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Combination antibiotic therapy for multidrug-resistant
Gram-negative bacteria
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Abstract
Combination antibiotic therapy for Gram-negative sepsis is controversial. The present review provides a brief summary of the
existing knowledge on combination therapy for severe infections with multidrug-resistant Pseudomonas spp., Acinetobacter spp.,
and Enterobacteriaceae. Empirical combination antibiotic therapy is recommended for severe sepsis and septic shock to reduce
mortality related to inappropriate antibiotic treatment. Because definitive combination therapy has not been proven superior to
monotherapy in meta-analyses, it is generally advised to de-escalate antibiotic therapy when the antibiotic susceptibility profile
is known, although it cannot be excluded that some subgroups of patients might still benefit from continued combination
therapy. Definitive combination therapy is recommended for carbapenemase-producing Enterobacteriaceae and should also be
considered for severe infections with Pseudomonas andAcinetobacter spp. when beta-lactams cannot be used. Because resistance
to broad-spectrum beta-lactams is increasing in Gram-negative bacteria and because no new antibiotics are expected to
become available in the near future, the antibacterial potential of combination therapy should be further explored. In vitro data
suggest that combinations can be effective even if the bacteria are resistant to the individual antibiotics, although existing
evidence is insufficient to support the choice of combinations and explain the synergistic effects observed. In vitro models can
be used to screen for effective combinations that can later be validated in animal or clinical studies. Further, in the absence of
clinical evidence, in vitro data might be useful in supporting therapeutic decisions for severe infections with multidrug-resistant
Gram-negative bacteria.
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Introduction

Combination antibiotic therapy is frequently used to
treat severe Gram-negative infections but is contro-
versial and debatable. Potential achievements with
combinations as compared with monotherapy include
a broader antibacterial spectrum, synergistic effects,
and reduced risk for emerging resistance during ther-
apy. In the absence of evidence-based treatment
options, combinations are increasingly employed to
enhance the antibacterial effects of available drugs
against multidrug-resistant strains. However, exces-
sive use of combinations should be avoided because it
might be associated with increased risk for toxicity,
superinfections, selection of resistant strains, and
higher costs.

The aim of the present review is to present and
discuss existing knowledge on combination therapy
for severe infections with Gram-negative bacteria, as
well as to examine the potential use of antibiotic
combinations and in vitro studies to manage the
growing threat of multidrug-resistant Pseudomonas
spp., Acinetobacter spp., and Enterobacteriaceae.

Empirical combination therapy for
Gram-negative sepsis

The results of published clinical studies and meta-
analyses on combination therapy for Gram-negative
sepsis are diverse and contradictory (1–5). In a review
article, combination therapy was associated with
reduced mortality only in the subgroup of
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Pseudomonas aeruginosa bacteraemia (1). In another
review combination therapy was superior to
monotherapy for severely ill patients, particularly
those in septic shock (2). According to a recent
Cochrane review, the addition of an aminoglycoside
to a broad-spectrum beta-lactam does not reduce the
overall mortality in patients with Gram-negative
sepsis, but is associated with an increased risk for
adverse events and is therefore discouraged (3).
The conflicting results might be explained by

variations between studies with regard to patient
characteristics, severity of infections, infection sites,
causative bacteria, and antibiotic treatment. Delayed
appropriate antibiotic therapy is known to be strongly
associated with increased mortality in patients with
septic shock (6), and broad-spectrum combination
therapy will increase the probability for appropriate
therapy as compared with single antibiotics (4,6–9).
Therefore, empirical combination therapy is recom-
mended for severe sepsis and septic shock with Gram-
negative bacteria, particularly for neutropenic patients
and patients at high risk of being infected with
multidrug-resistant strains (10). The optimal choice
of antibiotics depends on the local resistance epide-
miology as well as individual risk factors for resis-
tance, including recent antibiotic use, hospitalization,
and previous colonization or infection with resistant
strains (5).

Definitive combination therapy for
Gram-negative sepsis

Definitive combination therapy including two anti-
biotics to which the bacteria are susceptible has been
suggested to improve clinical outcome as compared
with monotherapy for critically ill or neutropenic
patients and severe infections with Pseudomonas
spp. (11,12). Further, it has been argued that combi-
nations should be used to prevent emergence of
resistance during therapy (13). However, recent
meta-analyses conclude that the existing clinical evi-
dence is insufficient to support the use of definitive
combination therapy for these reasons and that com-
bination therapy is associated with an increased risk
for ototoxicity, nephrotoxicity, bacterial superinfec-
tions, and selection of resistant strains (3,5). It has
therefore been recommended to de-escalate antibiotic
treatment to the most appropriate single agent as soon
as the antibiotic susceptibility profile of the causative
pathogen is known (5,10).
However, the non-inferiority with monotherapy

reported in these meta-analyses refers to treatment
with a broad-spectrum beta-lactam (3,5) and might
not be valid for severe Gram-negative infections when
these antibiotics cannot be used due to resistance or

intolerance. For example, clinical studies strongly
suggest that combination therapy is superior to mono-
therapy for carbapenemase-producing Enterobacteria-
ceae, even when the isolated bacteria are susceptible
in vitro to the individual drugs (14–16). Monotherapy
with an aminoglycoside is equally effective as
beta-lactam antibiotics for urinary tract infections,
but not for other infections, severe sepsis, or septic
shock (17). Tigecycline is associated with higher
mortality rates than carbapenems for severe Gram-
negative infections, especially for hospital-acquired
pneumonia, and has been questioned because of a
bacteriostatic effect and reports of emerging resis-
tance and breakthrough bacteraemia during therapy
(18–22). Based on existing clinical data and a high risk
for resistance development when used alone, mono-
therapy is not recommended for colistin or parenteral
fosfomycin (14,15,21,23–25).
Thus, when beta-lactams are not suitable,

prolonged or definitive combination therapy might
be warranted for severe Gram-negative infections to
improve the insufficient clinical efficacy of available
treatment options.

Suggested antibiotic combinations

Clinical data to support the choice of antibiotic
combinations are sparse and conflicting. Outcome
might be difficult to assess for the severely ill patients
included in these studies because of frequent changes
in antibiotic therapy, co-morbidity and high all-cause
mortality. Moreover, the results for specific combina-
tions might differ between studies because of
differences in patient material, infections, antibiotics
used, dosage regimens, treatment durations, and
strain-dependent factors.
Combination therapy for suspected Gram-negative

sepsis and severe infections with Pseudomonas spp.
typically includes a broad-spectrum beta-lactam and
an aminoglycoside or a fluoroquinolone. However,
colistin combinations are increasingly used as a last-
resort treatment for multidrug-resistant strains
(1,2,5,7–10,21). Combinations that include an amino-
glycoside,ampicillin/sulbactam,acarbapenem,colistin,
or rifampin have been successful against multidrug-
resistant Acinetobacter spp. (26–29). Colistin–tigecy-
cline and other combinations including an aminoglyco-
side, a carbapenem, colistin, fosfomycin, rifampin, or
tigecycline have been advocated for carbapenemase-
producing Enterobacteriaceae (14,16,21,30,31). Based
on retrospective analysis, it has been recommended to
use combinations including a carbapenem for these
bacteria if the carbapenem minimum inhibitory
concentration (MIC) is £4 mg/L (30).
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Combinations effective in vitro

In vitro, antibiotic combinations are usually evaluated
with the checkerboard method or by time-kill
experiments using static antibiotic concentrations.
According to standard definitions, synergy depicts
an enhanced antibacterial effect with the combination
after 24 hours as compared with the effects of the
individual antibiotics. The results from published
in vitro studies are conflicting, which may be due to
differences in methods, antibiotic concentrations,
bacterial inocula, and strain-dependent factors. How-
ever, in many of these studies antibiotic combinations
have demonstrated synergistic or bactericidal effects
against bacteria that have been resistant to the
individual drugs.
For example, synergistic effects have been demon-

strated for double and triple antibiotic combinations
including an aminoglycoside, an anti-pseudomonal
beta-lactam, colistin, a fluoroquinolone, a macrolide,
or rifampin against multidrug-resistant Pseudomonas
spp.(32–36).Doubleandtripleantibioticcombinations
including an aminoglycoside, ampicillin/sulbactam, a
carbapenem, colistin, rifampin, tigecycline, or vanco-
mycin have been effective against multidrug-resistant
Acinetobacter spp. (35,37–40). For carbapenemase-
producing Enterobacteriaceae, double and triple antibi-
otic combinations that include an aminoglycoside,
aztreonam, a carbapenem, colistin, rifampin, tigecy-
cline, or fosfomycin have demonstrated synergistic or
bactericidal effects in vitro (25,35,41–44).

Mechanisms of synergy

The mechanisms of synergy are often not fully
understood, but plausible explanations exist for
some antibiotics. Colistin, which is frequently a
component of effective combinations, increases the
permeability of other antibiotics through the bacterial
outer membrane by a detergent mechanism (45). This
mechanism can counteract acquired resistance
mediated by decreased antibiotic permeability (e.g.
porin loss), and will also enable antibiotics that are
not traditionally considered treatment options for
Gram-negative bacteria to exert their actions. For
instance, the addition of rifampin to colistin and
meropenem/doripenem has resulted in synergistic
effects in vitro against multidrug-resistant Pseudomonas
spp., Acinetobacter spp., and carbapenemase-
producing Enterobacteriaceae and has been reported
as successful treatment in case reports
(35,44,46,47). Synergy has sometimes been demon-
strated for combination therapy that comprises several
beta-lactams. For example, ertapenem–doripenem has
been used against carbapenemase-producing Klebsiella

pneumoniae (48,49). In these combinations synergy
is probably achieved because beta-lactams, when
hydrolysed, act as competitive beta-lactamase
inhibitors (50).

Discussion and conclusions

Empirical combination antibiotic therapy is
recommended for severe sepsis and septic shock
caused by Gram-negative bacteria to reduce mortality
related to inappropriate antibiotic treatment.
Definitive combination therapy has not been proven
superior to monotherapy with a broad-spectrum beta-
lactam for patients with Gram-negative sepsis but is
associated with an increased risk for toxicity and
bacterial superinfections. However, the performed
meta-analyses might have been insufficiently powered
to detect benefits of definitive combination therapy in
certain subgroups (e.g. critically ill or neutropenic
patents and Pseudomonas aeruginosa bacteraemia).
Definitive combination therapy is advocated for
carbapenemase-producing Enterobacteriaceae and
should also be considered for Pseudomonas and Aci-
netobacter spp. in situations in which beta-lactam
monotherapy cannot be used because alternative
antibiotics alone are often insufficient for severe
infections.
Because resistance to carbapenems and other

broad-spectrum beta-lactams is increasing, and
because there is a lack of new antibiotics, it is urgent
to explore the potential of combination therapy to
enhance the antibacterial effects of available drugs.
Clinical data to support the choice of combinations
are insufficient. In vitro data suggest that combination
therapy can be effective even if the bacteria are
resistant to the individual drugs, but the results
vary greatly between studies. A better appreciation
of the mechanisms of synergy would facilitate the
understanding of results obtained and help to predict
the effects of other antibiotic combinations. For
example, colistin is more likely to overcome imper-
meability than changes in the target molecule, and
ertapenem can act as a competitive carbapenemase
inhibitor in the periplasmic space only if the antibiotic
molecules can penetrate the bacterial outer
membrane.
For several reasons, the clinical relevance of in vitro

findings is uncertain. However, in vitromodels can be
used to perform a large-scale screening for synergistic
combinations to be further explored in animal studies
and prospective clinical studies. In addition, in situa-
tions where there are no evidence-based treatment
options, in vitro data can be useful to support
therapeutic decisions for severe infections with
multidrug-resistant Gram-negative bacteria.
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