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Abstract

Bone remodeling involves the coordinated actions of osteoclasts, which resorb the calcified

bony matrix, and osteoblasts, which refill erosion pits created by osteoclasts to restore skel-

etal integrity and adapt to changes in mechanical load. Osteoblasts are derived from pluripo-

tent mesenchymal stem cell precursors, which undergo differentiation under the influence of

a host of local and environmental cues. To characterize the autocrine/paracrine signaling

networks associated with osteoblast maturation and function, we performed gene network

analysis using complementary “agnostic” DNA microarray and “targeted” NanoString

nCounter datasets derived from murine MC3T3-E1 cells induced to undergo synchronized

osteoblastic differentiation in vitro. Pairwise datasets representing changes in gene expres-

sion associated with growth arrest (day 2 to 5 in culture), differentiation (day 5 to 10 in cul-

ture), and osteoblast maturation (day 10 to 28 in culture) were analyzed using Ingenuity

Systems Pathways Analysis to generate predictions about signaling pathway activity based

on the temporal sequence of changes in target gene expression. Our data indicate that

some pathways involved in osteoblast differentiation, e.g. Wnt/β-catenin signaling, are most

active early in the process, while others, e.g. TGFβ/BMP, cytokine/JAK-STAT and TNFα/

RANKL signaling, increase in activity as differentiation progresses. Collectively, these path-

ways contribute to the sequential expression of genes involved in the synthesis and mineral-

ization of extracellular matrix. These results provide insight into the temporal coordination

and complex interplay between signaling networks controlling gene expression during oste-

oblast differentiation. A more complete understanding of these processes may aid the dis-

covery of novel methods to promote osteoblast development for the treatment of conditions

characterized by low bone mineral density.
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Introduction

Bone remodeling is the continuous process through which worn bone is removed and replaced

[1, 2]. Bone-resorbing osteoclasts differentiate from hematopoietic stem cell precursors in

response to cues originating from osteocytes, bone lining cells, and differentiating osteoblasts.

Bone-forming osteoblasts derive from mesenchymal stem cell precursors and undergo a

defined maturational sequence from proliferating preosteoblasts to mature synthetically active

osteoblasts, before finally undergoing apoptosis or transforming into osteocytes embedded

within the bony matrix and quiescent bone lining cells covering the mineralized surface. The

bone remodeling cycle involves sequential osteoclastic bone resorption followed by the synthe-

sis and mineralization of new bone matrix by osteoblasts, a process that requires several weeks

to complete. Since the osteoclast-osteoblast bone forming units that mediate this process are

constantly being created and destroyed, any analysis performed on bone tissue, whether by

classical histomorphometry or using genomic and proteomic methods, is a “snapshot” of the

metabolic state of bone at that moment in time. While such in vivo studies are extremely useful

for understanding the effects of disease, hormone administration/withdrawal or drug treat-

ment on overall bone metabolism, they inevitably capture cross sectional data from multiple

cell types in different differentiation states.

In contrast, in vitro studies offer the advantage that cellular development can be synchro-

nized, offering a better opportunity to view differentiation as a linear process. In bone, the rep-

lication of undifferentiated osteogenic precursor cells, their recruitment to remodeling bone

matrix, and their subsequent acquisition of differentiated function, results from the complex

interplay of signals transmitted by mechanical load, polypeptide growth factors, steroid and

thyroid hormones, and locally produced cytokines and prostaglandins [3, 4]. While circulating

hormones play an important modulatory role, osteoblastic differentiation can be induced in
vitro, indicating that, once triggered, the process is autonomous, i.e. independent of ongoing

exposure to systemically derived factors.

Because it offers a means of capturing “unbiased” data about changing patterns of transcrip-

tion across the whole genome, gene array technology is a potentially powerful tool for under-

standing complex biological processes. But all such studies have inherent limitations. Genomic

datasets are invariably incomplete since the statistical methods for determining which genes

are “significantly regulated” involve a trade off between the sensitivity needed to detect real

changes in mRNA abundance and the specificity needed to avoid false positive “hits”. The

more stringent the statistical filter, the lower the rate of false discovery, but the more genuine

significantly regulated, and potentially important, genes will be missed. In addition, important

pathway components may not be regulated at the transcriptional level. A further limitation of

transcriptomic approaches is that it is difficult to translate lists of significantly regulated genes

into changes in biologically relevant signaling networks. Circumventing each of these limita-

tions requires the use of bioinformatic approaches that compare changes in gene expression

against databases of known protein-protein interactions to establish the probability that a

given signaling or metabolic pathway is regulated under varying experimental conditions [5,

6]. These in silico analyses, which enable gene expression profile data to be expressed as the sta-

tistical probability that a particular pathway is regulated, can “fill in the blanks”, leading to a

more holistic view of process-related changes in signaling pathway activity.

To better understand the temporal regulation of osteoblast differentiation, we performed

microarray analysis of gene expression followed by signal transduction pathways analysis on

murine MC3T3-E1 cells undergoing osteoblastic differentiation in vitro. Taking advantage of

their well-defined maturational sequence [7–10], we isolated RNA at four stages: during log

growth, early and late osteoblastic differentiation, and mature synthetic function. We then
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performed pairwise comparisons to identify significant changes in gene expression associated

with each of these stages of osteoblast development, and used the resulting genesets to identify

the time-dependent changes in signal transduction pathway activity. Our data indicate that the

temporally coordinated activation of signaling pathways known to be involved in osteoblast

differentiation, e.g. Wnt/β-catenin, Transforming Growth Factor-β (TGFβ)/Bone Morpho-

genic Protein (BMP), cytokine/Janus Kinase (JAK)-Signal Transducer and Activator of Tran-

scription (STAT), and Tumor Necrosis factor-α (TNFα)/Receptor Activator of Nuclear Factor

κ-B (NFκB) Ligand (RANKL) signaling, correlates with the sequential expression of genes

involved in the biosynthesis and mineralization of extracellular matrix as differentiation pro-

gresses. These results demonstrate the utility of functional genomic approaches to microarray

analysis and offer insight into the temporal sequence of changes in the autocrine/paracrine sig-

naling networks regulating osteoblast differentiation.

Materials and methods

Culture and differentiation of MC3T3-E1 cells

Stock cultures of MC3T3-E1 cells (subclone 4; CRL-2593; ATCC) were maintained in α-mini-

mum essential medium (MEM) supplemented with 10% v/v fetal bovine serum, penicillin

(100 units/mL) and streptomycin (100 pg/mL) in a humidified 10% CO2 atmosphere at 37 ˚C.

Until the time of study cells were maintained in log phase growth by passage every 3–5 days

using 0.001% pronase (w/v) to detach adherent cells. For studies of the temporal sequence of

osteoblast differentiation, cells were plated at an initial density of 20,000 cells/well in 6-well

plates or 100,000 cells/dish in 10 cm dishes, and grown for 2 to 28 days in α-MEM supple-

mented with 10% v/v fetal bovine serum, 5 mM β-glycerol phosphate and 50 μg/mL ascorbic

acid [7–10].

Cell replication

Between days 1 and 5 in culture, cells in 6-well plates were treated with 0.001% pronase (w/v)

to achieve detachment and directly counted in a hemocytometer.

Alkaline phosphatase activity

Alkaline phosphatase activity was measured by para-nitrophenyl phosphate hydrolysis as pre-

viously described [11]. Briefly, MC3T3-E1 cells growth in 6-well plates were harvested in dis-

tilled water and disrupted by sonication. Appropriately diluted aliquots of cell lysate

containing equal cell protein were incubated for 30 min at 37 ˚C in a final reaction volume of

600 mL, containing 1.0 M diethanolamine, pH 10.3 and 15 mM para-nitrophenyl phosphate.

Reactions were terminated by the addition of 2.4 mL 0.1N NaOH, after which generation of

para-nitrophenol was measured by determining absorbance at 400 nm. Results were expressed

as pmol para-nitrophenol/min/106 cells. For illustrative purposes, representative cultures were

also stained using the Alkaline Phosphatase Detection Fast Red Stain Kit (Cat# SCR004; Milli-

pore Sigma, Burlington, MA) according to the manufacturer’s instructions.

Synthesis of type I collagen

Type 1 collagen production was determined by western blotting. Monolayers of MC3T3-E1

cells were lysed directly in 1X Laemmli sample buffer, dispersed by sonication, and resolved by

sodium dodecyl sulfate—polyacrylamide gel electrophoresis. Immune complexes on nitrocel-

lulose membranes were detected using mouse monoclonal anti-type I collagen IgG1 (COL1A:

sc59772; Santa Cruz Biotechnology, Santa Cruz, CA) with horseradish peroxidase-conjugated
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donkey anti-mouse IgG (Code: 715-035-150; Jackson ImmunoResearch Laboratories Inc.,

West Grove, PA) as secondary antibody. The cell content of each sample was determined by

western blotting in parallel for β-actin using mouse monoclonal anti-actin IgG1 (C-2: sc8432;

Santa Cruz Biotechnology, Santa Cruz, CA). Immune complexes were visualized on X-ray film

by enzyme-linked chemiluminescence and quantified using a Fluor-S MultiImager. Data were

expressed as the ratio of type I collagen to actin in each sample.

Alizarin red staining

Matrix mineralization was quantified by Alizarin red staining as described [12]. Monolayers of

MC3T3-E1 cells in 6-well plates were fixed for 24 hr in a 10% formalin:methanol:distilled

water solution (1:1:1.5), stained for 20 min in 2% Alizarin Red-S in distilled water, washed

with distilled water and air dried. Mineralization was quantified by eluting the stain using 10%

cetylpyridium chloride and measuring absorbance at 520 nM.

mRNA isolation

MC3T3-E1 cells were cultured as described in 10 cm dishes for 2, 5, 10 or 28 days prior to iso-

lation of RNA. Total RNA from three independent cultures was isolated at each time point.

Cells were harvested by scraping and RNA was isolated with Trizol Reagent (Invitrogen, Carls-

bad, CA) and purified using the RNeasy kit (Qiagen Inc., Valencia, CA) according to the man-

ufacturer’s protocols [13]. Total RNA was analyzed for concentration (ng/mL) and purity

(ratios of 260/280 nm and 260/230 nm) using a NanoDrop 1000 Spectrophotometer (Thermo

Scientific, Wilmington, DE). RNA integrity was analyzed using the Experion RNA HighSens

Analysis Kit (Bio-Rad Laboratories Inc., Hercules CA).

Microarray analysis

Samples underwent RNA amplification (Message Amp; Ambion, Austin, TX), labeling with

Cy3, and hybridization to Mouse Operon 17,000 gene feature (Operon dataset; version 2.0)

spotted oligonucleotide arrays in the microarray facility of the Duke University Institute for

Genome Sciences and Policy (www.genome.duke.edu/cores/microarray/). MIAME compliant

microarray data files have been deposited with the NCBI GEO database (www.ncbi.nlm.nih.

gov/gds) (GEO Series GSE64485). Data pre-processing and normalization were performed on

GenePix scan results files (.gpr files) using the Bioconductor LimmaGUI package 1.28.0 run

with R 2.13.0 software [14]. Background correction was performed using the normexp method

with offset of 16, and spot quality weighting was applied as follows: 1 for Good (100) or

Unflagged (0); 0.1 for Bad (-100), Not Found (-50) and Absent (-75) flags. Print-tip group

loess normalization was applied for normalization within arrays. Review of box plots of nor-

malized M values indicated that normalization between arrays was not warranted. Normalized

M values, i.e. log2 test(Cy3)/reference(Cy5) relationship, were imported into dchip for com-

parative analysis. ANOVA was used to find genes differing as function of time, i.e. significantly

different between any two time points. ANOVA filtering at the 0.005 level yielded 1005 genes

passing with a reasonable 5–10% false discovery rate (17664 compared; expected false positive:

88). Self-organizing maps (SOM) were used to partition the significantly regulated genes into

different response patterns. Expression data were imported into MeV software for SOM analy-

sis, z-standardization performed, i.e. mean = 0 and SD = 1, and SOM clusters for the ANOVA

p<0.005 dataset were generated by: 16 clusters, 4x4, 2000 iterations, hexagonal topography,

Gaussian neighborhood, alpha 0.05, radius 1.0, no HCL linkage, Pearson correlation.
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NanoString nCounter analysis

The NanoString nCounter gene expression system (NanoString Technologies; Seattle, WA)

was used for expression profiling of selected mRNA species isolated from MC3T3-E1 cells at

Days 2, 5, 10 and 28 in culture using a custom nCounter CodeSet composed of 243 probes (S1

Table) including 6 housekeeping controls (Eif4a2, GusB, Oaz1, Stk36, Tceb1, and Tubb4a).

With NanoString technology fluorescent single strand RNA probes are hybridized to compli-

mentary target strands of mRNA and quantified based on the fluorescence of each target gene

within each sample [15,16]. Briefly, the NanoString reporter probe CodeSet was suspended in

70μL of hybridization buffer and 8μL aliquots were combined in sterile microfuge tubes with

each RNA sample diluted to a concentration of 250ng RNA in 5μL. Thereafter, 2μL of the cap-

ture probe CodeSet was added to each tube, tubes were centrifuged, and then incubated at

65˚C in a BioRad T100 Thermal Cycler (BioRad; Hercules, CA) for 13–15 hours. After hybrid-

ization, samples were analyzed using the NanoString Technologies Prep Station and Digital

Analyzer according to manufacturer’s instructions. All 12 samples, i.e. RNA from triplicate

cultures at each of four time points, were analyzed simultaneously to minimize batch effects.

The resulting counts were analyzed using NanoStriDE and GraphPad Prism 7 (GraphPad Soft-

ware; Carlsbad, CA) software. Statistical significance of change over time was determined by

two-way ANOVA with Tukey’s multiple comparisons test using GraphPad Prism 7.

IPA metabolic pathways analysis

Network analysis of genesets representing changes in mRNA abuundance between specified

time points was performed using the Ingenuity Systems Pathways Analysis (IPA) tool (Qiagen;

Redwood City, CA). IPA compares Genbank Accession number/expression information with a

proprietary protein-interaction database to establish the probability that a given signaling or

metabolic pathway is activated under varying experimental conditions. For the microarray

dataset, expression ratios for all relevant pairwise comparisons, i.e. D2 vs D5, D2 vs D10, D2 vs

D28, D5 vs D10, D5 vs D28, and D10 vs D28, were calculated using the ANOVA p<0.005 set of

1005 significantly regulated genes. For the NanoString dataset, pairwise expression ratios were

calculated for each of the 237 measurable genes. Expression ratio data were uploaded into the

IPA Pathways Analysis system (https://analysis.ingenuity.com/), yielding 976 analyzable tran-

scripts from the microarray dataset (S2 Table). Each dataset was subjected to IPA Core Analysis,

then analyzed using IPA Upstream Regulator, Downstream Effects, and Canonical Pathways

analytic tools. To capture pathway changes associated with each phase of differentiation we

focused on the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise comparisons. For IPA Upstream

Regulator and Canonical Pathways analysis, gene clusters composed of�2 genes per group

with P<0.05 enrichment, i.e.–log(p-value)�1.3, compared with a standard murine background

database were considered analyzable. The IPA output was exported as Microsoft Excel files to

prepare the S3–S7 Tables. Graphic representations of the data were prepared using either the

IPA Canonical Pathways Molecular Activity Predictor tool or GraphPad Prism 7 software, as

appropriate. To facilitate visual inspection of the changes in predicted Upstream Regulator and

Canonical Pathways activity associated with each interval, heat maps were generated from the

activation z-scores using Morpheus software (https://software.broadinstitute.org/morpheus/).

Results

The temporal sequence of MC3T3-E1 cell differentiation

MC3T3-E1 cells undergo a well-characterized process of osteoblastic differentiation when

placed in culture medium supplemented with β-glycerol phosphate and ascorbic acid [7–10].
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Fig 1 presents this process tracked using traditional markers: cell number, bone alkaline phos-

phatase, abundance of type I collagen, and alizarin red staining. After initial seeding, the cells

remain in log phase growth for 2–3 days, undergoing growth arrest upon attaining confluence

by days 3–4. Osteoblastic differentiation begins upon growth arrest and continues through

days 5 to 10 in culture, evident first as an increase in the production of bone-specific alkaline

phosphatase, followed by deposition of a collagenous matrix composed in part of type 1 colla-

gen. Matrix mineralization begins as early as day 10 and accelerates with time in culture. By

day 28 the MC3T3-E1 derived osteoblasts have produced a mineralized matrix.

Predictably, osteoblastic differentiation of MC3T3-E1 cells is reflected in changes in the

abundance of mRNA encoding bone marker proteins. As shown in Fig 2, osteoblast develop-

mental markers, matrix components, and proteins involved in cell adhesion and matrix remod-

eling change over time as the cells evolve from proliferating pre-osteoblasts to mature

osteoblasts. Notably, these changes in mRNA abundance appear at different times during devel-

opment. mRNA encoding Runx2, the first transcription factor required for determination of

the osteoblast lineage [17,18], increases early in development and plateaus between days 5 and

10, while others, e.g. alkaline phosphatase (Alp1), integrin-binding sialoprotein (Ibsp), a major

structural protein of the bone matrix, and parathyroid hormone receptor (Pthr1), increase

steadily from day 2 to day 28. Still other mRNA species are abundant throughout development,

e.g. collagen type 1A (Col1a1), and some increase between days 10 and 28 after differentiation

is well underway e.g. the osteoblast-specific matrix protein periostin (Postn). Such differences

are consistent with a temporally coordinated process wherein early events trigger the sequential

activation of a transcriptional program driven by intracellular signaling networks.

DNA microarray analysis of MC3T3-E1 differentiation

DNA microarrays, because they capture information about the abundance of a large number

of unselected mRNA species, provide an “agnostic” snapshot of gene expression patterns at a

given point in time. Combining microarray data on changes in mRNA abundance over time

with bioinformatic tools, such as Ingenuity Systems IPA, provides a means to translate micro-

array data into a more complete picture of metabolic activity [5, 6]. To identify changes in

gene expression occurring at different stages of differentiation, triplicate samples of total

mRNA were isolated from subconfluent MC3T3-E1 preosteoblasts (day 2), growth-arrested

preosteoblasts (day 5), differentiating osteoblasts (day 10) and maturing synthetically-active

osteoblasts (day 28), and hybridized to Operon V2.0 murine cDNA microarrays representing

approximately 17,600 expressed sequence tags. Raw microarray data (GEO Series GSE64485)

were analyzed by ANOVA to identify genes whose mean expression was significantly different

between any two time points. Fig 3A shows a heat map of the 1005 mRNAs passing the

ANOVA filtered at p<0.005. S2 Table lists the gene symbol, annotation, and observed abun-

dance of the 976 analyzable mRNAs from this dataset. Hierarchical clustering revealed several

distinct temporal patterns of expression, with some gene clusters increasing or decreasing in

abundance early in differentiation, others changing progressively throughout differentiation

or changing most dramatically during the period of osteoblast maturation. Still others genes

exhibited a biphasic pattern, increasing or decreasing with the onset of differentiation and

reversing their direction of change between days 10 and 28 in culture. To further partition

genes into different response patterns, we generated self-organizing maps (SOM) from the

ANOVA p<0.005 dataset. As shown in Fig 3B, distinct temporal patterns of mRNA abun-

dance were evident, reflecting each stage of osteoblast differentiation.

To test the hypothesis that the biological processes underlying osteoblastic differentiation

of MC3T3-E1 cells are reflected in the coordinated changes in the transcriptome over time, the
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DNA microarray data were analyzed using Ingenuity Systems IPA software. IPA compares

empirically derived “omics” datasets, e.g. DNA microarray data, with a curated database of

reported gene-gene and protein-protein interactions to predict signaling pathway activity

based on observed changes in upstream regulators and/or the downstream genes whose

expression they control. The IPA output includes two statistical measures. The first, which is

Fig 1. MC3T3-E1 osteoblast maturation in vitro. MC3T3-E1 cells were seeded in 6-well tissue culture plates at an initial density of 20,000 cells/well and maintained

in culture for up to 28 days. A. Graph depicting change in cell number (days 1–5), secreted alkaline phosphatase activity (days 4–28), type 1 collagen synthesis (days

3–21), and matrix mineralization (days 4–28) associated with MC3T3-E1 differentiation. Data shown are the Mean ± SE of three biological replicates at each time

point. These data were used to select time points representing proliferating preosteoblasts (day 2), early and late differentiating osteoblasts (days 5 and 10), and active

osteoblasts (day 28), for subsequent mRNA isolation. B. Representative Fast Red staining for alkaline phosphatase (top left), type 1 collagen:β-actin western blotting

(right), and Alizarin Red staining for matrix mineralization (bottom left) performed at days 2, 5, 10 and 28 to illustrate the differentiation state of cells at the time

points used for RNA isolation. Note that as MC3T3-E1 osteoblasts mature, extracellular matrix, e.g. type 1 collagen, becomes an increasingly large fraction of the total

protein in the sample.

https://doi.org/10.1371/journal.pone.0204197.g001

Pathways analysis of osteoblast differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0204197 January 4, 2019 7 / 26

https://doi.org/10.1371/journal.pone.0204197.g001
https://doi.org/10.1371/journal.pone.0204197


typically expressed as –log(p-value), represents the probability that the correlation between an

input set of observed factors and co-regulated genesets in the IPA database did not occur by

chance. Hence, a –log(p-value) greater than 1.3 represents p<0.05 of a significant association.

The second, termed an activation z-score, is based on the degree to which observed changes in

factor levels, e.g. increases or decreases in mRNA abundance between two points in time, cor-

relate with the expected changes associated with pathway activation or inhibition. An activa-

tion z-score>2 or<-2 predicts pathway activation or inhibition, respectively, with p<0.05.

The biochemical characterization of differentiating MC3T3-E1 cells (Fig 1) demonstrates

that the major downstream biological processes, e.g. cell proliferation versus matrix minerali-

zation, change over time. To generate a gestalt view of whether the structure of the DNA

microarray dataset reflects this temporal evolution, we calculated expression ratios for each of

the 976 analyzable genes identified by ANOVA using three pairwise comparisons, day 2 to day

5 (D2 vs D5), day 5 to day 10 (D5 vs D10), and day 10 to day 28 (D10 vs D28), and performed

IPA Downstream Effects Analysis, which predicts increases or decreases in downstream bio-

logical activities. S3 Table lists the annotation, -log(p-value), and activation z-score for all bio-

logical process terms identified from our dataset where the z-score was >1 or <-1. These

results are presented graphically in Fig 4. As shown, each pairwise comparison was associated

with a set of unique of terms, here represented graphically as vertical bars. Importantly, terms

identified in two overlapping comparisons exhibited a high degree of concordance in the pre-

dicted direction of activation/inhibition (20 of 26 terms appearing in both the D2 vs D5 and

D5 vs D10 comparison, and 24 of 31 terms appearing in both the D5 vs D10 and the D10 vs

D28 comparison). Consistent with the SOM analysis (Fig 3B), where some gene clusters

increased in abundance steadily throughout differentiation, several process level terms were

identified in all three genesets, and again there was strong concordance in the predicted direc-

tion of activation/inhibition (20 of 23 terms appearing in all three comparisons). Of interest,

process terms appearing only in the D2 vs D5 and D10 vs D28 comparisons showed less con-

cordance (only 9 of 29 terms were concordant). This too may reflect at the process level

Fig 2. Temporal changes in the abundance of mRNA encoding bone marker proteins. Total RNA was isolated from triplicate cultures of MC3T3-E1 cells at days 2,

5, 10 and 28 in culture, and mRNA abundance quantified by NanoString nCounter using a bone focused probe set (S1 Table). Developmental markers shown are:

alkaline phosphatase (Alp1); parathyroid hormone receptor (Pthr1); the transcription factors Runx2, Sox9 and Sp7; and the transcriptional repressor Msx2. Matrix

components shown are: bone gamma-carboxyglutamate protein (Bglap); collagen types 1A1 (Col1a1), 1A2 (Col1a2), 2A1 (Col2a1) and 10A1 (Col10a1); decorin (Dcn);

dermatopontin (Dpt); dentin matrix protein-1 (Dmp-1); integrin-binding sialoprotein (Ibsp); and periostin (Postn). Proteins associated with cell adhesion and matrix

remodeling are: tetraspanin (Cd9); cathepsin K (Ctsk); osteonectin (Sparc); osteopontin (Spp1); matrix metalloproteinases 2 (Mmp2), 14 (Mmp14), and 16 (Mmp16);

hyaluronic acid receptor (Cd44); and neural cell adhesion molecule 1 (Cd56). Data shown represent the Mean ± SD of three biological replicates at each time point.

Error bars not shown are smaller than the symbol. † P< 0.05; � P< 0.01; �� P< 0.001 different in abundance between at least two time points by two-way ANOVA

with Tukey’s multiple comparisons test; ns, not significant.

https://doi.org/10.1371/journal.pone.0204197.g002
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Fig 3. Temporal patterns of change in the MC3T3-E1 transcriptome during differentiation. Total RNA was isolated from three

independent MC3T3-E1 cell cultures following 2, 5, 10 or 28 days in culture. Each biological replicate was hybridized to an Operon

version 2.0 spotted oligonucleotide array (12 microarrays). Triplicate microarray data at each time point were used to identify

significantly regulated mRNAs at different phases of osteoblast differentiation by ANOVA (p<0.005; estimated false discovery rate

8.8%). A. Heat map representing observed mRNA abundance of 1005 genes identified by ANOVA as demonstrating a significant
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expression patterns observed in the SOM analysis, where some gene clusters clearly underwent

reciprocal regulation, increasing/decreasing between days 2 and 5, remaining relatively con-

stant between days 5 and 10, and returning to their prior levels between days 10 and 28.

To resolve the temporal changes in signaling networks associated with osteoblastic differen-

tiation of MC3T3-E1 cells we performed IPA Upstream Regulator and Canonical Pathways

Analysis using the 976 significantly regulated genes identified by ANOVA. The IPA Upstream

Regulator Analysis predicts which transcriptional regulators are activated or inhibited based

difference between any two time points. Hierarchical clustering was used to identify coordinated patterns of change. B. Sixteen

cluster SOM representing temporal changes in mRNA abundance associated with MC3T3-E1 differentiation. Expression data were

subjected to z-standardization and SOM assembled using MeV software. The resulting 16 SOM clusters are shown grouped in

relation to the differentiation state of MC3T3-E1 cells. Growth arrest was associated with abrupt changes (increase or decrease) in

mRNA levels between days 2 and 5 (240 genes). The onset of differentiation was associated with progressive changes in mRNA levels

between days 2 and 10 (212 genes). Peak differentiation was associated with prominent changes in mRNA levels between days 5 and

10 (246 genes). Osteoblast maturation was associated with prominent changes in mRNA levels between days 10 and 28 (307 genes).

https://doi.org/10.1371/journal.pone.0204197.g003

Fig 4. Temporal changes in mRNA abundance reflect evolving biological processes during MC3T3-E1 differentiation. The mRNA abundance of 976 significantly

regulated genes identified by ANOVA as changing during MC3T3-E1 differentiation was used to calculate expression ratios comparing D2 vs D5, D5 vs D10, and D10

vs D28. For each pairwise comparison, the earlier time point was used as the denominator and later time point as the numerator, such that expression ratios reflect

increases/decreases in mRNA abundance as differentiation proceeds. IPA Downstream Effects Analysis was performed to identify biological process terms associated

with each interval and filtered to include terms only with –log(p value)>1.3, minimum of two genes, and z-score>1 or<-1. The graph depicts z-score values for

terms associated with the period of growth arrest and onset of differentiation (gold bars), active differentiation (blue bars), and osteoblast maturation (lavender bars).

The descriptive annotations associated with each term are omitted for simplicity but presented in S3 Table.

https://doi.org/10.1371/journal.pone.0204197.g004
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on observed changes in expression of downstream genes. Predicted upstream regulators with

activation Z-scores >2 or <-2 during at least one phase of differentiation are shown in S4

Table. Individual upstream regulators were grouped based on the signaling networks with

which they are most associated, and the z-scores derived from the D2 vs D5, D5 vs D10, and

D10 vs D28 comparisons used to generate heat maps that illustrate the predicted change in

regulator activity as differentiation progresses. In these maps, rows represent individual

upstream regulators and columns represent time intervals. Predicted increases in activity from

the beginning to end of each interval, e.g. from day 2 to day 5, are indicated in red and

decreases in blue, with color intensity representing the magnitude of the z-score. Thus, an

upstream regulator that was predicted to increase steadily in activity from day 2 to day 5, day 5

to day 10, and day 10 to day 28 would be red in all columns, while one that increased from day

2 to day 5 and then remained active at the same level would be red in the D2 vs D5 column,

then white in the D5 vs D10 and D10 vs D28 columns. As shown in Fig 5A, upstream regula-

tors associated with cell cycle progression were predicted to become less active over time, con-

sistent with the growth arrest of MC3T3-E1 cells that heralds the onset of differentiation.

Conversely, upstream regulators of several pathways associated osteoblast differentiation, e.g.

TGFβ/BMP/SMAD, WNT/β-catenin, and Hedgehog signaling [4] were predicted to become

more active as differentiation progressed, as did regulators of TNFα/RANKL/NFκB and cyto-

kine/JAK-STAT signaling.

To gain insight into how predicted changes in the activity of individual upstream regulators

were integrated into signaling networks, we next performed IPA Canonical Pathways Analysis,

which compares observed changes in mRNA abundance to the expected direction of change

associated with pathway activation or inhibition. The list of signaling pathways represented in

the dataset along with –log(p-value) and activation z-score are shown in S5 Table. Fig 5B

depicts a heat map of predicted changes in activity in selected canonical signaling pathways.

Hierarchical clustering was performed to group pathways based on similarities in the change

in activity over time. Considering pathways known to be involved in bone development, Wnt/

β-catenin signaling decreased in activity as differentiation progressed, while TGFβ signaling

increased. The TGFβ/BMP axis is a principal regulator of mesenchymal stem cell differentia-

tion into cartilage and bone [19–22], acting through several effectors including SMADs, p38

mitogen-activated protein kinase (MAPK), and phosphatidyl inositol 3-kinase (PI3K)/AKT.

TGFβ/BMP engages in extensive cross talk with other receptor-mediated signaling in bone,

including WNT/β-catenin, Notch, Hedgehog, fibroblast growth factor (FGF), parathyroid hor-

mone-related peptide (PTHrp), and interleukin (IL)/TNFα/interferon-γ cytokines that collec-

tively signal via the JAK/STAT and NFκB pathways [4,23]. Notably, several of these pathways,

e.g. p38 MAPK, STAT3, NFκB and IL6 signaling also showed a trend toward activation during

differentiation.

NanoString analysis of MC3T3-E1 differentiation

To validate our “agnostic” microarray data on signaling pathway activation, we performed a

“focused” analysis of MC3T3-E1 cell gene expression using NanoString nCounter. The Nano-

String nCounter system uses color-coded molecular “barcodes” attached target-specific probes

to count up to several hundred unique transcripts in a single hybridization reaction [15,16].

The culture protocol used for the microarray experiment was repeated to provide independent

mRNA samples. Triplicate samples of total mRNA isolated from MC3T3-E1 cells at days 2, 5,

10 and 28 in culture were analyzed using a NanoString Code Set designed to quantify the

abundance of 237 transcripts related to bone development and signaling. S1 Table lists the

gene name, annotation, and expression data for the NanoString probes. Fig 6A shows a heat
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map of all 237 transcripts assayed. As with the microarray data, hierarchical clustering revealed

several distinct temporal patterns of expression, with some groups of transcripts increasing/

decreasing in abundance early in differentiation and others changing most dramatically later

during osteoblast maturation. Fig 6B–6E shows temporal changes in selected transcripts

related to pathways identified in the bioinformatics analysis of the microarray data. Significant

changes in mRNA abundance were detected in ligands, receptors or modulators of BMP,

TGFβ and Activin signaling, the three closely-related components of the TGFβ network, as

well as in the TNFα-NFκB, interleukin-JAK/STAT, and WNT/β-catenin pathways.

To determine how the changing levels of pathway components translated into changes in

pathway activity during differentiation, we performed IPA Upstream Regulator and Canonical

Fig 5. Temporal changes in predicted upstream regulators and canonical signaling pathways associated with MC3T3-E1 cell differentiation. Microarray data on

the 976 significantly regulated mRNA species were used to calculate change in expression ratio between D2 vs D5, D5 vs D10, and D10 vs D28. Expression ratios were

analyzed using IPA Upstream Regulator and Canonical Pathways Analysis software and heat maps reflecting the changes in predicted activity during each interval

were generated using Morpheus software. A. Heat maps depicting changes in selected upstream regulators (rows) with activation z-scores>2 (red) or<-2 (blue)

during at least one phase of differentiation (columns). Upstream regulators were arbitrarily grouped based on their involvement is biological processes or signaling

pathways related to osteoblast differentiation. B. Heat maps depicting changes in z-score for selected canonical signaling pathways (rows) during each phase of

differentiation (columns). Z-scores were subjected to Euclidean hierarchical clustering in Morpheus to group pathways based on similarity in temporal change.

https://doi.org/10.1371/journal.pone.0204197.g005
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Fig 6. NanoString analysis of bone-related mRNAs during MC3T3-E1 cell differentiation. Total RNA was isolated from three independent

cultures of MC3T3-E1 cells at days 2, 5, 10 and 28, and mRNA abundance quantified by NanoString nCounter using a bone specific Code Set (S1

Table). A. Heat map depicting changes in mRNA abundance for individual mRNA species (rows) over time in culture (columns) for day 2 (D2), day

5 (D5), day 10 (D10), and day 28 (D28). Expression data, after log2 adjustment, were subjected to Euclidean heirarchical clustering in Morpheus to

group genes based on similarity in temporal change. mRNA abundance of selected ligands, receptors, modulators, and mediators related to BMP/

TGFβ/Activin (B), TNFα/NFκB (C), IL/JAK-STAT (D), and WNT/β-catenin (E) signaling. BMP pathway components shown are: BMP 4 (Bmp4);

BMP receptor 1A (Bmpr1a); BMP receptor 2 (Bmpr2); the BMP co-receptors, repulsive guidance molecule (RGM) A (Rgma) and RGM B (Rgmb);

the BMP negative regulators, Chordin and Noggin; and the DAN family BMP antagonist, Gremlin. TGFβ pathway components shown are: TGFβ1
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Pathways Analysis using expression ratios derived from comparisons of the NanoString data

for D2 vs D5, D5 vs D10, and D10 vs D28. Predicted upstream regulators with activation z-

scores>2 or <-2 during at least one phase of differentiation are shown in S6 Table. Selected

upstream regulators were grouped based on the signaling networks with which they are most

associated, and the z-scores used to generate heat maps. As shown in Fig 7A, upstream regula-

tor activity associated with cell cycle progression, apoptosis, and cell survival tended to

decrease between days 2 and 5 and days 5 and 10, then increase between days 10 and 28. Nota-

bly, activity of the anti-apoptotic regulators AKT1 and p38 MAPK that function downstream

of TGFβ/BMP and TNFα/RANKL increased as differentiation progressed. Coincident with

this, upstream regulators related to TGFβ/BMP/SMAD, WNT/β-catenin, and Hedgehog sig-

naling showed activation during osteoblastic differentiation, as did regulators involved in

TNFα/RANKL/NFκB, cytokine/JAK-STAT, receptor tyrosine kinase (RTK), and G protein-

coupled receptor (GPCR) signaling.

We next performed IPA Canonical Pathways Analysis using the NanoString dataset. The

list of signaling pathways represented along with –log(p-value) and activation z-score are

shown in S7 Table. Fig 7B depicts a heat map of predicted changes in activity in selected

canonical signaling pathways. Hierarchical clustering was performed to group pathways based

on similarities in the change in activity over time. Consistent with the canonical pathways

analysis of the microarray dataset (Fig 5), WNT/β-catenin signaling became less active as dif-

ferentiation progressed, while TGFβ and BMP signaling increased, although the changes in the

NanoString dataset were more apparent later than in the microarray dataset, between day 10

and day 28. Interleukin signaling was predicted to increase progressively between days 5 and

28, with JAK-STAT signaling showing activation between days 10 and 28. TNFα/NFκB path-

way signaling was likewise predicted to increase in both the NanoString and microarray

datasets.

Overview of signaling networks during MC3T3-E1 differentiation

To test the overall similarity between the NanoString and microarray datasets we compared

the pathway activity predictions generated from each using the IPA Canonical Pathways

molecular activity predictor tool, which graphically depicts the predicted change in pathway

activity based on observed changes in upstream and downstream gene expression. S1 Fig

shows the WNT/β-catenin pathway comparison using D2 vs D5 expression ratios from each

dataset. Since WNT/β-catenin signaling was predicted to decline as differentiation progressed,

it would be most active during this interval. Consistent with this, both datasets indicated β-

catenin pathway activation in this time frame, as well as inhibition of the negative regulatory

TGFβ/TGFβ-activated kinase 1 (TAK1)/p38 MAPK/nemo like kinase (NLK) input from the

TGFβ receptor pathway that was predicted to be less active early in differentiation. S2 Fig

(Tgfb1); TGFβ2 (Tgfb2); TGFβ3 (Tgfb3); TGFβ receptor 1 (Tgfbr1); and TGFβ receptor 2 (Tgfbr2). Activin pathway components shown are: inhibin

subunit βA (Inhba); activin A receptor type 1 (Acvr1); activin A receptor type 1B (Acvr1b); activin A receptor type 2A (Acvr2a); BMP and activin

membrane bound inhibitor (Bambi); and the activin and TGFβ receptor ligand, left-right determination factor 1 (Lefty). TNFα pathway components

shown are: TNF ligand superfamily member 13-like (April); TNF (Tnf); RANKL (Tnfsf11); TNF-receptor superfamily member 4 (Tnfrsf4); receptor

activator of NFκB (Tnfrsf11a); TNF receptor superfamily member 11b (Tnfrsf11b); and NFκB (Nfkb). Interleukin pathway components shown are:

IL1B (Il1b); IL4 (Il4); IL7 (Il7); IL12A (Il12a); IL1 receptor-like 1 (Il1rl1); IL2 receptor β subunit (Il2rb); IL4 receptor α subunit (Il4ra); IL15 receptor

α subunit (Il15ra); and STAT1 (Stat1). WNT pathway components shown are: WNT 5A (Wnt5a); Wnt 7A (Wnt7a); the WNT signaling pathway

inhibitor, Dickkopf (Dkk1); β-catenin (Ctnnb1); the regulator of β-catenin stability, Axin 2 (Axin2); and the β-catenin regulated transcription

factors, nuclear factor of activated T cells 1 (Nfatc1) and transcription factor 7 (Tcf7). In each graph, symbols representing ligands are shown in

green, receptor subunits in blue, intracellular mediators and modulators in red, and transcription factors in lavender. Data shown represent the

Mean ± SD of triplicate samples. Error bars not shown are smaller than the symbol. † P<0.05; � P<0.01; �� P<0.001 different in abundance between

at least two time points by two-way ANOVA with Tukey’s multiple comparisons test; ns, not significant.

https://doi.org/10.1371/journal.pone.0204197.g006
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Fig 7. Upstream regulators and canonical signaling pathways analysis of a focused NanoString dataset. NanoString nCounter

data on the abundance of 237 bone-related mRNA species were used to calculate change in expression ratio between D2 vs D5, D5

vs D10, and D10 vs D28. Expression ratios were analyzed using IPA Upstream Regulator and Canonical Pathways Analysis

software and heat maps reflecting the changes in predicted activity during each interval were generated using Morpheus software.

A. Heat maps depicting changes in selected upstream regulators (rows) with activation z-scores>2 (red) or<-2 (blue) during at
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compares IPA predicted changes in activity within the TGFβ/BMP signaling network occur-

ring between days 10 and 28, an interval during which both datasets indicated pathway activa-

tion. While the focused Nanostring dataset better captured activation of BMP receptor

signaling during this phase of differentiation, both datasets predicted net activation of the

SMAD2/3 and TAK1/p38 MAPK components of TGFβ signaling. S3 Fig compares the IPA

predicted changes in the canonical TNFα/NFκB signaling pathway between days 10 and 28 in

culture. The TNFα network plays a key role during osteoblast maturation, acting as an inhibi-

tor of osteoblast differentiation and, along with RANKL, promoting osteoclast development

[24,25]. Both datasets indicated net activation of NFκB-dependent transcription during

MC3T3-E1 maturation related to changes in the expression of TNF family and growth factor

ligands and receptors. Both datasets also indicated relative inhibition of interleukin receptor-

mediated NFκB activation through TNF receptor-associated factor 6 (TRAF6)/TAK1. S4 Fig

illustrates the predicted activation of canonical STAT3 signaling downstream of cytokine and

growth factor receptors between days 10 and 28 observed in both the microarray and Nano-

string nCounter datasets. Collectively, the data indicate substantial concordance between the

two independent MC3T3-E1 datasets and highlight the evolving changes in WNT/β-catenin,

TGFβ/BMP/SMAD, TNFα/RANKL/NFκB, and cytokine/JAK-STAT signaling associated with

osteoblast differentiation.

To illustrate the temporal evolution of signaling network interaction during MC3T3-E1 cell

differentiation, we generated pathway activity predictions for the IPA osteoarthritis canonical

pathway, which integrates multiple signal inputs controlling expression of bone-related genes.

As the first transcription factor required for osteoblastic differentiation, control of Runx2-de-

pendent transcription is central to the process [17,18]. Runx2 activity reflects the input of mul-

tiple upstream regulators, notably including BMP receptors signaling via SMAD1/5/8 as well

as TGFβ and activin receptors signaling through SMAD2/3. Given that the NanoString Code

Set was selected to examine bone-related genes, the osteoarthritis network was the most

heavily populated canonical pathway in our IPA analysis with a -log(p-value) of 43.3 (S7

Table). Fig 8 shows the pathway activity analysis based on D2 vs D5 expression ratio changes

from the NanoString nCounter dataset. During this phase, MC3T3-E1 cells are transitioning

from log phase growth to growth arrest and initiating the process of differentiation. Based on

observed upregulation of Runx2, Sp7 and Sox9 mRNA, Runx2-dependent transcription is pre-

dicted to increase from Day 2 to Day 5, associated with increases in mRNA encoding collagen

species and alkaline phosphatase. Observed changes in genes encoding Indian Hedgehog

(IHH), Patched (PTCH) and β-catenin, as well as TNFα, IL1B, TGFβ and TGFβ receptor 2

(TGFBR2), suggest that the onset of differentiation coincides with upregulation of autocrine

ligands and receptors that later come to drive the differentiation process. Notably, TGFβ/BMP

signaling is not yet predicted to be active due to relative downregulation of BMP2/9 and

SMAD2/3.

Fig 9 depicts the results of an identical analysis performed using the D5 vs D10 expression

ratio changes from the Nanostring nCounter dataset. This phase is associated with osteoblastic

differentiation and increased expression of secreted growth factors and matrix components,

but relatively little matrix mineralization (Figs 1 and 2). The network analysis suggests that

increasing expression of Runx2 and Sp7 is now associated with upregulation of the

least one phase of differentiation (columns). Upstream regulators were arbitrarily grouped based on their relationship to

biological processes or signaling pathways involved in osteoblast differentiation. B. Heat maps depicting changes in z-score for

selected canonical signaling pathways (rows) during each phase of differentiation (columns). Z-scores were subjected to Euclidean

hierarchical clustering in Morpheus to group pathways based on similarity in temporal change.

https://doi.org/10.1371/journal.pone.0204197.g007
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Runx2-regulated matrix components osteopontin (Spp1) and osteocalcin (Bglap2), and further

increases in expression of collagen species and alkaline phosphatase, along with the upstream

regulators IHH, β-catenin, TNFα, IL1B, and TGFβ. Increasing expression of BMP2 and BMP9

is now evident, although the molecular pathway predictor still suggests that SMAD1/5/8 and

SMAD2/3 signaling is attenuated. Fig 10 depicts predicted changes in signaling pathway activ-

ity based on the D10 vs D28 expression ratio changes. This phase is associated with osteoblast

maturation, further increases in expression of secreted growth factors and matrix components,

and the onset of matrix mineralization. The most notable changes during this interval are the

activation of SMAD1/5/8 signaling downstream of BMP receptors and SMAD2/3 signaling

from TGFβ receptors. Observed upregulation of the BMP receptors Bmpr1a (ALK3) and

Bmpr2 (BMPR2) and the activin-like receptor Acvrl1 (ALK1), and SMAD2/3 likely contrib-

utes to the prediction of increased pathway activity. Upregulation of PTHrp/PTH1R and

FGF2/FGF8 also suggests that GPCR and RTK signaling increase during this interval. Hence

the data suggest that during osteoblastic differentiation of MC3T3-E1 cells, activation of β-

catenin- and NFκB-mediated pathways occurs prior to the onset of TGFβ/BMP/SMAD-medi-

ated signaling and a general activation of bone developmental signaling pathways.

Fig 8. Changes in canonical signaling pathway activity in MC3T3-E1 cells between days 2 and 5. Expression ratios representing the changing abundance of 237

bone-related mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway

activation state was assessed using the IPA molecular pathway predictor tool. As indicated in the prediction legend, observed upregulation and downregulation of

mRNAs are shown in red and green, respectively, while predicted activation or inhibition of signaling intermediates and pathways are shown in orange and blue.

https://doi.org/10.1371/journal.pone.0204197.g008
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Discussion

Complex biological processes like osteoblast development involve the coordinated regulation

of multiple intracellular signaling pathways controlling gene expression. Thus, studies focusing

on the contribution of any individual growth factor or pathway are invariably incomplete.

Developing a more complete picture requires the use of “omics” approaches that capture as

much information as possible about changes in intracellular signaling networks in as unbiased

a manner as possible. Further complicating matters, bone remodeling in vivo is a continuous

process wherein osteoblasts at all stages of development are present, from mesenchymal stem

cell precursors to osteocytes, along with cells of the osteoclast lineage and other cell types [1,2].

As a result, studies performed on bone only provide a “snapshot” of the tissue average tran-

scriptome that represents multiple cell types present in different proportions and differentia-

tions states. In this study, we combined transcriptomics with bioinformatic geneset

enrichment analysis to examine the temporal sequence of autocrine and paracrine signaling

that regulates the differentiation of MC3T3-E1 cells, a well-characterized model of osteoblast

development [7–10]. We employed two independently generated datasets, an “agnostic” DNA

microarray dataset intended to provide a global overview of the evolving transcriptome and a

Fig 9. Changes in canonical signaling pathway activity in MC3T3-E1 cells between days 5 and 10. Expression ratios representing the changing abundance of 237

bone-related mRNA species in MC3T3-E1 cells between days 5 and 10 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway

activation state was assessed using the IPA molecular pathway predictor tool. Observed upregulation and downregulation of mRNAs are shown in red and green,

respectively, while predicted activation or inhibition of signaling intermediates and pathways are shown in orange and blue.

https://doi.org/10.1371/journal.pone.0204197.g009
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“targeted” NanoString nCounter dataset focusing on genes involved in specific bone-related

pathways.

Our data complement other in vitro microarray studies of osteoblastic differentiation per-

formed using various cell types, e.g. mesodermal progenitor cells, calvarial osteoblasts, osteo-

cytes, periodontal ligament cells, and embryonic stem cells [21,26–30], or describing the

effects of exogenous factors on osteoblast gene expression [31–34]. Our study differs from pre-

vious work both in terms of the application of informatic pathways analysis and its focus on

the temporal coordination of autocrine/paracrine signaling networks during osteoblast

differentiation.

Qi et al. [21] reported differences in the abundance of 41 mRNAs encoding transcription

factors in bone marrow-derived mesodermal progenitor cells, comparing undifferentiated

cells and cells induced to undergo osteoblastic differentiation for 7 days. Granchi et al. [26]

focused on identifying mRNA “signatures” that characterize the early, intermediate, and late

phases of osteogenic differentiation of human bone marrow-derived mesodermal progenitor

cells, but did not examine associated changes in signaling pathway activity. Similarly, Bourne

et al. [27] examined changes in mRNA abundance in mouse embryonic stem cells exposed to

Fig 10. Changes in canonical signaling pathway activity in MC3T3-E1 cells between days 10 and 28. Expression ratios representing the changing abundance of 237

bone-related mRNA species in MC3T3-E1 cells between days 10 and 28 in culture were used to populate the IPA osteoarthritis pathway network and signaling

pathway activation state was assessed using the IPA molecular pathway predictor tool. Observed upregulation and downregulation of mRNAs are shown in red and

green, respectively, while predicted activation or inhibition of signaling intermediates and pathways are shown in orange and blue.

https://doi.org/10.1371/journal.pone.0204197.g010
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osteogenic differentiation and described the upregulation of bone marker genes and downre-

gulation of genes involved in differentiation of other cell types, while Dean et al. [28] com-

pared mRNA abundance in isolated murine calvarial osteocytes to murine background gene

expression to identify genes enriched in bone. Choi et al. [29] compared gene expression in

human periodontal ligament cells grown in control versus osteogenic differentiation medium

at two time points to generate lists of differentially expressed genes. None of these studies,

however, examined the signaling networks underlying the phenotypic expression of bone

marker genes. In contrast, Kalajzic et al. [30] examined changes in pathway related marker

genes in primary calvarial osteoblasts undergoing differentiation, focusing on known compo-

nents of the IGF2, BMP and Wnt pathways. To our knowledge, however, our study is the first

to employ informatics-based pathways analysis to examine the temporal sequence of signaling

pathway activation during synchronized differentiation of an osteoblast model cell line in
vitro.

MC3T3-E1 cells are widely used in studies of osteoblast function and the effects of drug or

hormone treatment. While alternative models, e.g. primary calvarial osteoblasts, might be con-

sidered more physiologic, individual isolates of calvarial osteoblasts are heterogenous cell pop-

ulations, introducing more variability between biological replicates. Moreover, osteoblast

differentiation in vivo occurs under the additional influence of circulating hormonal factors,

e.g. sex steroids and parathyroid hormone, and paracrine factors produced by neighboring

cells, e.g. sclerostin from osteocytes. Thus, any in vitro study of osteoblast differentiation,

regardless of the cell model, will not capture the process as it occurs in the native environment.

Since our study was intended to examine the temporal coordination of intrinsic signaling net-

works during osteoblast differentiation, we chose MC3T3-E1 cells as a homogenous cell popu-

lation studied during synchronized differentiation.

While gene array technology is a powerful tool for determining the transcriptional basis of

changing developmental or pharmacological processes, the resulting datasets are both too

complex and too error prone to reliably base conclusions on casual inspection [5,6]. Transcrip-

tomic datasets in general are limited in their ability to discriminate changes in cellular metabo-

lism simply because important pathway components may not be regulated at the

transcriptional level, rendering them “invisible” in gene array experiments. The murine

Operon V2.0 cDNA arrays employed in this study did not provide genome-wide coverage of

changes in mRNA abundance. Moreover, even when analyzed by ANOVA at the relatively

stringent p<0.005 level for significant change our microarray dataset had an estimated false

discovery rate of 8.8%. Conversely, the NanoString nCounter system, like other approaches

that quantify the abundance of individual mRNA species, e.g. real time PCR, provides infor-

mation only about pre-selected transcripts. In either case, some information is missing or erro-

neous. In silico pathways analysis using bioinformatic tools, such as IPA, that infer changes in

upstream pathway activity based on observed changes in network components, provide a

means to translate such incomplete transcriptomic datasets into a more complete picture of

metabolic activity. By basing conclusions on the number and magnitude of expression changes

across gene clusters, rather than individual genes, it decreases the probability of false discovery,

while simultaneously providing a quantitative measure of the probability of change in a given

signaling network.

In our study, we compared the results of signaling pathways analysis performed on two

independently generated transcriptomic datasets, an “agonistic” microarray dataset and a “tar-

geted” NanoString nCounter dataset. For the former, we performed the analyses using the list

of significantly regulated genes identified by traditional ANOVA. For the latter, we used the

mRNA abundance of all measureable transcripts regardless of whether they were observed to

change with differentiation. Despite these different approaches, the IPA pathways analysis
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results from the two datasets were quite similar, particularly with respect to the sequence of

activation of the important Wnt/β-catenin, TGFβ/BMP, cytokine/JAK-STAT and TNFα/

RANKL signaling pathways. The most notable differences were that the NanoString nCounter

dataset gave more coverage of the pathways it was designed to examine, i.e. generally larger

activation z-scores, and that the samples used in the NanoString experiment showed changes

in pathway activity that were somewhat later/slower than those in the microarray experiment.

Since the microarray and NanoString datasets were from independent experiments, some of

the difference in timing may arise from variation in the rate, but not process, of differentiation

between biological replicates. Close inspection of the data (S1 and S2 Tables) shows that the

statistical filter applied to the microarray dataset to define significant change failed to capture

some factors that were seen in the NanoString dataset, and conversely, that the targeted Nano-

String Code Set missed significant changes in factors that were detected with the broader cov-

erage provided by the microarrays. It is also noteworthy that some of the interval expression

ratios of individual factors were seen to change in opposite directions in the two datasets, such

that focusing on the abundance of individual factors might lead to different conclusions. Yet

the remarkable degree of similarity in the pathways analysis, which weighs changes across

entire networks to predict pathway activation, suggests the approach is both reliable and

robust enough to tolerate a substantial amount of “noise” in the raw data. Thus, starting from

incomplete datasets, we were able to extract temporal changes in the autocrine/paracrine sig-

naling networks that influence osteoblast differentiation in vitro, and find evidence of pathway

cross talk at the transcriptional level.

Although osteoblast differentiation in vivo is subject to regulation by numerous circulating

factors [3], our results underscore the importance of cell autonomous autocrine/paracrine sig-

naling. Key to the process is regulation of Runx2, the most upstream transcription factor in

osteoblast differentiation [17,18], which regulates the expression of another critical transcrip-

tion factor in bone, Sp7 [35]. Runx2 expression in osteoblasts is stimulated by an enhanceo-

some composed of Dlx5/6, Mef2, Tcf7, β-catenin, Sox5/6, Smad1, and Sp7, and in turn

stimulates expression of bone matrix proteins including Spp1, Ibsp, and Bglap2, and autocrine

factors including Ihh and Rankl [35,36]. Our data suggest that early MC3T3-E1 differentiation,

between Days 2 and 5, is characterized by increasing expression of Runx2, Sp7, and β-catenin

and upregulation of IHH, TNFα, and IL1β at a time where TGFβ/BMP/SMAD signaling is still

relatively suppressed despite increasing expression of TGFβ and TGFβ receptors. WNT signal-

ing, which cooperates with TGFβ in a positive regulatory loop by inducing Runx2-dependent

transcription of TGFβ1 receptor [37,38], appeared most active early and to wane as TGFβ/

BMP pathway activity increased, consistent with a role for WNT signaling in the induction of

TGFβ signaling. The central role of the TGFβ/BMP axis in regulating mesenchymal stem cell

differentiation into cartilage and bone is well established, as both canonical SMAD-dependent

and non-canonical p38MAPK signaling downstream of these receptors converge on Runx2 to

promote differentiation [19–22]. Moreover, in bone TGFβ/BMP engage in extensive cross talk

with other signaling pathways [4,23]. Of these, the activity of several, including Hedgehog,

FGF2, interleukins, TNFα/RANKL and interferon-γ, appeared to increase in parallel with

TGFβ/BMP during MC3T3-E1 cell differentiation. Hedgehog signaling, acting through Gli

family transcription factors, promotes the expression of BMP2, and IHH has been shown to be

required for osteogenesis in vitro [39,40]. FGF2 regulates expression of PC1, the primary enzy-

matic generator of pyrophosphate in mineralizing cells, by direct regulation of Runx2, suggest-

ing that TGFβ/BMP and FGF2 signaling cooperate to promote matrix mineralization later in

differentiation [41]. TNFα plays many roles in bone, inhibiting osteoblast differentiation and

collagen synthesis [42,43], promoting osteoblast apoptosis [44], while directly stimulating oste-

oclast formation independent of RANKL signaling through an IL1-dependent mechanism
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[45,46]. Conversely, interferon-γ opposes IL1 and TNFα mediated bone resorption, but pro-

duces additive inhibition of bone collagen synthesis [47]. Thus our network analysis, demon-

strating simultaneous changes in the TGFβ/BMP pathways that favor osteoblast differentiation

and survival, the TNFα pathway that inhibits differentiation and favors apoptosis, and the

interferon-γ pathway that inhibits ongoing collagen synthesis, illustrates the complexity of

osteoblast development and maturation that occur in the setting of opposing autocrine signal-

ing loops.

Supporting information

S1 Fig. Comparison of WNT/β-catenin network activity between Days 2 and 5 of

MC3T3-E1 cell differentiation predicted from the microarray and NanoString datasets.

Observed Day 2 to Day 5 changes in expression ratios were used to predict WNT/β-catenin

pathway activity using the IPA molecular activity predictor tool. A. Pathway activity prediction

based on the microarray dataset. B. Pathway activity based on the NanoString dataset.

Observed increases (red) and decreases (green) in mRNA abundance are indicated, as are pre-

dicted activation (orange) and inhibition (blue) of downstream targets.

(TIFF)

S2 Fig. Comparison of TGFβ/BMP network activity between Days 10 and 28 of MC3T3-E1

cell differentiation predicted from the microarray and NanoString datasets. Observed Day

10 to Day 28 changes in expression ratios were used to predict TGFβ/BMP pathway activity

using the IPA molecular activity predictor tool. A. Pathway activity prediction based on the

microarray dataset. B. Pathway activity based on the NanoString dataset. Observed increases

(red) and decreases (green) in mRNA abundance are indicated, as are predicted activation

(orange) and inhibition (blue) of downstream targets.

(TIFF)

S3 Fig. Comparison of NFκB network activity between Days 10 and 28 of MC3T3-E1 cell

differentiation predicted from the microarray and NanoString datasets. Observed Day 10

to Day 28 changes in expression ratios were used to predict NFκB pathway activity using the

IPA molecular activity predictor tool. A. Pathway activity prediction based on the microarray

dataset. B. Pathway activity based on the NanoString dataset. Observed increases (red) and

decreases (green) in mRNA abundance are indicated, as are predicted activation (orange) and

inhibition (blue) of downstream targets.

(TIFF)

S4 Fig. Comparison of STAT3 network activity between Days 10 and 28 of MC3T3-E1 cell

differentiation predicted from the microarray and NanoString datasets. Observed Day 10

to Day 28 changes in expression ratios were used to predict STAT3 pathway activity using the

IPA molecular activity predictor tool. A. Pathway activity prediction based on the microarray

dataset. B. Pathway activity based on the NanoString dataset. Observed increases (red) and

decreases (green) in mRNA abundance are indicated, as are predicted activation (orange) and

inhibition (blue) of downstream targets.

(TIFF)

S1 Table. NanoString nCounter expression data for 237 bone-related transcripts. Gene

symbol, accession number, annotation, NanoString probe ID, and mRNA abundance data are

shown for triplicate determinations at each of four time points.

(XLSX)
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S2 Table. Operon V2.0 microarray expression data for 1005 significantly regulated tran-

scripts. Gene symbol, accession number, gene name, mRNA abundance data, and z-standard-

ized expression values are shown for triplicate determinations at each of four time points.

(XLSX)

S3 Table. IPA Disease or function analysis of significantly regulated transcripts identified

by microarray. Disease or function annotation, -log(p value), activation z-score, number and

name of pathway molecules are shown for all functions with activation z-score>1 or <-1 in

the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise comparisons.

(XLS)

S4 Table. IPA Upstream regulator analysis of significantly regulated transcripts identified

by microarray. Gene symbol and activation z-score are shown for all upstream regulators with

activation z-score >2 or<-2 in the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise compari-

sons.

(XLSX)

S5 Table. IPA Canonical pathways analysis of significantly regulated transcripts identified

by microarray. Canonical Pathway name, -log(pvalue), activation z-score, and observed path-

way molecules are shown for predicted regulated pathways in the D2 vs D5, D5 vs D10, and

D10 vs D28 pairwise comparisons.

(XLSX)

S6 Table. IPA Upstream regulator analysis of the NanoString dataset of bone-related

genes. Gene symbol and activation z-score are shown for all upstream regulators with activa-

tion z-score>2 or<-2 in the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise comparisons.

(XLSX)

S7 Table. IPA Canonical pathways analysis of the NanoString dataset of bone-related

genes. Canonical Pathway name, -log(pvalue), activation z-score, and observed pathway mole-

cules are shown for predicted regulated pathways in the D2 vs D5, D5 vs D10, and D10 vs D28

pairwise comparisons.

(XLSX)
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