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Abstract

Background: The Wnt genes encode secreted glycoprotein ligands that regulate a wide range of developmental
processes, including axis elongation and segmentation. There are thirteen subfamilies of Wnt genes in metazoans
and this gene diversity appeared early in animal evolution. The loss of Wnt subfamilies appears to be common in
insects, but little is known about the Wnt repertoire in other arthropods, and moreover the expression and
function of these genes have only been investigated in a few protostomes outside the relatively Wnt-poor model
species Drosophila melanogaster and Caenorhabditis elegans. To investigate the evolution of this important gene
family more broadly in protostomes, we surveyed the Wnt gene diversity in the crustacean Daphnia pulex, the
chelicerates Ixodes scapularis and Achaearanea tepidariorum, the myriapod Glomeris marginata and the annelid
Platynereis dumerilii. We also characterised Wnt gene expression in the latter three species, and further investigated
expression of these genes in the beetle Tribolium castaneum.

Results: We found that Daphnia and Platynereis both contain twelve Wnt subfamilies demonstrating that the
common ancestors of arthropods, ecdysozoans and protostomes possessed all members of all Wnt subfamilies
except Wnt3. Furthermore, although there is striking loss of Wnt genes in insects, other arthropods have
maintained greater Wnt gene diversity. The expression of many Wnt genes overlap in segmentally reiterated
patterns and in the segment addition zone, and while these patterns can be relatively conserved among
arthropods and the annelid, there have also been changes in the expression of some Wnt genes in the course of
protostome evolution. Nevertheless, our results strongly support the parasegment as the primary segmental unit in
arthropods, and suggest further similarities between segmental and parasegmental regulation by Wnt genes in
annelids and arthropods respectively.

Conclusions: Despite frequent losses of Wnt gene subfamilies in lineages such as insects, nematodes and leeches,
most protostomes have probably maintained much of their ancestral repertoire of twelve Wnt genes. The
maintenance of a large set of these ligands could be in part due to their combinatorial activity in various tissues
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rather than functional redundancy. The activity of such Wnt ’landscapes’ as opposed to the function of individual
ligands could explain the patterns of conservation and redeployment of these genes in important developmental
processes across metazoans. This requires further analysis of the expression and function of these genes in a wider
range of taxa.

Background
Wnt signalling regulates many developmental processes
in metazoans, including cell proliferation, migration and
pattern formation [1]. The Wnt genes encode secreted
glycoprotein ligands that bind to various transmembrane
receptors thereby triggering intracellular cascades,
including the b-catenin pathway, to regulate transcrip-
tion in target cells [2].
Among protostomes, Wnt signalling has been most

intensively studied in the nematode worm Caenorhabdi-
tis elegans and the fly Drosophila melanogaster. These
two model ecdysozoans have five and seven Wnt genes
respectively [3-13], which generally reflects the number
of Wnt genes found in insects with sequenced genomes
[14-16]. However, thirteen subfamilies of Wnt genes
have been reported in metazoans [17-19]. All thirteen
subfamilies are found in deuterostomes, although WntA
may have been lost in vertebrates and other lineages
[18-20]. Twelve subfamilies have also been recently
reported in lophotrochozoans, which is evidence for a
large set of Wnt genes ancestrally in protostomes [17].
This complexity in the repertoire of Wnt genes appeared
very early in metazoan evolution because twelve subfa-
milies are also found in the cnidarians Nematostella vec-
tensis and Hydra magnipapillata [18,21,22]. Taken
together, these earlier studies demonstrate striking pat-
terns of Wnt gene loss in insects and Caenorhabditis in
comparison to other animals. However, it is not yet
known if this loss of Wnt genes is a derived feature of
insects or a more general characteristic of arthropods
(or ecdysozoans). Moreover, our understanding of the
evolution of the Wnt gene family is hampered by the
paucity of expression and functional studies in arthro-
pods and protostomes other than Drosophila and Cae-
norhabditis [14,17,23-25].
A major exception to this paucity of knowledge is

wingless (wg/Wnt1). Among many other roles in Droso-
phila, wg functions as a segment polarity gene to specify
and maintain boundaries and cell fates across the pri-
mary segmental units or parasegments [3,9,26-29]. wg is
expressed at the posterior boundary of each paraseg-
ment directly juxtaposed to cells expressing engrailed
(en) at the anterior parasegmental boundary. Studies of
wg and en in other arthropods indicate that their deli-
neation of parasegmental boundaries is an ancestral fea-
ture of these animals [30-34]. Furthermore, the
expression of the wg, en and hh homologues also

delimits segmental boundaries in the annelid, Platynereis
dumerilii: a representative of lophotrochozoans, the
large sister-clade of the ecdysozoans within protostomes
[35,36]. This observation suggests that the wg-en regula-
tory system was either independently recruited for seg-
ment boundary determination in annelids and
arthropods or is plesiomorphic with respect to a seg-
mented common ancestor. This debate [37-39] could be
resolved by comparing the expression of other genes
involved in segmentation within and among arthropods
and annelids. Intriguingly, segmental expression of sev-
eral other Wnt genes has been observed in various
arthropods, suggesting that these Wnt genes may also
be involved in segmentation [23,24,30,33].
To investigate the Wnt repertoire of arthropods and

protostomes more broadly, we surveyed the Wnt genes
found in a crustacean, the water flea Daphnia pulex, a
myriapod, the millipede Glomeris marginata, two cheli-
cerates, the spider, Achaearanea tepidariorum and the
tick, Ixodes scapularis, and an annelid, the polychaete
worm Platynereis dumerilii. We then characterised the
expression of Wnt genes in Achaearanea, Glomeris, Pla-
tynereis, and Tribolium to compare the possible roles of
Wnt genes in segmentation and other developmental
processes among the arthropods, and protostomes
generally.
Our survey and analysis of Wnt genes demonstrates

that the common ancestor of arthropods contained
twelve of the thirteen subfamilies, and, therefore, that
the ancestral protostome contained all Wnt gene subfa-
milies except Wnt3 as was previously suggested by data
from lophotrochozoans [17]. We found twelve, eleven
and ten Wnt genes in Daphnia, Achaearanea and Ixodes
respectively, including orthologues of Wnt2 and Wnt4,
which are not found in insects. This shows that the loss
of Wnt genes observed in insects is not a general feature
of arthropods.
We found that many Wnt genes are expressed in seg-

mentally reiterated patterns in protostomes. For exam-
ple, Wnt10 and Wnt16, and wg, are expressed in similar
segmental patterns in arthropods and in the annelid Pla-
tynereis. However, we also found taxon-specific segmen-
tal expression of several Wnt genes, even among the
arthropods. This pattern of conservation and redeploy-
ment of Wnt genes expressed in segmentally reiterated
patterns in arthropods and the annelid was also reflected
in the expression of these genes in the posterior
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segment addition zone (SAZ) [31,40,41] (hereafter we
use this more general term rather than ‘growth zone’ as
commonly used for arthropods, see Discussion), appen-
dages, nervous system and other tissues. Indeed, the
overlapping expression of multiple Wnt genes in the
same tissues supports the hypothesis that Wnt signalling
operates through a combinatorial code of different Wnt
ligands [42].

Methods
Wnt gene sequences
Members of the Wnt subfamilies, 1, 2, 5, 7, 8, A and 16,
were previously isolated from Achaearanea or Cupien-
nius, and subfamilies 1, A and 16 from Glomeris (Addi-
tional file 1). Note that Glomeris Wnt16 and WntA were
previously erroneously characterised as Wnt7 and Wnt5
orthologues respectively [33]. We obtained sequences of
a further four Wnt genes from both Achaearanea and
Glomeris using degenerate PCR with embryonic cDNA
template. The sequences of degenerate primer pairs
used to isolate Wnt genes are shown in Additional file
2. Larger fragments of initial PCR fragments were
obtained via RACE PCR using the Marathon RACE Kit
(Clontech). RNA isolation from spiders and Glomeris,
and cDNA synthesis was carried out as described pre-
viously [33,43].
For Daphnia, known Wnt gene sequences were

obtained from GenBank and protein sequences were
used to perform tblastn searches of assembled genomic
scaffolds, predicted gene models and ESTs (Daphnia
pulex v1.1, September 2006; http://www.jgi.doe.gov/
Daphnia and http://wFleaBase.org). Segment pairs with
an E-value smaller than 105 were selected and the corre-
sponding scaffolds were manually curated with the help
of Dappu v1.1 filtered gene models. Predicted gene
structures were refined by comparison to Wnt genes
from other species (Nematostella vectensis, Drosophila
melanogaster, Tribolium castaneum, Apis mellifera,
Homo sapiens, Mus musculus and Strongylocentrotus
pupuratus) to identify the correct open reading frames.
Partial cDNAs were cloned to confirm most intron-exon
boundaries. Briefly, TRIzol (Invitrogen) was used to iso-
late RNA from Daphnia embryos of mixed stages. RNA
was reverse transcribed using SuperScriptIII (Invitrogen)
and RT-PCR was performed using primers specific to
each predicted Wnt open reading frame. Sequence from
each gene model was used to search the Daphnia
assembly and confirm the presence of twelve Wnt gene
sequences and the absence of any additional Wnt family
members (Additional file 1). The synteny of Daphnia
Wnt genes was inferred from their linkage on the same
genomic scaffolds.
Gene models of nine Wnt genes from the tick Ixodes

scapularis were retrieved from VectorBase [44] and

GenBank deposits (Additional file 1). A fragment of a
tenth Ixodes Wnt gene was also identified through
tblastn searches (Additional file 1).
Six Platynereis Wnt genes were isolated in a previous

study [19]. Two more Wnt genes (Pd-Wnt5 and Pd-
Wnt8) were found in an EST collection [45]. To identify
remaining Wnt orthologues a combination of more spe-
cific primers were used (Additional file 2). The accession
numbers of all Wnt gene sequences used in this study
are shown in Additional file 1.

Phylogenetic analysis
Two data sets were used for the analysis, the first set
consisted of 93 amino acid sequences from arthropods,
Platynereis and human (Additional file 3: Wnt sequence
data set 1), and the larger second set included additional
sequences from a nematode, cnidarian and three lopho-
trochozoans (Additional file 4: Wnt sequence data set
2). Sequences in both data sets were aligned using T-
coffee [46] and hand-edited in SeaView [47] to remove
poorly aligned amino acid positions (Additional files 3
and 4).
Initially, the best-scoring substitution model was

determined among the amino acid models in RAxML
[48] as WAG+F+Γ (WAG with empirical base frequen-
cies and the Γ model of rate heterogeneity; Whelan and
Goldman [49]).
Bayesian phylogenetic analyses were performed with

MrBayes [50]. The final topology was estimated using
13,000,000 iterations using 3250 burning cycles and
sampling every 1000 iteration. Clade support was
assessed with posterior probabilities computed with
MrBayes and non-parametric bootstrapping implemen-
ted in RAxML [48] based on 1000 replicates.

Animals
Spiders (Achaearanea tepidariorum and Cupiennius
salei) were obtained from laboratory stocks in Cologne
and Göttingen [24,51]. Spider embryos were staged
according to Akiyama-Oda and Oda [52]. General hand-
ling and staging of Glomeris is described in Janssen et
al., [33]. Tribolium beetles (Ga-1 strain) were obtained
from laboratory stocks at Kansas State University. Bee-
tles were reared at 30°C in whole-wheat flour supple-
mented with 5% dried yeast. Platynereis larvae and
juveniles were obtained from a breeding culture estab-
lished in Gif-sur-Yvette according to the protocols of
Fischer and Dorresteijn http://www.platynereis.de.

Staining and microscopy
Whole mount in situ hybridisation (WMISH) was per-
formed for spiders as described in the published proto-
col for Cupiennius embryos [43]. For Glomeris, WMISH
was performed as described in Prpic and Tautz [53] and
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Janssen et al. [32]. Both spider and Glomeris embryos
were counterstained with Sytox Green or DAPI and
images were captured with a Leica dissection micro-
scope or a Zeiss Axioplan-2 microscope. For Tribolium
and Platynereis, WMISH was performed as described
previously [41,54-57]. All digital images have been sub-
jected to adjustment of brightness, colour values and
contrast using Adobe Photoshop CS3.
In Achaearanea and Cupiennius gene expression was

investigated in stage 4 to stage 10 embryos, which repre-
sent germ disc embryos with radial symmetry (stages 4
to 6), and germ band embryos with axial symmetry
(stages 7 to 10) and up to 7 opisthosomal segments
[52,58]. In Glomeris, gene expression was investigated in
stage 0 (blastoderm) to stage 6.1 embryos; see Janssen et
al. [33] for a detailed description of staging. In Tribo-
lium, gene expression was analysed in embryos at the
fully extended germ band stage. In Platynereis, as in
many other annelids, the elongation of the body axis
continues during post-embryonic development as new
segments are added from a sub-terminal SAZ [41]. We
thus compared the expression of Wnt genes during
trunk formation in both embryonic and post-embryonic
development.

Results
Phylogenetic analysis of Wnt protein sequences and
designation of Wnt gene subfamilies
Combining the findings of database searches, genome
annotation, degenerate PCR and Wnt genes identified in
previous studies (see Methods), we found a total of ele-
ven Wnt genes in Achaearanea, (with WntA from
Cupiennius representing a twelfth spider Wnt gene),
seven in Glomeris, twelve in Daphnia, ten in Ixodes and
twelve in Platynereis. These sequences were then aligned
with the Wnt sequences of Acyrthosiphon pisum, Droso-
phila, Homo and Tribolium (Additional files 1 and 3). A
further alignment was generated using a larger set of
Wnt genes containing the Wnt sequences from Caenor-
habditis, Capitella, Helobdella, Lottia and Nematostella
in addition to the sequences used in the first set of Wnt
genes (Additional files 1 and 4). We then carried out
phylogenetic analyses using Maximum likelihood
approaches (Wnt sequence sets 1 and 2) and additional
Bayesian approaches (Wnt sequence set 1) (see Meth-
ods) (Figure 1 and Additional files 5, 6, 7).
Our phylogenetic analyses of both sets of Wnt

sequences found good support for the thirteen metazoan
Wnt gene subfamilies and twelve protostome Wnt subfa-
milies, which corroborates the findings of several pre-
vious studies (Figure 1 and Additional files 5, 6, 7)
[17-19,21]. The phylogenetic assignment of Wnt genes
from each organism to particular subfamilies is sum-
marised in figure 2.

Our results show that the common ancestor of the
arthropods possessed members of all Wnt subfamilies
with the exception of Wnt3, supporting the previous
suggestion that Wnt3 was lost in the lineage leading to
protostomes [17]. This is most strikingly evidenced by
the identification of members of all the other twelve
Wnt subfamilies in both Daphnia and Platynereis (Fig-
ures 1, 2 and Additional files 5, 6, 7).
Comparison of insects to other arthropods illustrates

that the loss of Wnt genes appears to be more common
among the insects, either through loss in the lineage
leading to the insects, for example, Wnt2 and Wnt4, or
losses in particular clades, for example, Wnt16 in holo-
metabolous insects, Wnt11 in dipterans, and WntA in
Drosophila (Figure 2). However there are probably also
some cases of Wnt gene loss in non-insect arthropods,
for example, Wnt10 may have been lost in chelicerates
and myriapods (Figure 2), and we were unable to find a
Wnt2 orthologue in Ixodes. In addition, we cannot
exclude that there has been more extensive loss of Wnt
genes in Glomeris as an alternative explanation to lim-
itations in screening using degenerate PCR in this
species.
In contrast to the patterns of Wnt gene loss, the pre-

sence of duplicates of Wnt genes appears to be less fre-
quent. While we found duplications of both Wnt7 and
Wnt11 in Achaearanea, no other duplications have yet
been found in any other arthropod (Figure 2). Further-
more, although duplications of Wnt5, Wnt11 and Wnt16
are found in other lophotrochozoans, we found only sin-
gle copies of each Wnt gene in Platynereis (Figure 2) [17].
Several Drosophila and Caenorhabditis Wnt genes

have previously been described as ‘orphan’ genes, how-
ever, our phylogenetic analysis allowed us to assign
these genes to specific subfamilies. We found strong
support that Drosophila WntD is the Drosophila ortho-
logue of Wnt8 [19,59] (Figures 1, 2, and Additional file
5). Moreover, while the Caenorhabditis Wnt genes Cwn-
1, Cwn-2 and lin-44 were previously assigned to the
Wnt4, Wnt5 and Wnt10 subfamilies respectively, the
homology of mom-2 and egl-20 could not be determined
[19]. Our analysis supports the previous assignments of
Cwn-1, Cwn-2 and lin-44, and furthermore indicates
that mom-2 and egl-20 are probably Wnt9 and Wnt16
orthologues respectively (Additional file 5).

Synteny of Wnt genes
Analysis of the arrangement of Wnt genes on the Daph-
nia genome scaffolds revealed two syntenic clusters of
these genes: Wnt9-Wnt1-Wnt6-Wnt10 and Wnt5-Wnt7
(Additional file 8). This is consistent with similar Wnt
clusters in other metazoans, including Nematostella, and
therefore reflects an ancient arrangement of Wnt genes
in animals [17,60]. Indeed Lottia gigantea and Daphnia
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Figure 1 Maximum likelihood tree of Wnt amino acid sequences in selected metazoans. Bootstrap values/poster probabilities from
Maximum likelihood and Bayesian analyses respectively are given on branches. Note that support for the position of Is_Wnt16 was only found
using Maximum likelihood (see also Additional file 5). Wnt amino acid sequences were used from the following species: Achaearanea
tepidariorum (At), Acyrthosiphon pisum (Ap), Cupiennius salei (Cs), Daphnia pulex (Dp), Drosophila melanogaster (Dm), Glomeris marginata (Gm),
Homo sapiens (Hs), Ixodes scapularis (Is), Platynereis dumerilii (Pd) and Tribolium castaneum (Tc). Bootstrap values and posterior probabilities of all
branches are given in Additional files 6 and 7 respectively.
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exhibit very similar organisation of these Wnt genes
(Additional file 8). However, the precise organisation of
these clusters can vary between lineages, for example,
Wnt6 and Wnt9 are oriented differently in Drosophila
and Daphnia (Additional file 8). Interestingly, these Wnt
clusters may represent ancient duplications of Wnt
genes; a hypothesis supported by the phylogenetic rela-
tionships of wg and Wnt6, and Wnt9 and Wnt10 in our
study (Figure 1 and Additional file 5) and several pre-
vious studies [17-19].

Expression of Wnt genes
To further compare the Wnt genes among arthropods
and annelids and to investigate the possible develop-
mental roles of these genes, we characterised the expres-
sion of these genes in Achaearanea, Glomeris, and
Platynereis and further characterised Wnt genes with
segmentally reiterated expression in Tribolium [14].
Note that the Drosophila Wnt gene names do not refer
to homology with vertebrate Wnt subfamilies, but rather
they were mostly named in the order they were discov-
ered (e.g. DWnt2 is actually a Wnt7 orthologue not a
Wnt2 orthologue). Therefore, below, we use the gene

name with respect to its vertebrate orthologue and
where appropriate give the Drosophila name in parenth-
esis, with the exception of wg (also see Additional file 1).

wg
In Achaearanea, wg is expressed in stripes in the L1 and
L2 segments, but only during stage 8, and such stripes
are never observed in the other prosomal segments
(Additional file 9: panel a). Subsequently, dots of wg
expression associated with the developing limb buds are
observed in all prosomal segments (Figure 3a, and Addi-
tional file 9: panel b). In the opisthosoma, At-wg is only
expressed in the dorsal cells of the O2 and O3 segments
(Figure 3c, d, and Additional file 9: panel b), and is not
observed in the SAZ at any stage (Figure 3b). Later in
development, At-wg expression continues in the proso-
mal appendages, and is also observed in opisthosomal
limb buds, the labrum and the hindgut (Figure 3d, and
Additional file 9: panel c).
In contrast, in a different spider, Cupiennius, wg is
expressed at the posterior of each parasegment and in
the SAZ [30] consistent with classic roles in segment
addition and boundary formation as described in other

Figure 2 Metazoan Wnt genes. The Wnt subfamilies (1 to 11, 16 and A) found in the various metazoans are represented by coloured boxes.
Grey boxes indicate the loss of particular Wnt subfamilies and boxes with question marks indicate Wnts not found in some animals, but which
cannot be definitively described as ‘lost’ because the relevant genomes have not been sequenced or require more comprehensive annotation.
Duplicated Wnts are represented by two overlapping boxes. Note that Wnt8 is also called WntD in Drosophila and Tribolium. The phylogenetic
relationships of the various animals is indicated by the tree on the left [14-16,21]. The asterisk indicates that for WntA an orthologue was isolated
from another spider, Cupiennius. Note that the complete Achaearanea Wnt6 sequence was only identified subsequent to the phylogenetic
analysis.
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arthropods such as Tribolium (Figure 4a, b)
[3,33,34,61,62]. Remarkably, this suggests that Achaeara-
nea has either lost the expression and associated func-
tions of wg in most segments and the SAZ or there is
an additional paralogous wg gene in this spider not
found in our PCR screen.
wg expression in Platynereis was previously described

in [35]. wg is expressed at the posterior boundary of
each segment both in the trochophore larva (Figure 5a,
b) and during posterior growth (Figure 6a). During
annelid posterior growth, wg expression is also observed
in the hindgut and in the posterior-most pygidial ecto-
derm (Figures 6b) [35].

Wnt2
It is likely that the Wnt2 subfamily was lost in the line-
age leading to insects (Figure 2), and although we were

unable to isolate an orthologue from Glomeris we
assayed the expression of the Wnt2 genes from the spi-
der Achaearanea and the annelid Platynereis.
In the spider Achaearanea, Wnt2 is first expressed

relatively late in embryogenesis, in the ocular region of
the developing cephalic lobes at stage 9, and this expres-
sion pattern persists into stage 10 (Figure 3e). We did
not observe a distinct expression pattern for Wnt2 in
Platynereis, possibly because of a low level of expression.

Wnt4
It is probable that the Wnt4 subfamily was also lost in
the lineage leading to insects, but is present in other
arthropods and lophotrochozoans (Figure 2). Analysis of
Wnt4 expression in Achaearanea and Platynereis shows
it is highly divergent between chelicerates and annelids.
In Achaearanea, Wnt4 expression is restricted to only

Figure 3 wg, Wnt2, Wnt4, Wnt7-1, Wnt7-2 and Wnt11-2 expression in Achaearanea. At-wg is expressed in the anterior ventral portion of the
limb buds (a), but is not observed in ventral or dorsal regions of the prosomal segments or in the SAZ (b). Expression of At-wg extends along
the axis of the growing legs and is observed in dorsal stripe in O2 and O3 (c) and later in O1 to O5 in groups of cells in the opisthosomal limb
buds (d). At-Wnt2 expression is observed from stage 9 onwards in a central and lateral triangular shaped domain in the developing head lobes
(e). At-Wnt4 is only expressed in a few cells at the very posterior of the SAZ during late embryonic development (f). Whereas At-Wnt7-1 is only
expressed in the SAZ (g), At-Wnt7-2 is expressed at the base of the appendages and in a lateral anterior and posterior domain in the head lobes
(h). At-Wnt11-2 expression appears at stage 6 in the posterior end of the embryo and persists in the SAZ throughout embryonic development (i).
At-Wnt11-2 is also expressed in an anterior domain along the proximo-distal leg axis, the buds of the opisthosomal appendages and in the
stomodeal region (i). Ch, cheliceres; Pp, pedipalps; L1 and L4, leg bearing segments; O1 to O5, opisthosomal segments; SAZ, segment addition
zone. (a) to (d), ventral views of whole mounted embryos. (e), lateral view. (f), anterior view with posterior curving to the right. (g) to (i), flat
mounted embryos with anterior to the left.
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Figure 4 Expression of wg, Wnt5, Wnt6, Wnt7 Wnt10 and WntA with respect to en in Tribolium. Germ band extended Tribolium embryos
double stained for transcripts of en and wg (a), (b); Wnt5 (c), (d); Wnt6 (e), (f); Wnt7 (g), (h); Wnt10 (i), (j) and WntA (k), (l). High magnification
images of segments are shown in (b), (d), (f), (h), (j) and (l). All embryos are shown with anterior to the left. thoracic (T1, T2) and abdominal (A2,
A3, A8, A9) segments are indicated.
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few cells at the very posterior of the germ band during
the later stages of embryogenesis (Figure 3f). In contrast,
in Platynereis, Wnt4 is expressed in stripes in the ante-
rior part of each segment and could therefore be
involved in defining segment boundaries (Figures 5c, d,
6l). The stripes are limited to the dorsal and lateral
parts of nascent embryonic and post-embryonic seg-
ments. Additionally, Pd-Wnt4 is expressed in a longitu-
dinal stripe along the ventral midline in forming

segments as well as the SAZ and the ventral pygidial
ectoderm (Figures 5c, d, 6l).

Wnt5
In Tribolium, Wnt5 is expressed in ventral stripes at the
posterior of each parasegment and curiously in at least
one row of cells in the anterior of each parasegment
overlapping with en expression (Figure 4c, d). Tc-Wnt5
expression is also observed in the SAZ, distal tips of

Figure 5 Expression patterns of five Wnt genes in 48 hours post-fertilization trochophore larvae of the annelid Platynereis. The
expression of these Wnt genes is observed either in reiterated ectodermal segmental stripes and/or in the pygidial/proctodeal presumptive
territory. A schematic description of the trochophore larva is given in (k). pt: the prototroch, a ciliated belt used for swimming, also highlighted
by a black line on larvae photographs, divides the larva into an apical episphere and a vegetal hyposphere; pr: proctodeum; s: stomodeum; ps:
peristomium, a band of embryonic tissues around the forming mouth; 0: anterior-most segmental unit; 1-3: presumptive areas of the larval
appendage-bearing segments. h: the future head of the worm formed by the episphere plus peristomium plus segment 0; t: the future trunk of
the worm formed by larval segments 1-3 plus the pygidium. (l) shows the two approximate focal planes that are used for larvae photographs.
The first and third panel columns (a), (c), (e), (g), (i) show ventral views of trochophore larvae, focusing mainly on tissues of the ventral
neuroectoderm that will form the ventral nerve cord. The second and fourth panel columns (b), (d), (f), (h), (j) are frontal optical section focusing
on the lateral parapodia-forming fields. The Wnt stripes corresponding to each presumptive larval segment are numbered 1, 2, 3. In addition, a
more anterior metameric unit located just below the prototroch is numbered 0. This unit does not produce a larval segment but fuses with the
head early in development. Black asterisks show expressions in the pygidial/proctodeal area. Green asterisks show expressions in the stomodeal
bulb that will give rise to the mouth. The midline expression of Pd-Wnt4 is indicated by a black arrow. Internal Pd-Wnt5 and Pd-Wnt11 expression
potentially located either in the segmental mesoderm or in ectodermal cells of the chaetal sacs are shown by red arrowheads. Additional
expression of Wnt genes in the nascent brain are described elsewhere [84].
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Figure 6 Expression patterns of seven Wnt genes during posterior segment addition in the annelid Platynereis. All panels show series of
segments produced 8 days after caudal amputation and regeneration; vent, dors, lat: ventral, dorsal and lateral views respectively. Sag and front:
sagittal and frontal sections (optical or tissue) respectively. The SAZ is highlighted with a yellow dashed line in all micrographs. The pygidium is
located below or right of the SAZ line, depending on the view. In (g), (j), (l), (n), arrows indicate the position of segmental grooves. (a), (b)
Expression of Wnt1 in the posterior part of forming segments and parapodia (a), in the hindgut (hollow arrowheads) and in the ectoderm of the
pygidium (black arrowhead). (c), (d) Expression of Wnt10 in the posterior part of forming segments and parapodia, as well as in the hindgut
(hollow arrowheads). (e)-(g) Expression of Wnt11 in the posterior part of forming segments and parapodia, in a pair of cells of the ganglia of the
ventral nerve cord (black arrowhead) and in the ectoderm at the base of the pygidial cirri (hollow arrowheads). (g)-(k) Expression of Wnt16 in the
posterior part of forming segments but not in parapodia. (k) Expression of Wnt16 in the mesoderm of the pygidium (red arrowhead) but not in
the ectoderm (black arrowheads). (l) Expression of Wnt4 in the ventral midline of forming segments (black arrow), in the ventral part of the SAZ
and pygidium (hollow arrowhead) and in the anterior part of forming segments. (m)-(o) Expression of Wnt5 in stripes in the anterior part of
forming segments and in a complex pattern in the forming parapodia. (n) Is a close up view of (m) at the level of the ventral ectoderm,
showing the location of Wnt5 stripes posterior to the segmental grooves. (o) Shows the weaker dorsal stripes of Wnt5 that do not reach the
dorsal midline, unlike Wnt10, Wnt11 and Wnt16. Black arrowheads show the forming parapodia. (p) Expression of Wnt7 in the hindgut (hollow
black arrowhead) and broadly in the segmental mesoderm (red arrowheads). Patterns are recapitulated schematically in the lower part of the
figure. All schemes are ventral views. A brown dashed line represent the SAZ. For the purpose of clarity, the expression of Wnt5 and Wnt7 in the
mesoderm of forming segments has been omitted.
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developing appendages, in the region of the labrum/
stomodeum, and the ocular region of the head lobes
(Figure 4c) [14].
In Achaearanea, Wnt5 is first expressed in a broad

anterior domain (Additional file 9: panel d), and subse-
quently, in the cephalic lobes, throughout the SAZ,
and segmentally in the developing neuroectoderm on
either side the ventral midline, juxtaposed to en
expressing cells (Figure 7a, b). At-Wnt5 transcripts can
also be detected in a medial ring in the appendages,
the labrum and the heart (Figure 7a). Similar expres-
sion patterns have been described for Wnt5 in Cupien-
nius [30,63].
In Platynereis, Wnt5 is also expressed in clear segmen-

tal stripes. However, in contrast to Wnt5 expression
observed at the posterior region of parasegments in
arthropods, Pd-Wnt5 is only expressed in the anterior
part of segments (Figures 5e, f, 6m-o, and Additional
file 10: panel f). These stripes encompass both the ecto-
derm and the underlying mesoderm (Figure 5f). Pd-
Wnt5 is also expressed weakly in the hindgut during

posterior growth and in a complex pattern in forming
appendages.

Wnt6
In Tribolium, Wnt6 is expressed in the developing brain,
appendages, and in segmental stripes that overlap with
en expressing cells (i.e. posterior to wg expression) (Fig-
ure 4e, f). Tc-Wnt6 is also expressed in a sub-terminal
region of the SAZ (Figure 4e) [14]. In Glomeris, Wnt6 is
expressed in reiterated stripes in completed segments,
directly anterior to en expression, and at later stages is
observed in dorsal patches in each segment (Figure 8a,
b) similar to Wnt6 expression in older Tribolium
embryos. In addition, Gm-Wnt6 is expressed in specific
domains in the developing brain, in and at the posterior
of the germ band, including expression in the anal
valves (Figure 8a). Diffuse expression of Gm-Wnt6 is
also observed in the gut later in embryogenesis (not
shown).
In Platynereis, Wnt6 is expressed in the mesoderm of

trochophore larvae, and in the mesodermal layer of the

Figure 7 Expression of Wnt5, Wnt8 and Wnt16 in Achaearanea. At-Wnt5 is expressed segmentally in the developing neuroectoderm directly
anterior to en (a), (b). At-Wnt5 expression can also be detected in the head lobes, the developing labrum, the developing heart, a ring like
domain in the appendages and in the SAZ (a). At-Wnt8 is expressed segmentally and directly anterior to en expression (c), (d). At-Wnt8 is also
expressed in the SAZ, the cephalic lobes, the developing stomodeum and the appendages. At-Wnt16 transcripts are also found in segmental
strips directly anterior to en (e), (f), as well as in the tips of the legs and in a broad domain in the developing brain. At-Wnt16 expression is not
observed in the SAZ (e). L1 and L4, leg bearing segments; O1 to O4, opisthosomal segments; SAZ, segment addition zone. All embryos are flat
mounted with anterior to the left.
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Figure 8 Expression of Wnt genes in Glomeris. Stage 3 embryo double stained for Wnt6 and en (a). Higher magnification of ventral trunk
segments T1 to T3 of same embryo in (a) showing abutting expression of Wnt6 and en (b). Expression of Wnt16 and en in a stage 3 embryo (c).
Higher magnification of ventral trunk segments T1 to T3 of same embryo in (c) showing abutting segmental expression of Wnt16 and en (d).
Expression of WntA and en in a stage 5 embryo (e). Higher magnification of ventral trunk segments T1 to T4 of same embryo in (e) showing
abutting segmental expression of WntA and en (f). Stage 5 embryo stained for Wnt7 (g). Arrow indicates expression in the midgut. Note that
Gm-Wnt7 expression appears to be restricted to embryos older than approximately stage 3. Expression of Wnt8 in a stage 0.3 embryo (h). Faint
expression of Gm-Wnt8 at the posterior is out of focus in this picture. Coloration in the middle of the embryo is in the yolk; this artificial staining
appears when over-staining Glomeris embryos, which was necessary to detect specific Wnt8 transcripts. Note that Gm-Wnt8 expression appears
to be restricted to embryos younger than approximately stage 1. Expression of Wnt11 in a stage 0.3 embryo (i) and a stage 3 embryo (j).
Expression of Gm-Wnt11 is restricted to the anal valves (av) and the growing appendages (i), (j). Expression of Glomeris wg is described elsewhere
[32,33]. All embryos are shown with anterior to the left. Embryos in (a) to (f) are flat mounted. Abbreviations: an, antennal segment; av, anal
valve; lb, labrum; md, mandibulary segment; mx, maxillary segment; OC, optic lobes; pmd, pre-mandibulary segment; pmx, post-maxillary
segment; T1-T4, trunk segments one to four.
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intestine in the growing juvenile (Additional file 10:
panels a and g).

Wnt7
In Tribolium, Wnt7 is expressed segmentally in two
clusters of cells either side of the ventral midline abut-
ting en expressing cells, essentially in a similar pattern
to Tc-wg (Figure 4a, b, g, h) [14]. Tc-Wnt7 is later
expressed in the dorsal of the developing limbs and in
the developing brain (Figure 4g) [14].
The two Achaearanea Wnt7 paralogues exhibit non-

overlapping expression patterns similar to subsets of Tc-
Wnt7 expression: At-Wnt7-1 is expressed only in the
SAZ (Figure 3g), and At-Wnt7-2 is expressed in the
proximal dorsal region of the developing appendages
and in the developing brain (Figure 3h). However,
neither of the spider Wnt7 genes or Glomeris Wnt7 is
expressed in a segmental pattern like Tc-Wnt7. Gm-
Wnt7 is expressed in older embryos at the posterior of
the germ band in the anal valves, the brain, the heart,
the midgut, the labrum, the mandibles, and possibly also
weakly in the other developing appendages (Figure 8g).
In Platynereis, Wnt7 is expressed in the mesoderm of
the larva (not shown) and later during juvenile growth
(Figure 6p). Pd-Wnt7 is also strongly expressed in the
hindgut (Figure 6p).

Wnt8
In Achaearanea embryos, Wnt8 is expressed in the pos-
terior most cells of the SAZ, the cephalic lobes, the
developing stomodeum, the appendages, and in ectoder-
mal stripes anterior to en in each segment (Figure 7c, d)
[24]. Although Wnt8 is also expressed in the SAZ of
Tribolium embryos, it is not expressed segmentally in
this beetle [14,23].
In Glomeris, Wnt8 is expressed in two anterior

domains and in the putative SAZ (albeit quite weakly),
however, expression was only found in early embryos
(Figure 8h) and no segmentally reiterated expression
was observed.
Platynereis Wnt8 is expressed strongly in the future

brain of the larva (Additional file 10: panel b). Faint ven-
tral stripes are also detected in late stage trochophore
larvae (Additional file 10: panel b), but no correspond-
ing pattern is detected during posterior growth.

Wnt9
We were unable to isolate a Wnt9 gene from either spi-
der species or Glomeris, but this may reflect a limitation
of degenerate PCR rather than a loss in these lineages
because a Wnt9 orthologue is found in the tick Ixodes
(Figure 2). In Platynereis, Wnt9 is first expressed at the
posterior pole in the trochophore larva (Additional file
10: panel c). During juvenile posterior growth, it is just

observed in a few cells scattered in the gut endoderm
(Additional file 10: panel h).

Wnt10
Again we were unable to isolate a Wnt10 gene from
either Achaearanea or Glomeris and in addition no
Wnt10 orthologue was found in the Ixodes gene models
(Figure 2). In Tribolium, Wnt10 is expressed in a similar
pattern to wg in the cephalic lobes, appendages and at
the posterior parasegmental boundaries abutting en
expression (Figure 4i, j) [14]. Similar to wg/Wnt1
expression in Platynereis, Pd-Wnt10 is expressed at the
posterior boundary of each segment and in the hindgut
during posterior growth (Figure 6c, d). Surprisingly, we
did not observe a similar expression pattern in the tro-
chophore larva perhaps due to probe detection limita-
tions. Instead, two pairs of cells were stained
presumably in the anterior larval mesoderm (Additional
file 10: panel d).

Wnt11
There are two Wnt11 genes in Achaearanea. While we
did not detect any embryonic expression of the Wnt11-1
paralogue, At-Wnt11-2 is expressed in the SAZ starting
at stage 6 (Additional file 9: panel e) and then through-
out segmentation (Figure 3i). At-Wnt11-2 is also
expressed in the developing appendages in an anterior
domain along the proximo-distal axis of the prosomal
appendages and in a distal domain in the buds of
opisthosomal appendages (Figure 3i). In Glomeris,
Wnt11 is first expressed at the posterior of the germ
band (Figure 8i), and later in the anal valves, and at the
tips of each appendage (Figure 8j). In the maxillae three
spots of expression are also observed that resemble the
expression of wg in Glomeris (Figure 8j).
In Platynereis, Wnt11 is strongly expressed in segmen-

tal stripes in the posterior part of each segment in a
similar position to wg in the larva (Figure 5g, h) and
during juvenile growth (Figure 6e-g). Pd-Wnt11 is also
expressed in the brain (not shown), the stomodeum and
the presumptive pygidium (Figure 5h). During posterior
growth, it is also strongly expressed posteriorly, but in
the ectoderm covering the pygidium at the base of the
tentacular cirri rather than in the hindgut like other
Wnt genes (Figure 6e).

Wnt16
Investigation of Wnt16 expression in Achaearanea, Glo-
meris and Platynereis showed that in all three of these
animals Wnt16 is expressed in segmental stripes directly
anterior to en (Figures 5i, j, 6h-j, 7e, f, 8c, d). Thus like
wg, Wnt16 might be involved in the generation of seg-
mental and parasegmental boundaries in annelids and
arthropods respectively (perhaps with the exception of
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holometabolous insects, see figure 2). In nascent seg-
ments of Glomeris and Achaearanea embryos, Wnt16 is
observed in ventral restricted stripes (Figures 7e, f, 8c).
However, in older segments Wnt16 is expressed in
stripes either side of the ventral midline (Figures 7e, f,
8c, d). Wnt16 expression is also observed in the cephalic
lobes and the distal tips of the appendages in the spider
and millipede (Figures 7e, 8c).
In Platynereis, Wnt16 is expressed in segmental stripes

just at the posterior border of segments (Figure 5i, j, 6h-
k). Interestingly, the trochophore larvae show five stripes
of Wnt16 of unequal strength, in addition to the three
parapodia bearing larval trunk segments delineated by
the other Wnt genes. Pd-Wnt16 is also expressed in the
peristomium (the “ring” that carries the mouth just
below the prototroch in annelids) and in a transient seg-
mental anlage just posterior to it. Both segment-like
structures fuse with the head at metamorphosis. During
posterior growth, Pd-Wnt16 is also expressed in the
pygidium mesoderm, but not in the hindgut or pygidial
ectoderm like other Wnt genes (Figure 6k).

WntA
Analysis of the expression of WntA orthologues in Tri-
bolium, Cupiennius and Platynereis again revealed quite
different patterns for this Wnt subfamily across proto-
stomes. In Tribolium, WntA is expressed in the head
lobes, appendages, SAZ and segmental stripes (Figure
4k, l) [14]. The segmental expression of WntA in Tribo-
lium is again found anterior to en in a similar domain
to wg (Figure 4l). Glomeris WntA is expressed in clusters
of cells in the ventral neuroectoderm posterior to en
expressing cells, at the posterior end of the germ band
(weakly) and developing heart (Figure 8e, f) [33]. Expres-
sion of WntA is also observed in the SAZ of the spider
Cupiennius (Additional file 9: panel g), and although we
also observed expression in a distal domain in the spin-
nerets and a lateral spot in the cheliceres, WntA is not
expressed segmentally in this spider (Additional file 9:
panels g-i). Thus WntA expression is rather different
between mandibulates and chelicerates.
In Platynereis, Pd-WntA is strongly expressed in the

parapodial anlagen in larvae and during posterior
growth (Additional file 10: panels e and i). Pd-WntA
expression is later observed at the distal extremities of
growing parapodia (Additional file 10: panel i). A striped
expression in the mesoderm during posterior growth
has probably no connection to segment formation as
high magnification shows that these stripes correspond
to the walls of lateral blood vessel branching from the
dorsal and ventral blood vessels (Additional file 10:
panel j).

Discussion
Ancestral composition, conservation, loss and duplication
of protostome Wnt genes
It has been shown that the thirteen subfamilies of Wnt
genes found in metazoans appeared before the evolution
of bilaterians, and that thirteen and twelve subfamilies
are represented in extant deuterostomes and protostomes
respectively [17-22] (Figure 2). Strikingly we have now
found twelve Wnt subfamilies in both an arthropod, the
crustacean Daphnia, and in the annelid Platynereis con-
firming that the common ancestor of protostomes con-
tained all Wnt subfamilies except Wnt3. Furthermore,
our study, the first broad survey of Wnt gene diversity
across arthropods, shows that the common ancestors of
arthropods and ecdysozoans also contained representa-
tives of all twelve Wnt subfamilies found in protostomes
(Figures 1, 2, and Additional file 5).
In insects there has been extensive loss of Wnt genes,

for example, only seven and six Wnt genes are found in
Drosophila and Acyrthosiphon respectively [14,16]. This
reflects the absence of Wnt2 and Wnt4 in all insects
and lineage specific patterns of loss such as Wnt11 in
dipterans (Figure 2). Moreover, this suggests that while
the loss of Wnt genes has been common in insects and
the nematode Caenorhabditis, most ecdysozoans may
actually have retained a larger repertoire of these genes
(Figure 2). Similarly, the leech, Helobdella, also appears
to have lost a number of Wnt genes with respect to
other lophotrochozoans like Capitella [17] and Platyner-
eis. However the reasons for retention of a large reper-
toire of Wnt genes in some lineages and extensive loss
in others is currently unknown.
Curiously duplications of individual Wnt genes (i.e.

apart from those generated by whole genome duplica-
tions in deuterostomes) are rather rare (Figure 2). The
reason for this could be that the concentration of indivi-
dual Wnt ligands is important for the overall combina-
torial output of Wnt signalling in particular tissues (see
below). Indeed, in animals with Wnt duplications, the
paralogues appear to have been subject to subfunctiona-
lisation, as evidenced by distinct expression patterns of
the Wnt7 and Wnt11 paralogues in the spider, and
duplicated Wnt genes in lophotrochozoans [17]. Our
data also support previous phylogenetic studies of Wnt
genes suggesting ancient duplications may have given
rise to clusters of Wnt genes, such as the Wnt9-wg-
Wnt6-Wnt10 cluster found in Daphnia and other
metazoans (Additional files 5 and 8).

Combinatorial action of Wnts
Our present study of Wnt gene expression in a range
of arthropods and an annelid, and previous studies in
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other metazoans [14,17,18,21,64,65], show that numer-
ous Wnt genes are often expressed in the same cells or
tissues; for example, various Wnt genes are expressed
in the SAZ and at the same position within segments
(Figure 9). Does this imply that Wnt ligands are essen-
tially redundant? The lack of obvious phenotypic
effects associated with the loss of expression of some
Wnt genes in particular tissues suggests that they may
be functionally interchangeable in certain contexts [e.g.
[23,66]]. However, there are also several arguments
against the general functional redundancy of these
ligands. First, the fact that twelve or thirteen Wnt
genes are retained in many animals argues against
redundancy. Second, since Wnt ligands diffuse from
source cells and thus can act on a range of different
target cells, expression of multiple Wnts in the same
cell does not necessarily mean they have the same
function. Third, studies directly comparing the func-
tion of different Wnts have provided direct experimen-
tal evidence that these ligands are functionally distinct.
In Drosophila wg and Wnt9 (DWnt4) have similar
expression in segmental stripes, but they play different
roles in ectodermal patterning [5,67], while over-
expression of the other five Drosophila Wnt genes has
no affect on cuticular patterns [64,68]. Furthermore,
Llimargas and Lawrence [64] found that wg and Wnt7
(DWnt2) act together during Drosophila tracheal devel-
opment, but none of the five other Drosophila Wnts
could perform the same roles. These results, as well as
those of studies in Caenorhabditis [e.g. [65,66]], reflect
increasing evidence that Wnt signalling is more com-
plex than simple linear signalling pathways, and that
Wnt ligands expressed in similar patterns may work
agonistically and antagonistically to fine tune cellular
responses [42]. Indeed, it is perhaps even more realistic
to think of an overall Wnt ligand landscape or code
rather than the function of individual Wnts [69].
The specificity of Wnt signalling is also facilitated by

the great complexity of transduction mechanisms
employed [42]. Wnt ligands are capable of binding to
several different receptors, including 7-pass Frizzled
receptors and the receptor tyrosine kinases Ryk and Ror,
which in turn are capable of activating several cross-
talking cytoplasmic pathways. It has been proposed that
these transduction mechanisms allow a combinatorial
action of Wnt ligands in particular tissues [42]. Interest-
ingly, however, this also opens the possibility that a
given cellular response might be achieved with several
different Wnt ligand combinations. Therefore, the
expression of alternative Wnt combinations in a given
tissue in different taxa could still generate the same
intracellular signalling outcome. This may partly explain
the diversification Wnt ligand gene expression across
metazoans.

SAZ/Pg

Figure 9 Metameric and posterior expression of Wnt genes in
protostomes. Expression of Wnt genes is illustrated with respect to
the parasegmental and segmental boundaries of arthropods and
annelids respectively, and the SAZ/Pg (boundaries are represented
by dashed vertical lines). Anterior is to the left. Expression in the
ventral part of the segment and SAZ/Pg is shown as filled boxes
and expression in the dorsal represented by hatched boxes. Note
that the metameric dorsal expression of Gm-Wnt7 and Gm-Wnt16 is
restricted to presumptive heart tissue. SAZ, segment addition zone;
Pg, pygidium; NA, not applicable; Dm, Drosophila melanogaster; At,
Achaearanea tepidariorum; Cs, Cupiennius salei, Gm, Glomeris
marginata; Pd, Platynereis dumerilii; Tc, Tribolium castaneum.
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Wnts and segmentation in protostomes
Our analysis allows the first broad comparison of Wnt
expression patterns across the arthropods, and our char-
acterisation of Wnt expression in an annelid extends
this comparison to other segmented protostomes.
Arguably, one of the most interesting observations

emerging from this comparison is the high proportion
of Wnt genes expressed in segmental stripes reminiscent
of segment polarity gene expression in Drosophila (Fig-
ure 9). In fact, no less than six Wnt genes show this
kind of pattern in Platynereis and Tribolium, and at
least five in Glomeris and four in Achaearanea (Figure
9). It is particularly striking that eleven out of twelve
protostome Wnt genes (the exception being Wnt2) exhi-
bit a striped pattern in at least one species, and no less
than nine (Wnt11 and Wnt4 are the exceptions) in at
least one arthropod (Figure 9). Generally, these stripes
appear before the morphological appearance of seg-
ments, suggesting that some of these genes may play
roles in segment formation, although others may only
be involved in the ontogenesis of segmental organs
rather than segmental patterning. The last common
ancestor of all arthropods was undoubtedly a metameric
animal, and our study suggests that a number of Wnt
genes probably played a role in the patterning of its seg-
ments. However, only wg is expressed in similar stripes
across all arthropod species considered here, and even
the function of this gene may have changed somewhat
in Achaearanea. Therefore, some Wnt genes have lost
their segmental expression in some lineages, and indeed,
Wnt16 was lost altogether in holometabolous insects
(Figure 2). Conversely, some Wnt genes may have
evolved segmental patterning functions, for example,
Wnt7 in Tribolium.
Experimental approaches have also revealed differ-

ences among Wnt genes with respect to their role in
segmental patterning. In Drosophila, only wg and Wnt9
(DWnt4) appear to regulate the establishment of the
metameric pattern [5,7,64,68,70]. In Tribolium, while wg
RNAi produces segmentation defects [23], RNAi against
other segmentally expressed Wnt genes did not affect
segmentation. Clearly functional data on the other Wnt
genes in arthropods, particularly non-insect arthropods,
is required to investigate the roles of these genes in seg-
mental patterning further.
Despite differences in the expression and probably the

function of Wnt genes across taxa, there are neverthe-
less some noticeable similarities: Wnt5 is expressed in
ventral stripes in Tribolium, Achaearanea and Platyner-
eis; Wnt16 is expressed in reiterated stripes in Achaear-
anea, Glomeris and Platynereis; Wnt10 forms stripes in
Tribolium and Platynereis (Figure 9). Furthermore, with
a few exceptions, segmental expression of Wnt genes
nearly always anteriorly abuts en expression in

arthropods (Figure 9). Together with the fact that no
Wnt gene demarcates the segmental boundary in arthro-
pods (with the possible exception of Tribolium Wnt6),
this vindicates the view that parasegment boundaries are
the essential organizers of segmental patterning in these
animals [30,31].
It was previously proposed that the ancestral proto-

stome was an annelid-like segmented worm, and that
arthropod cuticular segmentation evolved out of frame
with the ancestral segmentation [71]. This is supported
by en, wg [35] and hedgehog [36] expression patterns in
Platynereis. In this view, arthropod parasegments are an
embryonic recapitulation of ancestral segmentation. In
Platynereis, although incomplete stripes of Wnt4 and
Wnt5 are found in the anterior region of segments, wg,
Wnt10, Wnt11 and Wnt16 are all expressed in circular
stripes at the posterior segmental boundaries, anterior
to en (Figure 9), thus supporting the hypothesis that
arthropod parasegments and annelid segments are
homologous. It is noteworthy, however, that the analysis
of the expression patterns of a complete set of Wnt
genes in another annelid, the leech Helobdella, led the
authors of this study to very different interpretations
[17]. In the leech, the duplicated genes Wnt11a,
Wnt11c, Wnt16a and Wnt16b also give striped segmen-
tal patterns but only in the late germ band stage well
after the segmental pattern is already laid down, whereas
in Capitella, Wnt5, Wnt11 and Wnt16 are not expressed
in ectodermal stripes but rather in segmentally iterated
patterns in the mesoderm [17]. Only Capitella Wnt11 is
expressed transiently in the ectoderm of the SAZ. These
discrepancies show that the actual role of Wnt signalling
in segment formation will have to be tested in detail in
non-insect arthropod and annelid models before reach-
ing conclusions on its evolution.

Wnt signalling and posterior development
Drosophila undergoes a long germ band mode of devel-
opment, where all segments are formed simultaneously.
In contrast most insects and other arthropods develop
through variations of the short germ band mode, which
is more ancestral. In the short germ band mode of
development, only the anterior-most segments are initi-
ally specified and subsequently the posterior segments
are added sequentially from unsegmented posterior tis-
sue, which is often called a posterior growth zone
[72,73]. However, even within arthropods, the term
“growth zone” encompasses a diversity of tissue types
that use different combinations of cell proliferation,
movement and differentiation to generate new segments
[40]. Therefore, the ‘growth zone’ may be more appro-
priately named a segment addition zone (SAZ) because
sequential addition of segments is truly the key common
process involved [31,40,41]. Despite differences in the
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process of segment addition among arthropods, it has
also been argued that this is an ancestral character of
bilaterians [41].
A large proportion of Wnt genes in Tribolium,

Achaearanea and Glomeris embryos are expressed in
the SAZ (Figure 9). The crucial role played by Wnt sig-
nalling during segment addition has been functionally
demonstrated in a few arthropods. Wnt8 knockdown in
both Tribolium and in Achaearanea resulted in a pos-
terior truncation of the body [23,24]. A similar pheno-
type is obtained in Oncopeltus with wg RNAi [25], but
not in Tribolium [23] or Gryllus [74], despite expression
of wg in the SAZ of this beetle. This suggests that the
respective roles of Wnt ligands during segment addition
have evolved differentially among arthropod lineages,
and is consistent with differences in the expression of
Wnt genes in this region (Figure 9).
Axis truncations produced by depletions of armadillo/

b-catenin, pangolin/TCF and arrow/LRP5/6 in Gryllus,
Tribolium and Oncopeltus [23,25,74,75] further evidence
the crucial role played by the b-catenin pathway in seg-
ment addition. Nevertheless, given the multiplicity of
ligands involved, it will be important to investigate
whether posterior addition of segments in arthropods is
regulated by Wnt ligands through combinatorial trans-
duction pathways [42].
Analysis of posterior expression of Wnt genes in the

annelid Platynereis brings some valuable insight to
understanding segment addition in protostomes. No less
than six Wnt ligands are expressed in the terminal
region of the annelid body, the pygidium, during axis
elongation. However the annelid SAZ is located anterior
to the pygidium and is represented by a thin ring of
cells in which even-skipped and caudal (cad) are
involved in regulating the synchronous mitotic cycles
that produce new segments [41]. The posterior expres-
sion domains of Platynereis wg, Wnt5, Wnt7, Wnt10,
Wnt11 and Wnt16 cannot completely be superimposed
because they cover the hindgut, the external pygidial
ectoderm, and the pygidium mesoderm. However none
of these Platynereis Wnt genes is actually expressed in
the SAZ sensu stricto, suggesting that they act from a
posterior signalling centre located in the mitotically
quiescent pygidium and separate from the proliferating
cells that are the source of the new segments [41].
In the short germ band arthropods considered in this

work, the detailed organization of the SAZ is largely
unknown and therefore it is not known if there is a
separate segment founder cell zone and putative signal-
ling centre that differentially express Wnt genes. Clearly
some arthropod Wnt genes are expressed in the procto-
deum towards the end of embryogenesis, and thus in a
location homologous to the annelid hindgut. Interest-
ingly, the posterior expression of wg in an arthropod

with anamorphic development (segments are added dur-
ing larval development), the crustacean Triops, shows
two separate domains: a complete ring near or in the
SAZ and the hindgut [62].
It has been shown that knockdown of the posteriorly

expressed Wnt8 in a spider perturbs the posterior
expression of cad and Delta/Notch pathway components
[24]. Given similar observations in several vertebrates
[76-79], a Wnt signalling centre acting upstream of cad
and the Delta/Notch pathway may have regulated pos-
terior development in the last common ancestor of bila-
terian animals (Urbilateria) [80,81]. This interpretation
is further strengthened by the arthropod expression data
in our study. Moreover, we also found evidence for a
posterior Wnt signalling centre in a distantly related
protostome group, the annelids, in which cad and
Delta/Notch are also involved in posterior addition
[41,82,83]. However, the evolution of posterior Wnt sig-
nalling has likely been complex in bilaterians, for exam-
ple, Wnt8 is not expressed at this location in annelids
and therefore its role must be played by one or several
other Wnts ligands in these animals.

Conclusions
We have found evidence that combinations of many
Wnt genes probably regulate segment addition and pat-
terning across protostomes. However further functional
studies in a range of protostomes are required to inves-
tigate the precise roles of these ligands during these
important developmental processes. As well as giving
greater insights into the complexities of Wnt signalling,
such analyses will also allow questions regarding the
evolution of segmentation [37,38] to be addressed
further.
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acid sequences from set 2. Bootstrap values from Maximum likelihood
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pisum (Ap), Caenorhabditis elegans (Ce), Capitella teleta (Ct), Cupiennius
salei (Cs), Daphnia pulex (Dp), Drosophila melanogaster (Dm), Glomeris
marginata (Gm), Helobdella robusta (Hr), Homo sapiens (Hs), Ixodes
scapularis (Is), Lottia gigantea (Lg), Nematostella vectensis (Nv), Platynereis
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amino acid sequences were used from the following species:
Achaearanea tepidariorum (At), Acyrthosiphon pisum (Ap), Cupiennius salei
(Cs), Daphnia pulex (Dp), Drosophila melanogaster (Dm), Glomeris
marginata (Gm), Homo sapiens (Hs), Ixodes scapularis (Is), Platynereis
dumerilii (Pd) and Tribolium castaneum (Tc).

Additional file 7: Bayesian tree of Wnt amino acid sequences from
set 1. Posterior probabilities are given on branches. Wnt amino acid
sequences were used from the following species: Achaearanea
tepidariorum (At), Acyrthosiphon pisum (Ap), Cupiennius salei (Cs), Daphnia
pulex (Dp), Drosophila melanogaster (Dm), Glomeris marginata (Gm), Homo
sapiens (Hs), Ixodes scapularis (Is), Platynereis dumerilii (Pd) and Tribolium
castaneum (Tc).

Additional file 8: Synteny of Wnt genes in metazoans. Position and
orientation of syntenic Wnt genes in Drosophila melanogaster, Tribolium
castaneum, Apis mellifera, Daphnia pulex, Lottia gigantea and Nematostella
vectensis. The sizes of the clusters are not drawn to scale. Note that Wnt5
and Wnt7 gene are found in Drosophila, Tribolium and Apis but are not
clustered in these species.

Additional file 9: wg, Wnt5, Wnt11 and Wnt16 expression in
Achaearanea, and WntA expression in Cupiennius. At-wg expression is
first detected at stripes in L1 and L2 (a). By stage 9, At-wg is expressed in
anteroventral regions of the prosomal limb buds and dots in the dorsal
of O2 and O3, but no expression is seen in the other opisthosomal
segments or in the SAZ (b). Later at stage 10, At-wg is expressed as
stripes in O2 and O3 and expression is also observed in the labrum and
the hindgut (c). At-Wnt5 expression is first observed in an anterior stripe
at stage 5 that broadens during stage 6 (d). At-Wnt11-2 is first expressed
at the posterior pole of the embryo during stage 6 (e). Similar to At-
Wnt5, At-Wnt16 expression is observed as a broad anterior stripe at stage
6 (f). Strong expression of Cs-WntA is visible in the SAZ (g), (g’). Weaker
expression of Cs-WntA is also detectable at the distal ends of the
spinnerets (h), (h’) and in two small spots in the cheliceres (i), (i’)
indicated by arrows. Lateral views are shown in (a), (b), (g) and (g’),
ventral views with posterior wrapping to the right in (c), (d) and (f),
posterior view with dorsal up in (e), ventral views with posterior to the
right in (h) and (h’), and anterior views with posterior to the right in (i)
and (i’). Brightfield and DAPI counterstained images of the same embryos
are shown in (g), (h), (i) and (g’), (h’), (i’) respectively. Ch, cheliceres; Lb,
labrum; L1 and L4, leg bearing segments; O1 to O5, opisthosomal
segments; SAZ, segment addition zone.

Additional file 10: Additional expression patterns of Wnt ligand
genes in the annelid Platynereis. (a)-(e) ventral views of 48 hpf
trochophores. The black dashed line is the prototroch. Red arrowheads:
Broad Pd-Wnt6 expression in the mesodermal bands (a) and in few cells
of the anterior mesoderm for Pd-Wnt10 (d); Black hollow arrowhead: Pd-
Wnt9 expression in the proctodeum; Black asterisk: Pd-WntA expression in
the stomodeum; pX: Pd-WntA expression in the setal sacs. (f)-(j) details of
Wnt gene expression during posterior growth. (f) Frontal optical section
of a 7-day regenerate; Red arrowhead: striped Pd-Wnt5 expression in the
mesoderm and ectoderm of forming segments. (g) Ventral view of a 7-
day regenerate showing the mesodermal expression of Pd-Wnt6. (h)
Transverse section in a nascent segment of a 7-day regenerate, showing
isolated cells in the gut expressing Pd-Wnt9; g: gut lumen; end: gut
endoderm; gm: gut mesoderm; dlm: dorsal longitudinal muscles; vlm:
ventral longitudinal muscles; vnc: ventral nerve cord; p: parapodia. (i)
Ventral view of a 7-day regenerate showing parapodial expression of Pd-
WntA. (j) Close up dorsal view of nascent segments in a 7-day
regenerate, showing Pd-WntA expression in the walls of lateral vessels
(red arrowheads) branching from the dorsal longitudinal vessel (dlv). The
yellow dashed line in (e), (g), (i) is the approximate position of the SAZ.
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