaped
microchannel and the oil phase is pumped from the left side to form water-in-oil type mi-
crodroplets. In addition to phosphate buffer saline (PBS), a concentrated aqueous solution
of PEG is used as the aqueous phase, demonstrating that this method can be applied to the
formation of microdroplets containing high concentrations of macromolecules as in cells.
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Figure 1. Schematic illustration of microdroplet formation in a T-shaped microfluidic channel. 
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Figure 1. Schematic illustration of microdroplet formation in a T-shaped microfluidic channel.
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2. Materials and Methods

Schematic illustrations of the procedure of fabricating the microfluidic device are
shown in Figure 2. The device was fabricated as reported previously [19–21], with some
modification to the experimental procedures. An acrylic plate was cut out of an acrylic
sheet (0.2 mm thickness, CLAREX, Nitto Jushi Kogyo, Tokyo, Japan) with a laser cutter
(HAJIME, Oh-Laser, Saitama, Japan) (Figure 2A). Based on the results of preliminary
studies, the power of the laser was set to 8% of the full power and the sweep speed was
set to 6 mm s−1. The acrylic plate was glued to another acrylic plate (1 mm thickness,
CLAREX, Nitto Jushi Kogyo) with a glue (Acrysunday 14-3201, Acrysunday, Tokyo, Japan)
to form a mold (Figure 2B). Poly(dimethylsiloxane) (PDMS) substrates were fabricated by
pouring a prepolymer of PDMS (SILPOT 184, Dow Corning, Midland, MI, USA) on the
mold. The prepolymer was cured in an oven at 65 ◦C for 60 min, and the cured PDMS
was peeled off from the mold, bonded to a virgin glass slide, and cured again at 100 ◦C for
60 min (Figure 2C). Through-holes were punched at the end of the microchannel patterns
on the PDMS substrate using metallic eyelets. Silicone tubes (0.5 mm id, 0.8 mm od, Taiyo
Kogyo, Tokyo, Japan) were glued to the through-holes with the prepolymer at 100 ◦C for
60 min, and the PDMS substrate was bonded to another virgin glass slide (Figure 2D). In a
separate experiment, the PDMS substrate was cut by a razor, and cross-sectional images
of the channel patterns were obtained under an inverted microscope (IX71, Olympus,
Tokyo, Japan) equipped with a CMOS camera (ORCA-Flash 4.0 V2, Hamamatsu Photonics,
Hamamatsu, Japan) and a 4× objective lens. HCImage Software (Hamamatsu Photonics)
was used to process the images.
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Figure 2. Schematic illustrations of fabrication procedures of the microfluidic device. (A) Cutting
acrylic plate with CO2 laser. (B) Bonding. (C) Molding. (D) Bonding and tubing.

PBS (T900, Takara bio, Shiga, Japan) or an aqueous solution of PEG (average MW:
7000–9000, 10%) were used as the dispersed phase. The dispersed phase was infused
into the channel at 1 µL min−1 by a syringe pump (Legato 111, KD Scientific, Holliston,
MA, USA). An oil for droplet digital PCR (1864005, Bio-Rad, Hercules, CA, USA) was
used as the continuous phase. The continuous phase was infused into the channel at
4~40 µL min−1 by another syringe pump. Bright field images were acquired using an
inverted microscope (IX71, Olympus) equipped with a CMOS camera (ORCA-Flash 4.0 V2,
Hamamatsu Photonics) and a 4× objective lens. HSR Software (Hamamatsu Photonics)
and Image J (National Institutes of Health) were used to process the images.
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3. Results
3.1. Microfluidic Device

A picture of the microfluidic device is shown in Figure 3A. A T-shaped microfluidic
channel was successfully fabricated without channel clogging. Microscopic images of cross-
section of recessed microchannel patterns on the PDMS substrate are shown in Figure 3B–D.
It can be seen that the channel pattern was formed roughly according to the size shown in
Figure 1. As in our previous study [19], the cross-sectional shape of the channel was trape-
zoidal. The microfluidic channel was employed to form a plug flow (Figure 3E). In this study,
a microfluidic device consisting of a PDMS substrate and a glass substrate reversibly bonded
to each other was used, and the flow rate of the continuous phase was set to a maximum of
40 µL min−1, but there was no sign of leakage of the solution out of the flow path.
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Figure 3. (A) A picture of a microfluidic device. (B–D) Microscopic images of cross section of recessed
microchannel patterns on PDMS substrate. Images were taken at (B) left part, (C) bottom part, and
(D) right part of the T-junction. Scale bars: 200 µm. (E) A microscopic image of plug flow in a
T-shaped microchannel. Dispersed phase: PBS (1 µL min−1). Continuous phase: Oil for droplet
digital PCR (4 µL min−1).

3.2. Microdroplet Formation

Photographs of the droplets that formed at each oil phase flow rate (VO) are shown
in Figure 4. In the experiment using PBS as the aqueous phase (Figure 4A), the droplet
size decreased as the VO increased. This may be due to the increase in shear force caused
by the increase in the flow rate of the oil phase. In the experiment using PEG solution as
the aqueous phase (Figure 4B), the droplet size also decreased with increasing VO, but the
droplet size was larger than that of PBS.

Figure 5 shows the droplet size at each VO. The droplet diameter (D) of the aqueous
phase with PBS was 232 ± 6 µm at 4 µL min−1, but D decreased with increasing VO
and converged to about 90 µm. The coefficient of variation of D was 8.6% at the VO of
36 µL min−1, and 2.2~4.2% at other VO. In the experiment using PEG solution as the
aqueous phase, D was 272 ± 10 µm at the VO of 4 µL min−1. The D decreased with the
increase in the VO and converged to about 180 µm. The coefficient of variation of D was
1.9~3.6%. Since the coefficient of variation of D is less than 5%, it can be said that the
droplets formed in this study are extremely monodisperse.
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Figure 4. Microscopic images microdroplets observed in a T-shaped microchannel. VO denotes the
volume flow rate of continuous phase. The volume flow rate of the dispersed phase was fixed to
1 µL min−1. Dispersed phase: (A) PBS, (B) 10% PEG solution. Continuous phase: Oil for droplet
digital PCR.
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Figure 5. A box plot showing the dependence of the diameter of microdroplets on VO. The volume
flow rate of the dispersed phase was fixed to 1 µL min−1. Dispersed phase: (Orange) PBS, (Blue) 10
% PEG solution. N = 50.

4. Discussion

In this study, we were able to fabricate microfluidic devices for the formation of
microdroplets using a consumer-grade laser cutter. Compared to conventional microfluidic
devices fabricated using photolithography, we were able to fabricate microfluidic devices
using simple equipment and methods. In addition, we were able to fabricate microfluidic
channels that are smaller in width (0.15 mm) than those in our previous studies (0.5 mm [19]
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and 1 mm [20]) by optimizing laser-cutting parameters. Therefore, we were able to expand
the application of microfluidic devices fabricated using a consumer-grade laser cutter. The
cross-sectional shape of the channel was trapezoidal because the laser beam was focused on
the top surface of the substrate during the cutting process, and more acrylic was removed
from the top surface than from the bottom surface. The plug flow and microdroplets were
successfully observed, which indicates that the roughness of the channel ceiling is not a
problem for observation.

The volume of the droplets formed in this study can be considered as follows. In the
previous study [23], it was shown that the volume of the droplet converges to a constant
value as the time required for shear force to tear off the droplet becomes shorter. The reason
why the droplet size is larger in the experiment using PEG solution than in PBS is due to
the difference in viscosity. The viscosity of PBS is 0.89 mPa s at 25 ◦C, which is assumed to
be the same as the viscosity of water. On the other hand, the viscosity of 10% PEG (average
MW: 7000–9000) solution was reported to be 8.9 mPa s at 25 ◦C [24]. Therefore, since the
viscosity of the PEG solution is 10 times larger than that of the PBS, it takes a long time to
tear off the PEG solution compared to PBS, resulted in the formation of larger droplets.

The droplet formation method developed in this study has many possibilities. First,
droplet-based biomolecule analysis, such as ddPCR, can be realized with the simple device
reported in this study. If cells are trapped in the droplet, it is possible to analyze intracellular
biomolecules inside the droplets. Another direction is the application to the formation of
artificial cells. The aqueous PEG solution used in this study is often used to mimic the
molecular crowding in cells [25]. Therefore, if biomolecules are added to the solution and
divided into droplets, it will be possible to evaluate them in an environment that mimics
cells in terms of both solution composition and size. Through such efforts, we expect to
make further progress in understanding biochemical processes in cells.
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