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This study evaluated the feasibility of using only diagnostically relevant magnetic resonance (MR) images
together with deep learning for positron emission tomography (PET)/MR attenuation correction (deepMRAC)
in the pelvis. Such an approach could eliminate dedicated MRAC sequences that have limited diagnostic
utility but can substantially lengthen acquisition times for multibed position scans. We used axial T2 and T1
LAVA Flex magnetic resonance imaging images that were acquired for diagnostic purposes as inputs to a
3D deep convolutional neural network. The network was trained to produce a discretized (air, water, fat,
and bone) substitute computed tomography (CT) (CTsub). Discretized (CTref-discrete) and continuously valued
(CTref) reference CT images were created to serve as ground truth for network training and attenuation cor-
rection, respectively. Training was performed with data from 12 subjects. CTsub, CTref, and the system MRAC
were used for PET/MR attenuation correction, and quantitative PET values of the resulting images were com-
pared in 6 test subjects. Overall, the network produced CTsub with Dice coefficients of 0.79 � 0.03 for corti-
cal bone, 0.98 � 0.01 for soft tissue (fat: 0.94 � 0.0; water: 0.88 � 0.02), and 0.49 � 0.17 for bowel
gas when compared with CTref-discrete. The root mean square error of the whole PET image was 4.9% by us-
ing deepMRAC and 11.6% by using the system MRAC. In evaluating 16 soft tissue lesions, the distribution
of errors for maximum standardized uptake value was significantly narrower using deepMRAC (�1.0% �
1.3%) than using system MRAC method (0.0% � 6.4%) according to the Brown–Forsy the test (P � .05).
These results indicate that improved PET/MR attenuation correction can be achieved in the pelvis using only
diagnostically relevant MR images.

INTRODUCTION
Accurate correction for photon attenuation remains a challenge
for quantitative positron emission tomography (PET)/magnetic
resonance (MR) imaging. Owing to the absence of transmission
imaging during PET/MR imaging, either through computed to-
mography (CT) or a transmission source, MR-based attenuation
correction (MRAC) methods are needed to estimate the pixel-
wise photon attenuation coefficients for quantitative PET recon-
struction. Many MRAC techniques have been developed over the
past decade (1, 2), with dual-echo chemical shift-encoded (2-
point Dixon) imaging being used in most commercial PET/MR
scanners. In Dixon-based MRAC, a single acquisition yields
images that are separated into water and fat components and
then assigned Hounsfield units (HU) for air, fat, lung, and water
(3, 4). With Dixon-based methods, however, bone is not identi-

fied owing to the lack of signal contrast between bone and air
(5). While ignoring bone in MRAC appears to have little impact
on the diagnostic accuracy of PET/MR imaging (6), it can lead to
quantitative PET errors exceeding 20%, depending on the loca-
tion (7).

Numerous approaches have recently been proposed for lo-
calizing bone in MR images, including ultrashort echo time
(UTE)–based methods, zero echo time (ZTE)–based methods,
atlas-based methods, and PET-only methods (8). In general,
these advanced methods have allowed for bone localization with
acceptable accuracy, reducing quantitative PET errors to within
5%. However, most advanced MRAC methods have been devel-
oped specifically for brain imaging. MRAC outside of the brain,
especially in the pelvis, is made much more difficult by the
greater variety of tissue types, shapes, and tissue deformation
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present in the images. The few methods accounting for bone that
have been tested outside of the brain include atlas methods
(9-11), a UTE-based method tested in the neck (12), and PET-
only methods tested in the upper body (13, 14). Despite encour-
aging results, each method has drawbacks, such as the need for
additional dedicated MRAC scanning or reliance on image reg-
istration, and only a few methods have been tested in the pelvis.
Further developments in MRAC methods for the pelvis are there-
fore needed.

Deep learning methods, particularly convolutional neural
networks (CNNs), have recently achieved remarkable success in
performing complex computer vision tasks and are now being
adapted into a broad range of medical imaging applications (15,
16). We previously used a convolutional encoder-decoder (CED)
network for PET/MR attenuation correction in the brain, where
contrast-enhanced T1-weighted MR images were used as net-
work inputs to achieve reconstructed PET errors of �1% in the
brain (17). We also evaluated the same CED network but with a
UTE image as input and using transfer learning to initialize the
network weights (18). This method achieved even better results,
with PET errors in the brain generally �1%. Recently, Leynes et
al. used deep learning to synthesize CT images for PET/MR
imaging in the pelvis. The model was trained with both ZTE and
Dixon-based images from 10 subjects as inputs with coregis-
tered CT images as ground truth, and significantly improved
accuracy was achieved (19). A drawback of this method is the
additional scanning time needed for ZTE imaging, which can
substantially lengthen the overall scan time for a multibed
position acquisition yet has little diagnostic utility. In addition,
bowel gas was ignored (filled in with soft tissue HU) owing to the
challenge in coregistering reference CT images to MR images.
We hypothesize that clinically relevant MR images can be used
as input to a deep learning model, eliminating the need for
dedicated MRAC sequences such as UTE and ZTE. These se-
quences can then be used for both diagnostic and attenuation-
correction purposes, improving clinical workflow for whole-
body imaging, and may be easier to harmonize across scanners
and body regions than complex UTE/ZTE imaging.

In this work, we assessed a deep learning–based attenua-
tion-correction method (deepMRAC) in PET/MR imaging of the
pelvis that uses diagnostically useful MR images as input and
therefore does not require dedicated MRAC imaging. Also, ow-
ing to deficiencies that we observed in using CT-to-MR regis-
tration to generate reference attenuation maps, we developed a
novel method for creating reference attenuation maps for train-
ing our network that allows for the segmentation of bowel gas.
We evaluated our method’s reconstructed PET error relative to
the reference attenuation map and the scanner’s standard MRAC
method in subjects who underwent pelvic PET/MR examina-
tions.

METHODOLOGY
The retrospective study was approved by the institutional review
board, and the need for written informed consent was waived.
All research was conducted in accordance with the Health In-
surance Portability and Accountability Act.

Subjects and Imaging
Subjects were eligible for inclusion in our study if they under-
went a clinical 18F-fluorodeoxyglucose (FDG) PET/CT examina-
tion and an FDG PET/MR examination at our institution on a 3T
Signa PET/MR scanner (GE Healthcare, Waukesha, WI) for eval-
uation of disease in the pelvis. The PET/MR scan must have been
conducted immediately following the PET/CT examination so
that a reference CT image was available for analysis. Subjects
must also have had T2 MRI, T1 LAVA Flex, and system MRAC
images acquired during the PET/MR scan with sufficient trans-
axial field of view (FOV) to cover the entire pelvis. In total, 18
female subjects (mean age, 63 years; range, 39–89 years), all
with cervical cancer, met these criteria and were included in the
study. Subjects were injected with 0.14 mCi/kg of FDG accord-
ing to our institution’s PET imaging protocol. Because PET/MR
imaging was conducted after a PET/CT scan, PET imaging was
conducted an average of 135 � 25 minutes after radiotracer
injection.

For each bed position of the whole-body PET/MR scan, the
following images were acquired: PET (3 min/bed position), the
system MRAC acquisition using the body transmit–receive coil
as well as axial T2 fast recovery fast spin echo, and T1 LAVA
Flex using whole-body array coils. In all subjects, gadolinium
contrast was administered (gadobenate dimeglumine [Multi-
Hance; Bracco Diagnostics, Princeton, NJ] at a dosage of 0.1
mmol/kg) during a dedicated single bed-position acquisition
17 � 4 minutes before whole-body imaging, in which case, the
contrast was mostly diluted by the time whole-body PET/MR
imaging was performed. Each image was inspected and no
fat/water swapping was observed in the MRAC acquisition. The
following parameters for the T2 acquisition were included:
FOV � 500 mm, pixel size � 0.94 � 0.94 mm2, echo time �
87–100 milliseconds, repetition time � 4500 milliseconds, and
section thickness � 6 mm. The following parameters for the T1
LAVA Flex were included: FOV � 500 mm, pixel size � 0.94 �
0.94 mm2, TE1/TE2 � 1.35/2.04 milliseconds, repetition time �
5.4 milliseconds, and section thickness � 2 mm.

CT images used in this study were acquired as part of the
PET/CT scan occurring immediately before the PET/MR exami-
nation. PET/CT scans were acquired on either a GE Discovery
710 or a Discovery VCT PET/CT scanner. CTs were acquired with
the following parameters: voltage � 140 kVp, automatic expo-
sure control with a noise index � 25, rotation time � 0.5
second, pitch � 0.516, and section thickness � 5 mm with
intersection spacing � 3.27-mm. Note that these CT images
were of higher image quality than typical low-dose attenuation-
correction CT images, as these are read separately for diagnostic
purposes at our institution. Note that it is unclear if typical
lose-dose attenuation-correction CT images could have instead
been used in the study with equivalent results.

Reference CT Generation
The validation of MRAC methods requires the availability of
ground truth attenuation maps representing the anatomy at the
time of PET/MR imaging. Nearly all previous studies evaluating
MRAC methods have used coregistered CT images as ground
truth (9, 19). The pelvis images used in our study posed a
challenge for existing multimodal registration algorithms, as
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there were differences in body positioning (eg, from straight to
bent legs, curved to flat couch), bowel gas location (eg, pockets
of bowel gas), arm location, and organ location/shape (eg, blad-
der filling or bowel movement) between the times of MR acqui-
sition and CT. We tested multiple commercial and open-source
deformable image registration packages on our pelvis data,
including algorithms that were used in previous studies. We
found that although some algorithms performed better than
others, all had minor and sometimes large soft tissue and bone
misregistrations, and none performed well at registering bowel
gas (Figure 1). Previous studies have ignored bowel gas by filling
in air bubbles with tissue-equivalent CT numbers (19), although
the effect of this technique on PET reconstruction error is un-
known. We felt these misregistrations could compromise the
deep learning network’s ability to learn pixel-to-pixel MR-to-CT
mapping. For these reasons, we chose to not use image registra-
tion as the sole means of obtaining ground truth attenuation
maps, but to instead synthesize a reference CT by using a
combination of different techniques for different tissue types
(fat/water, bone, and air), as illustrated in Figure 2.

Fat and water localization was derived from the subject’s
MRI images acquired in the same session. The subject’s fat-only
and water-only images from the LAVA Flex acquisition were
converted into a fat fraction image according to the following
equation:

FFi �
Fi

(Fi�Wi)
,

where FFi is the fat fraction value for voxel i (ranging from 0 to
1), Fi is the signal intensity of voxel i in the fat-only image, and
Wi is the signal intensity of voxel i in the water-only image (20).
The fat fraction image was then converted into Hounsfield unit
(HU) using the following relationship:

HUi � (1 � FFi)HUwater � FFiHUfat ,

where HUwater is the HU of water and HUfat is the HU of fat. We
determined that using 55 HU for HUwater and –115 HU for HUfat

resulted in fat and water having the same average HU as in the
acquired CT image. This was determined by performing linear
regression between HU values measured in the CT and in the fat
fraction images in several subjects. Note that because FFi in
water and fat approach but never actually reach 0 or 1, the
assigned HUi never actually reached 55 for water or �115 for
fat. Instead, the resulting images had mean HU values of ap-
proximately �100 in fat and 42 in water.

Because of the rigidity of bone, we used image registration
for bone localization. A subject’s CT image was registered to the
T2 MR image, first using manual registration followed by de-
formable registration (to account for differences in rotation/
bending and MR spatial distortions). Registrations were per-
formed using the CT-MR registration algorithm in Mirada XD
(Mirada, Oxford, UK), which is based on mutual information
with radial basis functions. In several cases, automatic registra-
tion resulted in inadequate bone registration. In these cases, the
degree of deformation in the registration was reduced/smoothed
(an option in the software) or the images were manually aligned
in the software on the basis of visual assessment. For a few cases
in which the previously described steps were deemed insuffi-
cient, bone-by-bone registration was performed, where bones
were individually segmented and independently registered in
Mirada. Following registration, the bones in the pelvic region
(pelvis, spine, sacrum, coccyx, and femurs) were then extracted
from the registered CT images using an in-house atlas-based CT
segmentation algorithm (21). The bones were then transplanted
to the reference CT image, resulting in a combined fat, water,
and bone synthetic CT image.

Air, including bowel gas, was localized by using an inten-
sity-based threshold on the axial T2 image followed by morpho-
logical closing and manual adjustment. The threshold was de-
fined as 2 standard deviations below the mean intensity value of
at least 3 regions of interest placed in different muscles. Mor-
phological closing was performed in MATLAB 2016a (Math-
Works, Natick, MA) using a 4-voxel-wide structuring element to
remove noisy voxels that fell below the threshold. We corrected
for differences in MRI intensity occurring between different bed
positions by normalizing the images at each bed position by the
mean intensity value in the muscle. Additional low-signal tis-
sues that were below the intensity threshold (eg, large blood
vessels, certain muscles) and consequently labeled as air were
visually identified and manually labeled as tissue-equivalent.
Bowel gas regions of interest were then translated to the refer-
ence CT image and assigned an HU of �1000. The resulting
continuously valued substitute CT image, representing the anat-

Figure 1. Postregistration fused magnetic reso-
nance (MR)/computed tomography (CT) images
show the limitations of using a coregistered CT as
the reference for evaluating MRAC methods in the
pelvis. Edge-based deformable registration (top),
mutual information–based deformable registration
(middle), and mutual information deformable reg-
istration with symmetric normalization (bottom)
result in residual mismatch for soft tissue and espe-
cially bowel gas, as indicated by the white
arrows.
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omy at the time of MR acquisition, served as the reference CT
(CTref) and was used as the ground truth to evaluate PET recon-
struction error.

Network Architecture
In this study, we used the open-source multiscale 3D CNN
developed by Kamnitsas et al. (22) (Figure 3) as the core of our
deepMRAC method. The network, known as DeepMedic, was
originally developed to segment lesions in brain MR images. It

achieved high rankings in the BraTS 2015 brain tumor seg-
mentation challenge (23) and in the ISLES 2016 ischemic
stroke lesion segmentation challenge (24). The network pro-
cesses an image using an efficient patch-based method on the
basis of image segments, but uses two 3D segments per
voxel—a large-scale segment for contextual awareness and a
small-scale segment for fine detail. The 2 segments are simul-
taneously processed by 2 independent CNNs, which get com-
bined at the end via fully connected layers. The model has

Figure 2. Reference CT (CTref) images were generated to train the network and evaluate MR attenuation correction
(MRAC) accuracy. Bone for CTref was generated via registration of the subject’s CT image with their T2 MR image fol-
lowed by segmentation of the bone. Fat and water components were determined from a fat-fraction image, generated
from the 2-point Dixon acquisition. Air, including bowel gas, was identified using an intensity threshold of the T2 image
on the basis of a region of interest (ROI) in the muscle, with manual corrections.

Figure 3. The DeepMedic network architecture is shown, adapted for use with pelvis MR images (T2 and LAVA Flex
water-only images). The network uses two 3D convolutional neural network (CNN) pathways, each with a different re-
ceptive field relative to the input image, trained in parallel, and then combined via fully connected layers. The model’s
output is a 4-class probability map, which is then compared with the discretized reference CT. Not all of DeepMedic’s
11 layers are shown in the figure for illustration purposes. This figure was adapted, with permission, from Kamnitsas
et al. (22).
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been made available at https://biomedia.doc.ic.ac.uk/soft-
ware/deepmedic/.

Model Training and Testing
The 18 subjects were randomly split into 12 training subjects
and 6 testing subjects. For each subject, the input to the model
was the paired T2 and T1 LAVA Flex water-only images stacked
as image channels, both of which are acquired for diagnostic use
at our institution. The model was trained to produce a dis-
cretized version of the CTref (CTref-discrete), where the continu-
ously valued CTref image was converted into a 4-class mask of
air, fat, water, and cortical bone for training. The continuously
valued CTref was discretized using the following thresholds: air
��200 HU, �200 HU � fat ��20 HU, �20 HU � water � 125
HU, cortical bone � 125 HU. These thresholds were selected
because they resulted in discretized classes with visual patterns
that were consistent across subjects, which made them easier for
the model to learn. Once trained, the model uses the LAVA Flex
and T2 images to produce 4-class probability maps with the
same dimensions as the input images. Tissue masks are created
by assigning each voxel to the tissue with the highest class
probability. All images were resampled to 256 � 256 (voxel
dimensions � 1.95 � 1.95 � 3 mm3) before training/testing,
with the axial FOV cropped to include only the pelvis. Training
was performed on batches of 1500 3D image segments of 25 �
25 � 25 using the Theano library. Optimization was performed
using RMSprop optimization with a learning rate of 0.001 and a
momentum of 0.6 with a multiclass cross entropy loss function.
Training was run for 35 epochs on an NVIDIA 1080 Ti graphics
processing unit (GPU).

We experimented with various data augmentation tech-
niques, such as enlarging the image by 10% (ie, making the
voxel sizes smaller), flipping the images left to right, and rotat-
ing the images in various directions by 5°. Overall, results were
improved by only flipping the images left to right. Rotation and
image zoom were therefore not used during training. We also
tested if an ensemble of 3 DeepMedic models trained using the
same data and same network but with randomized training
order and initial model weights could improve test results. En-
semble methods have gained in popularity and recently placed
first in the 2017 BraTS brain segmentation challenge (25). The
probability maps for each tissue class were summed across the 3
models, and the voxel was assigned to the class with the highest
summed probability. In addition, we tested if training with a
single input series (ie, T2-only or LAVA Flex-only) was as
successful as training with both input series.

Testing was performed on images from 6 subjects not used
in the training phase. The model’s output for each of the 6
subjects was compared with the CTref-discrete images using Dice
similarity coefficients (DSC) for each tissue class.

PET Reconstruction and Analysis
For the 6 testing subjects, we converted the model’s output (4-class
mask) into a substitute CT image (CTsub) so it could be used for atten-
uation correction in PET/MR image reconstruction. This was accom-
plished by assigning an HU of �1000 to air, �100 to fat, 42 to water,
and 300 to cortical bone. Fat and water HU were determined by
measuring theirmeanHUvalues inacquiredCT images.Becauseof the

large variation in HU of cortical bone and its nonlinear impact on
attenuation, bone HU was empirically determined by testing several
HU values (200, 300, 400, and 500) during reconstruction and finding
the value that minimized PET reconstruction error.

PET images were reconstructed using both the continuously
valued CTref (ground truth) and CTsub for attenuation and scatter
correction. In addition, PET images were reconstructed using the
system’s default MRAC method on the basis of 2-point Dixon—a
method that does not account for bone. Reconstructions were
performed using an offline reconstruction toolbox (PET Tool-
box, GE Healthcare) with the following PET reconstruction set-
tings: iterations � 4, subsets � 28, transaxial postfilter � 4 mm,
FOV � 600 mm, and voxel dimensions � 2.34 � 2.34 � 2.78
mm3. Two PET bed positions were reconstructed, which suffi-
ciently covered the pelvis because of the Signa PET/MR’s large
axial FOV.

Sixteen FDG-avid soft tissue lesions were identified in the
PET images of the 5 subjects on the basis of radiology reports (1
subject had no PET-avid disease), consisting of 7 retroperitoneal
lymph nodes, 5 lesions along the vaginal cuff, 1 cervical lesion,
1 ovarian lesion, 1 periaortic lymph node, and 1 pelvis sidewall
lymph node. Lesions were contoured using PET Edge in MIM
(MIM Software Inc, Cleveland, OH), from which maximum
standardized uptake values (SUVmax) and mean SUV (SUVmean)
were measured. Errors in PET SUVs were determined for the
deepMRAC method and those for the system MRAC by compar-
ing SUVs against those reconstructed with CTref. Because PET
SUV errors were both positively and negatively centered around
0, the variances of the distributions of SUV errors were com-
pared using the Brown–Forsythe test, with a P � .05 signifi-
cance level. We also computed the root mean square error
(RMSE) of the entire PET image (excluding low-signal voxels �
500 Bq/mL) according to the methods described by Ouyang et al.
(26), in which:

RMSE � ��2 � �2,

where � is the mean voxel bias, and � is the standard deviation
of the voxel bias (bias being defined as the percent difference
relative to the reference PET image).

Sensitivity Analysis
Because deepMRAC produces a discretized CT instead of a con-
tinuously valued CT for attenuation correction, we evaluated the
effect of using a discrete CT instead of a continuously valued CT
for PET attenuation correction. We reconstructed the 6 test
subjects’ PET images using CTref-discrete and calculated the PET
error (RMSEdisrete) and lesion SUV error relative to using CTref.

We also evaluated the impact of ignoring bowel gas on
attenuation correction. We filled in bowel gas with tissue equiv-
alence (HU � 42) in the CTref, and we calculated the PET error
(RMSEgas) and lesion SUV error relative to using the original
CTref (note that RMSE is calculated only for voxels of �500
Bq/mL and therefore ignored the error within the gas pockets).

PET/MR attenuation correction with CTref was also com-
pared against a reference CT generated using deformable regis-
tration alone, with the methods and results reported in the
online Supplemental Material.
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RESULTS
Training of the network took approximately 8 hours on a single
graphics processing unit, while inference on a single subject
took 30 seconds. Table 1 shows the DSC comparing the tissue
masks segmented via DeepMedic and that of CTref-discrete in the
testing subjects. When using both T2 and LAVA Flex images as
model input, the DSC for fat (0.94 � 0.01) and water (0.88 �
0.02) was high. The DSC for cortical bone was slightly lower at
0.79 � 0.03. The DSC for bowel gas was substantially lower at
0.49 � 0.17. Using both MRI series as inputs to the model

resulted in better DSC for soft tissue, gas, and bone than using only
1 MRI series as input. The ensemble of 3 DeepMedic networks
produced, on average, almost identical DSCs as for a single network
and, subjectively, did not reduce the presence of small islands of
misplaced bone or gas. Figure 4 shows the generated CTsub in
comparison to CTref-discrete, the input T2 series, and the system
MRAC attenuation-correction map for an example subject.

Although a large majority of the segmented tissue masks
closely resembled the ground truth tissue masks, there were a few
apparent errors committed by DeepMedic. The most common error

Table 1. Comparison of DeepMedic’s Tissue Segmentations Against the Discretized Reference CT for 6 Testing Subjects

Model Inputs

Average Dice Similarity Coefficient (�SD)

Air Bowel Gas Fat Water Soft Tissue
(Fat � Water)

Cortical
Bone

T2-only 0.99 � 0.01 0.43 � 0.24 0.93 � 0.02 0.85 � 0.02 0.98 � 0.01 0.73 � 0.05

T1 LAVA Flex-only 0.98 � 0.01 0.16 � 0.14 0.92 � 0.02 0.86 � 0.03 0.97 � 0.01 0.73 � 0.05

Combined 0.99 � 0.01 0.49 � 0.17 0.94 � 0.01 0.88 � 0.02 0.98 � 0.01 0.79 � 0.03

Combined (ensemble) 0.99 � 0.00 0.48 � 0.21 0.94 � 0.01 0.88 � 0.03 0.98 � 0.01 0.79 � 0.03

Figure 4. Axial sections from an
example subject’s model output
(left), discretized reference CT
(CTref-discrete) (left-middle), T2 MR
images (right-middle), and system
MRAC attenuation correction
map (right). Axial slices were se-
lected at intervals of 3 cm.
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was overlooking very thin bones, which were often only 1–2 voxels
in width after resampling. This sometimes resulted in discontinuous
bone masks. Other errors were more noticeable, including mis-
placement of bone (occurred in 3 cases, as shown in Figure 5),
mistaking parts of the bladder for air (occurred in 1 case), and
mistaking MRI ghosting artifacts for tissue (occurred in 1 case).
Most of these mistakes were minor and resulted in only 3–15 voxels
being incorrectly classified, and had a negligible impact on the
resulting PET images (Figure 5).

Figure 6 shows the distribution of SUV errors introduced by
using either deepMRAC or the system MRAC in the 16 lesions.
The variance of SUV errors in the lesions was significantly smaller
when using deepMRAC than when using the system MRAC, for
both SUVmax (P � .003) and SUVmean (P � .01). PET images and
error maps are shown for an example subject in Figure 7.

The whole-image PET RMSE was found to be 4.9% using deep-
MRAC and 11.6% when using the system MRAC. This is illustrated for
an example subject in Figure 8, where substitute CT images are shown
next to their corresponding voxel-wise PET error maps.

The PET error (RMSEdiscrete) introduced by using a discrete
CTref-discrete instead of continuously valued CTAC (CTref) was
4.4%. Lesion SUV errors were �3.0 � 1.3%. When filling bowel
gas with tissue equivalence, the resulting PET RMSEgas was
5.9%, and lesion SUV errors were 0.4 � 3.5%.

DISCUSSION
PET/MR imaging is a relatively new yet quickly evolving field.
The recent surge in PET/MR research has yielded a number of
MR-based attenuation-correction methods that have produced
impressive results, particularly for brain imaging (8). However,
deep learning approaches have certain advantages over other
advanced methods. A common criticism of atlas-based methods
is the underlying assumption that a subject has a similar overall
anatomy as a population model (or similar to one of the atlases
for multiatlas approaches). Deep learning only requires that the
local image features in a subject resemble features that were
observed during training, thus not requiring global similarity in
anatomy. This characteristic of deep learning methods also can
result in unexpected artifacts (Figure 5), which can likely be
mitigated with more and better training data.

Few MRAC methods have been evaluated in PET/MR imag-
ing of the pelvis. Leynes et al. reported on a method based on
hybrid ZTE/Dixon imaging, which they evaluated in pelvic im-
ages of 6 patients undergoing PET/MR imaging (27). They reported
a PET RMSE of 4.18%, which is comparable to deepMRAC’s RMSE
of 4.9%. In their follow-up study using deep learning with
ZTE/Dixon imaging, they reported a PET RMSE of 2.85% (19). A
task closely related to MRAC is the use of MR images for radiother-
apy treatment planning (MRRT), both requiring the derivation of
photon attenuation maps from MR images. Several MRRT planning
methods for the pelvis have been reported, including atlas-based
methods (28), voxel regression methods (29, 30), and traditional
machine learning methods (31). Many of these, however, are not
fully automated and require user input (eg, manual bone segmen-
tation) (29, 30). Furthermore, comparison across methods is chal-
lenging owing to the different evaluation techniques and defini-
tions. For example, the tissue class of bone consisted of only
cortical bone in our method (because bone marrow has attenuation
coefficients similar to water), whereas MRRT studies often consider
the total bone volume during evaluation (28).

Figure 5. An artifact introduced by DeepMedic
is misplaced bone, which occurred in 3 of the 6
testing subjects, all of which are shown here. Also
shown are the corresponding T2 magnetic reso-
nance imaging (MRI) images, the positron emis-
sion tomography (PET) images reconstructed with
CTsub, and the reference PET images reconstructed
with CTref. Note that the small volumes of mis-
placed bone have negligible impact on the recon-
structed PET.

Figure 6. Distributions of standardized uptake
value (SUV) errors in 16 soft tissue lesions when
using deepMRAC and the system’s MRAC
method.
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A primary benefit of deepMRAC is that clinically relevant
MRI images can be used as input to the model. This eliminates
the need for dedicated MRAC acquisitions such as UTE and ZTE
that have limited or no diagnostic value and yet can substan-
tially lengthen scan times in multibed acquisitions. For example,
a 2-minute ZTE sequence acquired over 6 bed positions (typ-
ical for whole-body PET/MR) would add 12 minutes to the
overall scan time (27). Furthermore, more conventional MR
acquisition sequences are likely to be more compatible be-
tween vendors and different scanner types as proprietary
algorithms for postprocessing of Dixon sequences and com-
putationally expensive regridding algorithms necessary for
non-Cartesian sequences like ZTE would no longer be ac-
quired. Although we used clinically acquired T2 and LAVA
Flex images as input to our model, it is likely that other
diagnostic sequences could be equally as effective in such a
framework. T2 and LAVA T1 images were selected for our
model because they were retrospectively available in all sub-
jects and had a sufficiently large FOV. However, future stud-
ies are likely necessary to determine which MR acquisitions
are optimal for use in deep learning–based MRAC.

Our deepMRAC method used discretized tissue classes in-
stead of continuous voxel-wise HU estimation. Although we
have found continuous mapping effective in MRAC for the brain
(32), our initial attempts at training a network for continuous
HU prediction in the pelvis resulted in poor performance (not
shown). This may be because of the greater complexity in learn-
ing a continuous mapping function, or perhaps because of our
limited data set. It may also be a limitation of using diagnostic
MR images as inputs where bone and air have similar signal
intensity, unlike in dedicated ZTE or UTE sequences (19). What-
ever the cause, we found networks were less prone to error when
learning discrete tissue classes; therefore, we used discrete
MRACs in this study. Of course, a limitation of using discrete
tissue classes is the assumption of uniform electron density in
each tissue class, both within and across subjects. This approx-
imation is clearly not factual, especially in bone, but may be
sufficiently accurate for use in MRAC given that our SUV errors
were �4% and our PET RMSEdiscrete was 4.4% when using
CTref-discrete for attenuation correction instead of CTref. And
while we determined that assigning cortical bone an HU of 300
minimized the PET errors in our data, different models or body

Figure 7. Reconstructed PET
images and error maps for 2 ex-
ample lesions from an example
subject. Coronal and sagittal
maximum intensity projections
(MIPs) showing the location of the
2 lesions (A). Axial PET images
reconstructed with CTref, deepM-
RAC, and the system MRAC, to-
gether with respective pixel-wise
error maps (B). Arrows indicate
the location of the first lesion. PET
images and error maps for the
second lesion (C).
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regions may require different HU assignments. In future work,
we intend to further explore networks that produce continu-
ously valued outputs, such as we used in a previous study.

A primary limitation in our study is few subjects. On the
other hand, this may also be considered a strength of such an
approach: surprisingly, few training subjects were needed to
achieve impressive results, a phenomenon commonly reported
when using deep learning for medical imaging applications (18,
19, 33). It is always uncertain how many training subjects are
needed for a given deep learning application, but unlike natural
image applications, intersubject variability is often low for med-
ical imaging applications and impressive results can be realized
with few training subjects.

A further limitation of our method is the semiautomatic
method we used to define bowel gas in the CTref images. We
observed that pockets of bowel gas had a range of intensity values
(between �400 to �1000 HU) and sizes, which made it challenging
to assign the various air pockets to the appropriate class of tissue.
Because of this uncertainty, we segmented only the largest and
lowest-intensity air pockets. Owing to different degrees of air–
tissue contrasts in different subjects (and even different bed posi-
tions), our bowel gas segmentations likely suffered from inconsis-
tencies and hence the comparatively low DSC achieved for bowel
gas. Previous PET/MR studies have generally ignored the impact of
bowel gas on attenuation correction because of these difficulties
(also because their methods relied on image registration for ground
truth), which led some to replace gas with tissue-equivalent CT

numbers (19). Given that the volume of gas present in the abdomen
and pelvis can be sizeable, we aimed to include bowel gas. For
example, in the 6 test subjects of this study, we found that the
volume of bowel gas in the lower abdomen and pelvis (extending
from the bottom of the liver to the bottom of the pelvis) was
between 5% and 12% (50–130 mL) of the volume of bone in the
same region, where we defined air as �200 HU and bone as �200
HU. In our sensitivity tests, we showed that while ignoring bowel
gas did not create large systematic PET errors (5.9% RMSE), its
effect was actually greater than using a discrete CTAC instead of a
continuously-valued CTAC (4.4% RMSEgas). In future work, we
plan to designate a separate tissue class (or classes) for bowel gas
and assess if different MRI sequences can provide better and more
consistent contrast for detecting air cavities. In addition, future
work should include a direct comparison of our method with that of
a UTE/ZTE method and validation of our method using an inde-
pendent cohort at a separate institution, both of which were not
possible with this data set.

CONCLUSION
We have shown that deep learning–based MRAC in the pelvis
using only diagnostic MRI sequences is feasible and improves
upon the current commercial solution.

Supplemental Materials
Supplemental Material: http://dx.doi.org/10.18383/j.tom.
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Figure 8. Comparisons of the reference CT (CTref, top) to the system MRAC’s substitute CT (middle) and the deepMRAC
substitute CT (bottom) are shown for an example subject. Both axial section and coronal section are shown. Resulting
pixel-wise PET error maps, relative to the PET image reconstructed with CTref, are also shown.
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