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Abstract

Natural tropism to the liver is a major obstacle in systemic delivery of adenoviruses in cancer gene therapy. Adenovirus
binding to soluble coagulation factors and to cellular heparan sulphate proteoglycans via the fiber shaft KKTK domain are
suggested to cause liver tropism. Serotype 5 adenovirus constructs with mutated KKTK regions exhibit liver detargeting, but
they also transduce tumors less efficiently, possibly due to altered fiber conformation. We constructed Ad5/3lucS*, a 5/3
chimeric adenovirus with a mutated KKTK region. The fiber knob swap was hypothesized to facilitate tumor transduction.
This construct was studied with or without additional coagulation factor ablation. Ad5/3lucS* exhibited significantly
reduced transduction of human hepatic cells in vitro and mouse livers in vivo. Combination of coagulation factor ablation
by warfarinization to Ad5/3lucS* seemed to further enhance liver detargeting. Cancer cell transduction by Ad5/3lucS* was
retained in vitro. In vivo, viral particle accumulation in M4A4-LM3 xenograft tumors was comparable to controls, but Ad5/
3lucS* transgene expression was nearly abolished. Coagulation factor ablation did not affect tumor transduction. These
studies set the stage for further investigations into the effects of the KKTK mutation and coagulation factor ablation in the
context of 5/3 serotype chimerism. Of note, the putative disconnect between tumor transduction and transgene expression
could prove useful in further understanding of adenovirus biology.
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Introduction

Adenoviral vectors are a promising novel approach for cancer

gene therapy. In clinical trials, intratumoral injections of

adenoviruses have shown promising efficacy [1,2,3]. However, in

the case of widely metastatic cancers, efficient systemic delivery

would be attractive. Despite some evidence of antitumor activity,

the efficacy of intravenously administered adenovirus has so far

not been optimal [4,5]. One of the major hurdles in systemic

delivery of adenoviruses is the natural liver tropism of the most

commonly used serotype 5 adenovirus (Ad5) vector and its

derivatives. After systemic administration, the majority of virus

particles rapidly accumulate in the liver, which is also the major

site of gene expression [6,7,8,9]. Liver interactions also contribute

to adenoviral toxicity. Elevations of liver transaminases as a sign of

acute liver toxicity are frequently observed following systemic

delivery of adenoviruses [10,11]. Systemic administration of

adenovirus vectors can also cause toxicity through induction of

inflammatory cytokines, triggered by activation of antigen-

presenting cells, such as Kupffer cells and tissue macrophages, in

liver and spleen [12,13,14,15,16,17].

Adenoviral binding via heparan sulphate proteoglycans (HSPGs)

has been hypothesized to play an important role in liver

transduction both in the presence and absence of the primary

receptor CAR [18,19]. The region responsible for HSPG binding

is thought to be located at the KKTK motif in the third repeat of

the adenoviral fiber shaft [18], although this has not been clearly

proven. Nevertheless, modification of this Ad5 shaft region has

been described to profoundly influence liver transduction in mice,

rats and non-human primates [20,21,22,23,24]. These effects have

been even more pronounced when viruses do not present a tropism

for CAR. Also, cytokine responses and liver enzyme elevations

have been less pronounced with KKTK mutated vectors both in

mice and non-human primates [20,25].

Unfortunately, transduction of target tissues, including tumors,

has been in efficient with the Ad5 based KKTK mutated vectors,

which has limited the utility of the approach thus far

[20,21,25,26]. Moreover, even if these vectors in theory offer

a perfect backbone to target adenovirus tropism to the receptor of

choice by inserting new ligands, the vectors have in fact not been

efficiently retargetable. Insertion of targeting ligands to the HI
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loop of KKTK mutated viruses has been able to restore

transduction in vitro to some extent [23,25,26], but this could not

be reproduced in vivo [26]. One hypothesis as to why the

transduction with KKTK mutants is reduced in such a wide

range of tissues is that the mutation not only disturbs HSPG

binding, but also impairs the flexibility of the shaft, as a region

providing shaft flexibility also resides in the same locus [21,27].

Thus, the long Ad5 shaft becomes rigid, which may prevent

interactions with other cellular virus binding motifs, including the

fiber knob, by sterically inhibiting the virus from interacting with

the cell surface.

For Ad5, fiber length and flexibility have been shown to be

essential for cell interactions and entry, possibly by allowing the

virus to overcome charge-dependent repulsion between the virus

capsid and the acidic cell surface [27,28]. In contrast, Ad3 is

a species B adenovirus with a notably shorter fiber than Ad5,

consisting of only 6 shaft repeats compared to the 22 repeats of

Ad5 [29]. The short shafted Ad3also lacks the KKTK region of

the third repeat [18] and may therefore be less dependent on fiber

flexibility. Serotype 5 adenoviruses with chimeric fibers carrying

the serotype 3 knob employ alternate cell binding properties

[30,31]. Even before the primary receptor for Ad3 was discovered,

these Ad5/3 chimeras were shown to exhibit enhanced gene

delivery and antitumor efficacy in preclinical assays with cell lines,

fresh clinical specimens and animal models

[8,32,33,34,35,36,37,38]. Thereafter, CD80 and CD86 and

desmoglein-2 (DSG-2) have been suggested as possible receptors

for Ad3 [39,40]. CD46 and HSPGs have also been identified as

having minor contributions in Ad3 infection [41,42]. Currently,

the majority of publications seem to agree that DSG-2 is the

primary receptor for Ad3, at least in vitro [42,43]. Fully Ad3 viruses

do not infect rodent cells [40], and therefore transgenic mice

expressing human DSG-2 have also been developed for further

studies of Ad3 [44]. However, although apparently able to utilize

DSG-2 as receptor, the Ad5/3 chimeras are not completely

dependent on DSG-2 even in vitro, as demonstrated by less efficient

blocking of infection by recombinant DSG-2 in competitive assays

[40]. Further, in vivo Ad5/3 chimeras seem to not depend on

expression of human DSG-2 as they have been shown to efficiently

transduce mice tissues to similar levels as Ad5 [8,34] and they can

also deliver transgenes for achieving antitumor efficacy in

syngeneic murine tumor models [45].

In addition to direct binding between virus and receptors,

soluble factors present in the circulation have been shown to be

important mediators of adenoviral tissue transduction. Multiple

vitamin K dependent coagulation factors, factor IX (FIX) and

factor X (FX) in particular, have been shown to bind Ad5 and

mediate hepatocyte transduction [17,46,47]. Interestingly, in-

teraction with these coagulation factors has been demonstrated to

be particularly important for liver transduction [46,48,49,50].

The aim of this study was to construct and test a chimeric

adenovirus with a type 5 backbone, a type 3 knob and a KKTK

mutation in the Ad5 fiber shaft. The mutation of the KKTK

region is expected to detarget the virus from the liver and Ad3

knob is expected to allow for retained tumor transduction. As

native Ad3 does not require a long flexible shaft for cell interaction

and entry, the Ad5/3 chimera might also tolerate the loss of

flexibility caused by mutation of the KKTK region. In addition,

we aimed to study the effect of coagulation factors on gene

expression by this mutated chimeric virus, and to compare liver

detargeting by KKTK mutation to liver detargeting via co-

agulation factor ablation. As Ad5/3 chimeric viruses have been

demonstrated to deliver transgenes efficiently also in mouse tissues,

which lack human DSG-2, we studied these modifications in

a human xenograft mouse model, so that the results could be easily

compared with previous findings concerning the KKTK mutated

viruses and warfarinization.

Materials and Methods

Ethics Statement
All animal protocols were reviewed and approved by the

Experimental Animal Committee of the University of Helsinki and

the Provincial Government of Southern Finland.

Cell Lines
293 transformed human embryonic kidney cells and PC-3

prostatic carcinoma cells were obtained from the American Type

Culture Collection (ATCC; Manassas, VA, USA), M4A4-LM3

[51] human breast cancer cells were donated by Prof. Pirjo

Laakkonen (University of Helsinki, Helsinki, Finland), Hey human

ovarian adenocarcinoma cell line, originally from ATCC, and

SKOV3.ip1 human ovarian adenocarcinoma cell line [52] were

donated by Drs Judy Wolf and Janet Price (both M. D. Anderson

Cancer Center, Houston, Texas, USA), and the HepG2 human

hepatocellular carcinoma cell line, originally from ATCC, was

donated by Sanna Toivonen (University of Helsinki, Helsinki,

Finland). All cells were maintained and propagated as recom-

mended. Growth media were supplemented with 10% fetal calf

serum (FCS), 1% L-glutamine and 1% penicillin-streptomycin

antibiotics. Virus infections were carried out in media supple-

mented with 2% FCS.

Viruses
Ad5/3luc1 and Ad5luc1 have been previously described

[31,53]. Ad5/3luc1 has a chimeric fiber protein with knob from

serotype 3 replacing the native Ad5 knob protein. All adenoviruses

used were deleted for E1 gene with CMV promoter driven firefly

luciferase transgene inserted to this locus.

Directed mutagenesis by PCR was used to replace the KKTK

motif in the 5/3 fiber shaft with the GAGA sequence, using

pTU.5/3 as a template [54]. First, we created a 901 bp product

with a forward primer (5E3F) 59-gaaatcagctactttaatctaac-39 (site in

E3, before fiber) and a reverse primer (5GAGA) 59-

ggctccggctccgagaggtgggctcacagtggttacattt-39 (site in fiber shaft,

repeat 3, including KKTK area, bold = replacing sequence for

GAGA). Next, we used a forward primer (3GAGA) 59-ggagccg-
gagcctcaaacataaacctggaaat-39 (site in fiber shaft, repeat 4, in-

cluding KKTK area, bold = replacing sequence for GAGA) and

a reverse primer (3KR) 59-aatcatcgctgaggagacca-39 (site after knob

region) resulting in a 2042 bp product. These fragments were

combined with PCR SOEing using 5E3F and 3KR primers and

thus the final 2932 bp PCR product contained the complete fiber

gene, KKTK-mutation (GAGA) and Ad3 knob replacing the Ad5

knob. Homologous recombination with a SwaI-linearized rescue

plasmid containing the complete adenovirus 5 genome was

performed. Finally, a second homologous recombination between

this plasmid and PmeI-linearized pShuttle. CMV-Luc resulted in

a E1-deleted adenovirus 5 genome containing a GAGA mutated

5/3 chimeric fiber shaft and the luciferase transgene in a deleted

E1 region (pCMV.Luc.5/3S*). The Ad5/3lucS* genome was

released by PacI digestion and transfection to 293 cells was done

for amplification and rescue.

All phases of the cloning were confirmed with PCR and

multiple restriction digestions. The final 2932 bp PCR product

was sequenced. Absence of wild type E1 and the presence of knob,

fiber and GAGA mutation were confirmed with PCR. All

adenoviruses were amplified on 293 cells and viruses were purified

Liver Detargeting of Chimeric Adenovirus
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on two cesium chloride gradients, according to standard protocols.

Absence of wild type contamination and presence of featured

genes was confirmed by PCR with relevant primers. Concentra-

tion of viral particles (VP) was assessed by measuring absorption at

260 nm and the titer of plaque forming units (pfu) was assessed by

TCID50 assays on 293 cells. All large scale virus production

batches used were tested for the absence of endotoxin contami-

nation.

In vitro Transduction Assays
24-well plates were seeded with 50 000 (SKOV3.ip1 and Hey)

or 100 000 (M4A4-LM3 and PC-3) cells/well. The following day

cells were infected with 40, 200 or 1000 viral particles per cell in

200 ml of growth media with 2% FCS per well and incubated for

30 min at 37uC. Cells were then washed once and complete

growth media was added. 24 h later cells were lyzed by 20 min

incubation at room temperature with 200 ml per well of Luciferase
Cell Culture Lysis Reagent (Promega, Madison, WI, USA) and

lysates were then frozen to 280uC. Luciferase expression was

analyzed at a later stage with the Luciferase Assay System

(Promega). Experiments were carried out with triplicate wells.

HepG2 (100 000 cells per well) were seeded on 24-well plates

and infected 24 h later with or without coagulation factors.

Viruses were preincubated on a rocker at 4uC for 30 min with

media containing 10 mg/ml human factor X or 5 mg/ml human

factor IX (Haematologic Technologies Inc., Essex Junction, VT,

USA), corresponding to physiological blood concentrations. 200 ml
of mixture per well was added on HepG2 cells and incubated for

60 min at 37uC. Cells were then washed, incubated, lyzed and

analyzed for luciferase expression as described above.

Blocking Assays
To investigate the ability of recombinant Ad5 and Ad3 knobs to

block transduction, infection with Ad5/3luc1 and Ad5/3lucS* was

performed in the presence of the purified knob proteins [31]. 50

000 SKOV3.ip1 cells per well were seeded on 24-well plates. After

one day, cells were washed and preincubated with increasing

concentrations of Ad5 or Ad3 knob [31] in 100 ml of DMEM with

2% FCS for 15 min at room temperature. Virus was then added at

1000 VP/cell in 100 ml of 2% DMEM, followed by a 30 min

incubation at room temperature. After washing, complete growth

media was added and cells were incubated for 24 h at 37uC. Cells
were then lyzed and luciferase activity determined as described

above. In heparin blocking assays virus was preincubated for

45 min at 4uC with increasing concentrations of heparin (LEO

Pharma, Malmö, Sweden) diluted in DMEM supplemented with

0.1 ng/ml bovine serum albumin. 200 ml of heparin-virus mixture

per well was added on monolayers of SKOV3.ip1 cells for 30 min

at room temperature. Cells were then washed, incubated, lyzed

and analyzed as above.

Animals and Warfarinization
Female Nude NMRI mice were obtained from Scanburn

(Karlslunde, Danmark) at 3–4 weeks of age. All animals were

acclimated for 2 weeks. For cell and virus injections and IVIS-

imaging, mice were anesthetized with isoflurane (IsoFloH vet,

Orion Pharma, Turku, Finland). For tail vein blood sampling,

mice were anesthetized with fentanyl citrate 0.5 mg/kg, fluanisone

15 mg/kg and midazolam 7.5 mg/kg mouse weight diluted in

sterile water. To ablate coagulation factors, 133 mg warfarin

(WaranH, Nycomed, Stockholm, Sweden) was administered sub-

cutaneously in 100 ml of sterile NaCl 72 and 24 h before virus

injection.

Biodistribution Experiments
Mice were inoculated with 26106 M4A4-LM3 cells into the left

and right uppermost mammary fat pads and tumors were allowed

to develop until they reached a size of approximately 5 mm in

diameter. Viruses were injected via the tail vein in 150 ml sterile
NaCl. Control mice received NaCl only.

To determine the virus titer in tissues, mice were sacrificed

30 min or 3 h after injection. Whole blood was collected by

cardiac puncture in heparinized MicrotainerH collection tubes

(#365952) and tumors and organs collected, snap frozen and

stored at280uC. Simultaneously, liver samples from the right lobe

were fixed in neutral buffered 10% formalin for 24–48 h and

routinely paraffin wax embedded for histological analysis. DNA

was extracted from tissues and blood samples using QIAamp DNA

mini kit (Qiagen, Helsinki, Finland). Quantitative real-time PCR

was performed as described earlier, using primers and probe

targeting the adenoviral E4 gene [8]. Mouse b-actin primers and

probe served as internal control and to normalize viral DNA

copies per amount of genomic DNA. For normalization on tumor

samples, human b-actin primers and probe were used [55]. A

regression standard curve for E4 copies was generated using

adenoviral plasmid DNA serially diluted from 16109 copies to 1

copy. Standard curves for mouse and human b-actin were

established, using known amounts (1800–0.18 ng and 800–

0.08 ng) of DNA extracted from cultured cells. Cycle threshold

values were plotted on the standard curves to determine the actual

DNA copy number, and the number of adenoviral E4 copies per

ng genomic DNA was subsequently calculated. Samples were run

in duplicate wells.

For in vivo imaging, mice were injected intraperitoneally with

4.5 mg D-luciferin in 100 ml RPMI and imaged with the Xenogen

IVIS imaging system (Perkin Elmer) and a charge-coupled device

camera cooled to 2120uC. Luminescence images with 1 sec

exposure and photographic images were overlaid using Xenogen

Living Image software (Perkin Elmer) and displayed in pseudo

color, where the data values (photons) are made to correspond to

various colors. Images were analyzed for luciferase expression

using Igor image analysis software. For quantification of photon

emission, regions of interest were drawn in the liver and tumor

areas and photon emission from these regions was recorded.

For quantification of luciferase expression in tissues, mice were

sacrificed 48 h after virus injection and tumors and organs

collected and snap frozen to 280uC. Tissues were homogenized in

500 ml of Cell Culture Lysis Reagent (Promega) using a Tissue

Master 125 (Omni, Kennesaw, GA, USA) tissue homogenizator

and incubated 20 min at room temperature. Luciferase activity of

lysates was quantified by the Luciferase Assay System (Promega)

with TopCount (PerkinElmer, Waltham, MA, USA) plate reader

luminometer. Relative light units (RLU) were normalized to total

protein content of lysates, determined by PierceH BCA Protein

Assay Kit (ThermoSientific, Waltham, MA, USA).

Histological Examination of Liver Tissues and
Demonstration of Adenovirus Antigen
Consecutive 3–5 mm sections were prepared from the above

described paraffin embedded liver samples and stained with

hematoxylin-eosin (HE) and the Periodic Acid Schiff reaction (for

assessment of hepatocellular glycogen content), and underwent

immunohistology for the demonstration of adenovirus antigen.

For immunohistology, the avidin biotin complex peroxidase

method was used. Briefly, after deparaffination through graded

alcohols, endogenous peroxidase was blocked by incubation in

methanol with 0.5% H2O2. Slides were then incubated in citrate

buffer pH 6.0 (30 min at 96uC, followed by 20 min at room

Liver Detargeting of Chimeric Adenovirus
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temperature) for antigen retrieval. After blocking of non-specific

binding with undiluted horse serum for 10 min at room

temperature, sections were incubated at 4uC for 15–18 h with

the primary antibody (goat anti-gradient purified, disrupted

Adenovirus type 5 virions) (ViroStat; 50 mg/ml in TBS with

0.05% Tween 20). Sections were then washed with TBS and

incubated with biotinylated horse anti-goat IgG (Vector BA-9500)

and ABC reagent (Vector PK-4000), followed by visualisation with

diaminobenzidintetrahydrochloride (DAB) and Papanicolaou’s

hematoxylin counterstain. Negative controls were incubated with

a non-reactive antibody or TBS with 0.05% Tween 20 instead of

the primary antibody.

The extent of virus antigen expression in hepatocytes was semi-

quantitatively assessed, using the following scoring scheme: 0 - no

positive hepatocytes; 1 - a few random disseminated positive

hepatocytes; 2 - disseminated positive hepatocytes and some

periportal patches of positive hepatocytes; 3 - disseminated positive

hepatocytes and several small or some large periportal patches of

positive hepatocytes; 4 - disseminated positive hepatocytes and

several large periportal patches of positive hepatocytes.

Amount of Virus Copies in Liver Parenchymal and Non-
parenchymal Cells
Nude NMRI mice carrying above described mammary fat pad

tumors were injected into the tail vein with 461010 VP of Ad5/

3luc1, Ad5/3lucS* or Ad5luc1 with or without a pretreatment

with warfarin. After 3 h, mice were sacrificed and livers were

collected to separate the parenchymal cell (PC) and non-

parenchymal cell (NPC) populations, using an approach similar

to those previously described [25]. Briefly, excised livers were

rinsed with NaCl to remove blood, sliced to smaller pieces and

submerged briefly in HEPES buffer pH 7.2. Liver slices were then

transferred to pH 7.5 HEPES buffer with 5 mM CaCl2 and

2 mg/ml collagenase and incubated for approximately 1 h at

37uC on a rocker. Cells were dispersed by gentle stirring in cold

Hank’s-HEPES buffer containing 0.1% BSA and filtered through

cotton mesh sieves. Differential centrifugation was performed to

separate PC and NPC populations. Total DNA was then extracted

and quantitative PCR for adenoviral E4 and mouse b-actin was

performed as above.

Plasma Liver Enzymes and Serum Cytokines after
Intravenous Administration
Blood samples were collected at 6 h after intravenous admin-

istration of 461010 VP of viruses or NaCl only to tumor bearing

mice by puncturing the tail vein. Samples were left to clot at room

temperature and then centrifuged twice at 2000 rcf for 10 min to

separate serum. Cytokine levels in serum samples were measured

using BD Cytometric Bead Array (CBA) Soluble Protein Master

Buffer Kit and BD CBA mouse interleukin (IL)-6, monocyte

chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)

Flex sets. BD FACSArray bioanalyser, BD FACSArray System

Software and FCAP Array software were used to read and analyze

data (BD Biosciences, San Diego, CA USA).

Blood samples for liver enzyme and blood cell count analysis

were drawn by cardiac puncture when animals were sacrificed

48 h after virus injection. Half the blood was collected in

heparinized MicrotainerH collection tubes (Becton Dickinson,

Helsinki, Finland) and plasma was separated by centrifuging

samples at 2000 rcf for 10 min. The other half of the blood was

collected in EDTA coated MicrotainerH collection tubes (Becton

Dickinson). ALT and AST levels in plasma and blood cell counts

in EDTA anti-coagulated blood were quantified at the Laboratory

of the Production Animal Hospital, Faculty of Veterinary

Medicine, University of Helsinki by routine methods.

Statistical Analysis
Statistical analyses for in vitro transduction assays were con-

ducted with ANOVA and Bonferroni multiple comparisons test

and Dunnet’s t-test. Effect of coagulation factors in vitro, in vivo

imaging data and cytokine, liver enzyme and blood cell count data

were analyzed with the two tailed Student’s t-test. Tissue luciferase

expression and DNA contents were analyzed with ANOVA with

the Bonferroni multiple comparisons test and the Dunnet’s t-test.

Results

In vitro Cancer Cell Transduction Capacity is not Severely
Impaired by Mutation of the KKTK Motif
In transduction assays on human breast cancer cells, Ad5/

3lucS*transduced M4A4-LM3 cells efficiently as measured by

luciferase expression from cells 24 h after infection (Fig 1A). At

40 VP/cell and 200 VP/cell, Ad5/3lucS* infection resulted in

similar gene expression as Ad5/3luc1, whereas at 1000 VP/cell

gene expression by Ad5/3luc1 was 1.3-fold higher(p,0.001).

When compared with Ad5luc1, Ad5/3lucS* infection resulted in

similar luciferase activity at 40 VP/cell but at a significantly higher

level of transgene expression with higher titers (p,0.01) (Fig 1A).

In other human cancer cell lines, Ad5/3lucS* gene expression was

decreased 5- to 46-fold compared to Ad5/3luc1 (p,0.001), but

was similar or up to 25-fold higher than Ad5luc1 (p,0.001 for PC-

3) (Fig. 1B).

Binding Properties of the knob are Retained in the KKTK
Mutated Chimeric Adenovirus
Ad5/3luc1 transduction has been shown to be blocked by

preincubation of cells with free recombinant knob3 but not knob

5, indicating that gene transfer involves interaction between the

knob and cellular receptors [31]. To study whether the mechanism

of knob interactions was similar for Ad5/3luc1 and Ad5/3lucS*,

the knob blocking experiments were performed on SKOV3.ip1

cells. Free knob 5 was unable to block either Ad5/3luc1 or Ad5/

3lucS*, whereas free knob 3 blocked gene expression by both

Ad5/3luc1 and Ad5/3lucS*similarly in a dose dependent manner

(Fig. 1C).

It has previously been shown that Ad3 binding to cells is not

inhibited by heparin, an analog for heparin sulphates, while Ad5

binding is blocked by heparin in a dose dependent manner [18].

Although heparin did not affect Ad5/3luc1 cell transduction, it

reduced Ad5/3lucS* gene expression up to 24% at 10 IU/ml

(p=0.044) and up to 42% at the highest heparin concentration

(p=0.001) (Fig. 1C).

Coagulation Factors Cannot Compensate for Reduction
of Transduction by Ad5/3lucS* in Hepatic Cells
Coagulation factors IX and X (FIX and FX) have been

implicated in cell transduction by adenoviruses, particularly of

hepatocytes. FIX has initially been shown to bind the Ad5 fiber

knob to ‘‘bridge’’ virus entry into cells [17] and later FX has been

shown to bind to Ad5 hexon hypervariable regions with high

affinity [47]. We therefore investigated the interaction of these

factors with the KKTK mutated virus. HepG2 cells were infected

in the presence or absence of FIX and FX and viral gene

expression was measured in cell lysates 24 h later (Fig. 2). In the

absence of coagulation factors, hepatocyte transduction by Ad5/

3lucS* was lower than by the other viruses (p,0.05) (Fig. 2A). At

Liver Detargeting of Chimeric Adenovirus
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40 and 200 VP/cell infection, both FIX and FX enhanced cell

transduction of Ad5/3luc1 by approximately 15% and 50%,

respectively (Fig. 2B). When infecting cells with 1000 VP/cell,

Ad5/3luc1 transduction seemed to saturate, as preincubation with

coagulation factors did not enhance gene expression. For Ad5/

3lucS*, FIX and FX improved cell transduction by 40% and 70%

on average, but gene transfer was not restored to the levels of

Ad5/3luc1 (Fig. 2C). Similarly, Ad5luc1 transduction was

enhanced with both FX and FIX, by 700% and 260% on

average, respectively (Fig. 2D). The effect of addition of co-

agulation factors was more pronounced for Ad5luc1 than for

either Ad5/3luc1 or Ad5/3lucS* (Fig. 2).

KKTK Mutation and Warfarinization both Reduce Viral
Gene Expression in the Liver
To study the effect of both the KKTK mutation and

warfarinization on gene expression in vivo, mice were imaged with

IVIS for luciferase activity 24 and 48 h after intravenous

administration of virus (Fig. 3A, Fig 4A). At 24 h, mice that

received Ad5/3lucS* had lower levels of luciferase expression in

the liver compared to those that received Ad5/3luc1 and Ad5luc1

(p,0.05) (Fig. 3A,B). A similar reduction in liver transduction was

observed in mice pretreated with warfarin to deplete vitamin K–

dependent coagulation factors (p,0.05). The best result in terms of

liver detargeting was obtained using Ad5/3lucS* in warfarinized

mice, which resulted in a400-fold reduction of gene expression

compared to Ad5/3luc1 (p,0.05) (Fig. 3B). In M4A4-LM3

tumors, gene expression of Ad5/3lucS*as measured by IVIS was

approximately 10-fold lower compared to Ad5/3luc1 (p,0.05)

and Ad5luc1 (p=0.063) (Fig. 3B). The combination of warfar-

inization with Ad5/3luc1 resulted in similar degree of luciferase

expression in tumors as Ad5/3luc1 alone, whereas warfarinization

prior to Ad5/3lucS* administration led to lower luciferase

expression that with either Ad5/3luc1 or Ad5/3luc* alone

(p,0.05). This suggests that coagulation factors play a role in

tumor transduction with Ad5/3lucS*, but not with Ad5/3luc1.

Figure 1. Cancer cell transduction in comparison to Ad5 is retained despite KKTK motif mutation of the Ad5/3 shaft. To study the cell
transduction properties of the mutated virus A) M4A4-LM3 human breast ductal carcinoma cells were infected with indicated viruses at 40, 200, and
1000 viral particles (VP) per cell. B) Hey ovarian adenocarcinoma, PC-3 prostate cancer, SKOV3.ip1 ovarian adenocarcinoma cells were infected with
200 VP/cell. Unbound virus was removed after 1 h incubation and luciferase activity was measured from cell lysates after 24 hours of incubation. C)
SKOV3.ip1 cells were preincubated with indicated concentrations of free recombinant knob 5 or knob 3 proteins and thereafter infected with
1000 VP/cell of Ad5/3luc1 or Ad5/3lucS* alone or virus preincubated with indicated concentrations of heparin. Luciferase transgene activity was
quantified with a luminometer and expressed as relative light units (RLU) per ml of cell lysate. Assays were performed in triplicates, expressed as
mean+SD. A–B) *** p,0.001 against Ad5/3luc1, {p,0.01 Ad5luc1 vs. Ad5/3lucS*.
doi:10.1371/journal.pone.0060032.g001
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Liver is the major organ of accumulation of viral particles after

systemic delivery [6,7,8,9]. In contrast, anti-tumor efficacy is

determined by transduction of the tumor [56]. However, the

intravenous dose cannot be increased in an unlimited fashion to

achieve sufficient tumor transduction, due to toxicities triggered by

the vector [11,12,16]. Therefore, increasing the tumor to liver

transduction ratio could result in less hepatic adverse events while

retaining tumor transduction. Alternatively, an improved ratio

might allow increasing the dose for improved tumor transduction

while retaining the same level of liver toxicity. Interestingly in the

IVIS imaging, the tumor to liver ratio of gene expression of Ad5/

3luc1 and Ad5/3lucS* were 3.5- and 20-fold higher, respectively,

after warfarinization than with virus alone, and 2-fold higher with

Ad5/3lucS* alone compared to Ad5/3luc1 (Fig. 3C). The results

of IVIS imaging at 48 h after injection showed similar trends,

except here the tumor to liver ratio was highest in the Ad5/

3luc1+warfarin group (Fig. 4).

Luciferase assays performed on tissue lysates excised from mice

at 48 h yielded similar results as the IVIS imagings, with some

exceptions (Fig. 5). Hepatic expression of luciferase was approx-

imately 70-fold lower after warfarinization (p,0.05), 10-fold lower

with the KKTK mutated virus (p,0.05) and 40-fold lower with

their combination (p,0.01), when compared to Ad5/3luc1

(Fig. 5A). Ad5luc1 resulted in 4-fold higher hepatic and splenic

luciferase levels than the capsid chimeric Ad5/3luc1 (p,0.01). In

the spleen, warfarinization reduced transduction by approximately

70-fold, but this was not statistically significant (Fig. 5C). For other

tissues, capsid mutations or coagulation factor depletion did not

lead to significant differences although there was a strong trend of

lower tumor, lung, kidney and also heart transduction with Ad5/

3lucS* as compared to Ad5/3luc1 (Fig. 5B, 5D-5F). Interestingly,

although only a minor reduction in tumor transduction and even

increases in tumor-to-liver ratio were observed by IVIS imaging,

in the tissue homogenate assay transgene activity in Ad5/3lucS*

treated tumors was unmeasurable (p=0.51).

No Major Differences in the Distribution of Virus Particles
after Injection
Previous reports have described that there is not always

a correlation between biodistribution of virus particles and

transgene expression with capsid modified viruses [8,23,25]. One

reason is that some cell types, such as macrophages in the liver and

spleen, do not allow transgene expression even though they have

a major role in virus uptake. Also, reduced entry may result in

increased blood persistence, and therefore the blood content of

organs could play a role in genome to transgene expression ratios.

Thus, it is of relevance to study not only the transgene expression

but also the presence of viruses. To investigate this, we collected

organs, tumors and blood 30 min and 3 h after virus injection and

measured viral copy numbers by real-time PCR. At 30 min, viral

particle amounts were similar between the groups in nearly all

tested tissues. The only noted differences were that there was less

virus in the livers of the Ad5/3lucS*+warfarin group and a trend

of less virus in the Ad5/3lucS*+warfarin blood samples and more

virus in tumors of Ad5/3luc1+warfarin treated mice (Fig. 6A). At

3 h, there were no major differences, except minor variation in

blood titers (Fig. 6B). The transient reduction in liver and blood

titers in the Ad5/3lucS*+warfarin group may reflect differences in

circulatory kinetics and blood, as blood collected by cardiac

puncture mainly collects blood from large vessels.

To assess the effect of dose on viral particle distribution we

conducted an additional experiment with Ad5/3luc1 and Ad5/

3lucS* injected at a slightly higher dose (561010 VP intravenously)

and collected tissues 30 min after injection. Interestingly, we

detected approximately 2-fold more virus in livers with Ad5/3luc1

infection compared to Ad5/3lucS* with or without pre-warfar-

Figure 2. KKTK mutated 5/3 virus is detargeted from human
hepatocytes but coagulation factors result in enhanced trans-
duction. A) Monolayers of HepG2 cells were infected with increasing
doses of Ad5/3luc1, Ad5/3lucS* or Ad5luc1 and luciferase expression
was quantified 24 hours later. * p,0.05, *** p,0.001 vs. Ad5/3luc1,
{p,0.05 Ad5luc1 vs. Ad5/3lucS*. B–D) HepG2 cells were infected with
either virus only or virus preincubated with physiological concentra-
tions of factor X (FX) or factor IX (FIX) and luciferase activity was
measured 24h later. * p,0.05, ** p,0.01, *** p,0.001 vs. virus only,
{p,0.05 vs. virus+FIX. Assays were performed in triplicates, expressed
as mean+SD.
doi:10.1371/journal.pone.0060032.g002
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inization. In contrast, virus particle amounts in tumors were

similar (Fig. 6C).

Virus Administration does Lead to Virus Uptake by
Kupffer Cells and Hepatocytes, but does not Lead to
Significant Pathological Changes at Early Time Points
In order to assess the potential immediate cytopathic effect and

the uptake and distribution of virus in the early phase after

administration, we undertook a histological examination and

performed immunohistology for adenovirus antigen on liver

sections of mice 30 min and 3 h after Ad5luc1, Ad5/3luc1 and

Ad5/3lucS* administration. We did not observe any distinct

pathological changes at both time points. However, we observed

variable random or periportal hepatocellular glycogen loss in a few

mice in Ad5luc1 treated mice at both time points and in both

Ad5/3luc1 and Ad5/3lucS* treated mice at 3 h post injection with

and without warfarinization (data not shown). These changes

indicate energy loss and early degeneration. Virus antigen was

consistently detected in Kupffer cells, but was also present in

variable numbers of hepatocytes in all groups at both time points.

At 30 min post injection, positive hepatocytes were generally

sparse and found randomly distributed (Fig. 7A). At 3 h, positive

hepatocytes were mainly seen around portal areas where they were

arranged in a circular manner (Fig. 7B). At both time points, the

number of positive hepatocytes appeared particularly low in livers

from animals that had been treated with Ad5/3lucS*+warfarin
(Fig. 7A, B). In addition, neutrophils in blood vessels and

occasional endothelial cells were found to express viral antigen

(Fig. 7A, B). The extent of hepatocellular adenovirus antigen

expression is graphically illustrated in Fig. 7C.

We then investigated whether mutation of the KKTK region or

pre-warfarinization would affect virus uptake into liver parenchy-

mal cells (eg. hepatocytes) and/or non-parenchymal cells (in-

cluding Kupffer and sinusoidal endothelial cells). For Ad5,

transduction of hepatocytes is thought to be a receptor-mediated

process, whereas uptake by Kupffer cells is receptor independent

[57]. Warfarinization, mutation of the KKTK motif and their

combination all resulted in a trend of lower viral amounts in

parenchymal and non-parenchymal cells (Fig. 7D). The ratio of

amount of virus in non-parenchymal versus parenchymal cells was

slightly higher with Ad5/3lucS* compared to Ad5/3luc1 and

slightly, but not significantly, lower with warfarinization for both

of these viruses (Fig. 7E).

Ad5/3lucS* Results in Attenuated Cytokine Response
To investigate the effects of these modifications on the toxicity

profile of intravenous virus, we analyzed cytokine responses, blood

cell counts and liver transaminase levels. White blood cell, red

blood cell and platelet counts were determined 48 h after virus

administration and there were no changes in these parameters

between the groups (Fig. 8). In addition, neither ALT nor AST

levels were significantly elevated in any treatment group (Fig. 8).

Serum TNF levels were significantly elevated only in the Ad5luc1

group (p,0.05 when compared to mock treated mice) and there

Figure 3. Warfarinization enhances liver detargeting of Ad5/3lucS*. Nude NMRI mice carrying M4A4 -LM3 mammary fat pad tumors were
treated with 461010 VP of Ad5/3luc1, Ad5/3lucS* or Ad5luc1 or NaCl only to the tail vein. Indicated groups had been pretreated with warfarin to
deplete vitamin K-dependent coagulation factors. A) 24 hours later mice were imaged for transgene activity by injecting D-luciferin i.p. and IVIS
luminosity imaging. B) Regions of interest were drawn around liver and tumor areas to quantify photon emission signals and mock was subtracted. C)
Ratio of luciferase expression quantified from tumors and livers was calculated. KKTK mutation reduces liver transduction to similar degree as
warfarin. Both also improve the ratio of tumor to liver transduction, best result with Ad5/3lucS*+warfarin. Mean+SD, n = 4–5 mice per group. * p,0.05
vs. Ad5/3luc1, {p,0.05 vs. Ad5/3lucS*.
doi:10.1371/journal.pone.0060032.g003
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were no significant differences in other treatment groups (Fig. 8).

Serum IL-6 and MCP-1 were elevated in all treatment groups, but

both were approximately 4-fold lower in mice treated with Ad5/

3lucS* compared to Ad5/3luc1 (p,0.05), which could be

indicative of higher safety. Warfarinization did not affect cytokine

responses (Fig. 8).

Discussion

Mutations of the KKTK region of the Ad5 fiber have been

reported to result in effective liver detargeting. They have not been

previously studied in the context of Ad5/3 chimeric viruses, which

have shown considerable advantages over serotype 5 viruses in

many aspects. In this study our aim was to produce an adenoviral

vector genetically detargeted from the liver, but with retained

transduction capacity of tumor tissues, by using the 5/3 knob

chimeric adenovirus backbone with the KKTK mutation. Further,

we sought to investigate the liver detargeting properties of the

constructed virus in comparison to those of coagulation factor

depletion and the combination of these. We found that ablation of

the KKTK region resulted in a similar degree of reduction in liver

transduction as the ablation of vitamin K dependent coagulation

factors. Cancer cell transduction was retained in vitro with the

chimeric KKTK mutant virus, but in vivo transgene expression in

tumors was clearly decreased. This latter was not seen with

coagulation factor ablation.

The 5/3 knob chimeric Ad5/3lucS* carrying a KKTK muta-

tion infected various cancer cell lines in culture with reasonable

efficiency. In vitro gene transfer by Ad5/3lucS* was not hampered

compared to Ad5luc1, but it was slightly reduced in most cancer

cell lines compared to the parental chimera Ad5/3luc1. This

demonstrates that in combination with the5/3 chimeric fiber the

KKTK mutation does not seriously impair the functionality of the

fiber and the infection capability of the virus in vitro. Therefore,

receptor binding via Ad3 knob seems less dependent on fiber

flexibility than via the native Ad5 knob. In transduction blocking

assays, free knob5 proteins were not able to block transduction of

either Ad5/3luc1 or Ad5/3lucS*, whereas free knob 3 proteins

blocked both similarly in a dose dependent fashion. Thus, the

basic characteristics of the knob mediated binding - seen for Ad5/

3luc1 - were retained in Ad5/3lucS*, demonstrating that the

KKTK mutation does not interfere with knob-receptor interac-

tions.

It has been proposed that heparin blocks transduction with Ad5

but not Ad3 [18]. In our assay, Ad5/3luc1 was not blocked by

heparin, which is compatible with data reported for Ad3.

Surprisingly, transduction of Ad5/3lucS* was reduced by high

heparin concentrations, although the KKTK mutation is thought

to abolish the HSPG binding by the shaft. Our observation could

result from HSPG degradation by heparin. It has been proposed

that in the wild type – short shafted - Ad3 interaction of the Ad3

knob with its receptor(s) requires also HSPGs as co-receptors [41].

In our assay heparin did not block Ad5/3luc1 transduction, which

implies that HSPG may not be as necessary for the knob-receptor

interactions of the Ad5/3luc1 chimera where the shaft is bent, as

compared to fully serotype 3 Ads. Conversely, the straight-shafted

Ad5/3lucS* appears to be more similar to the Ad3, as degradation

of HSPG by heparin reduces gene delivery and therefore Ad3

Figure 4. Warfarinization and KKTK mutation both result in reduced liver gene expression. Nude NMRI mice carrying M4A4 -LM3
mammary fat pad tumors were treated with 461010 VP of Ad5/3luc1, Ad5/3lucS* or Ad5luc1 or NaCl only to the tail vein. Indicated groups had been
pretreated with warfarin to deplete vitamin K-dependent coagulation factors. A) 48 hours later mice were imaged for transgene activity by injecting
D-luciferin i.p. and IVIS luminosity imaging. B) Regions of interest were drawn around liver and tumor areas to quantify photon emission signals and
mock was subtracted. C) Ratio of luciferase expression quantified from tumors and livers was calculated. KKTK mutation and warfarinization reduce
liver transduction and improve the ratio of tumor to liver transduction, best result with warfarinization. {p,0.05 vs. Ad5/3lucS*.
doi:10.1371/journal.pone.0060032.g004
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knob mediated cell transduction through HSPG co-binding is

reduced. Alternatively, as it has never been directly shown that

KKTK is definitely the binding site for HSPG or heparin, it is

possible that the mutation does not actually abolish an HSPG

binding site but exerts its effects through alternate mechanisms

related for example to three-dimensional conformational structure

of the capsid. Yet another possible explanation for this observation

could be a change in the pH of the media due to high heparin

concentrations: The mutated virus might be more sensitive to pH

changes due to the altered capsid structure. However, heparin

blocking assays have resulted in controversial findings also in

previous studies. Originally, Dechecchi et al. described blockage of

Ad5 and Ad2 infection by heparin [18]. Later, Di Paolo et al.

studied heparin blocking with and without buffering with HEPES

and were unable to block infection by neither native Ad5 nor

viruses with long chimeric shafts lacking the KKTK motif [58].

The multiple actions and effects of heparin could underlie these

ambiguities.

Gene transfer to human hepatic HepG2 cells was significantly

lower with Ad5/3lucS* than with Ad5/3luc1. When FIX and FX

was added, transduction with both viruses was enhanced. This

suggests that the coagulation factor pathway and the KKTK-

related pathway are separate non-compensatory cell entry

mechanisms, a feature that would be expected due to the proposed

binding sites of the factors [17,47]. Interestingly, addition of FIX

or FX prior to Ad5luc1 infection resulted in a greater degree of

enhancement of transduction, which implies that the native Ad5

capsid more responsive to addition of coagulation factors than the

Figure 5. Hepatic luciferase expression is reduced with both KKTK mutation and warfarinization. A–F) Nude NMRI mice carrying
mammary fat pad tumors were treated intravenously with 461010 VP of Ad5/3luc1, Ad5/3lucS* or Ad5luc1. Some groups were pretreated with
warfarin to deplete coagulation factors. 48 hours after virus injection mice were sacrificed and luciferase expression in homogenized tissue lysates
was quantified and normalized for total protein content of lysates. KKTK mutation reduced hepatic transgene expression, but reduction was also seen
in tumors and other tissues. Mean+SD, n = 3–5 mice per group. *p,0.05, **p,0.01, ***p,0.001 vs. Ad5/3luc1.
doi:10.1371/journal.pone.0060032.g005
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chimeric Ad5/3 capsid. This finding is supported by a recent

report, where an Ad5 based chimeric vector with Ad35 fiber was

found insensitive to infectivity enhancement by FX, leading to the

investigators’ conclusion that the fiber is a predominant de-

terminant for cell entry [59]. Several other vectors with

pseudotyped fibers have been shown to be sensitive to FX

mediated infectivity enhancement, to various extents [60].

Therefore, the extent of influence of the fiber on FX mediated

Figure 6. Distribution of viral particles is not affected by KKTK mutation at lower viral dose or warfarinization.Mice carrying xenograft
mammary fat pad tumors were injected with 461010 VP of Ad5/3luc1, Ad5/3lucS* or Ad5luc1 into the tail vein. Indicated groups had been pretreated
with warfarin. Mice were sacrificed A) 30 minutes or B) 3 hours after virus injection and organs, tumors and whole blood was collected. Viral loads in
the samples were quantified by adenoviral E4 region qPCR. Mouse b-actin for organs and blood and human b-actin for tumor tissue was used to
normalize viral titers to genomic DNA. At 30 minutes there was less liver uptake with Ad5/3luS*+warfarin, this difference disappeared by 3 hours. C)
At a higher dose of 561010 VP (analysis at 30min), there was a significant decrease in liver uptake of Ad5/3lucS* virus with or without warfarin
compared to Ad5/3luc1, and a trend for higher tumor uptake in the Ad5/3lucS* virus with warfarin group. Mean+SD, n = 3 mice per group.
*p,0.05vs.Ad5/3luc1.
doi:10.1371/journal.pone.0060032.g006
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infectivity likely depends on the particular fiber used. Indeed, FX

enhanced transduction with our Ad5/3 chimeric virus, although to

a lesser extent than for Ad5, demonstrating that Ad3 fiber knob

chimerism allows for FX mediated enhancement.

Coagulation factor ablation via warfarin treatment and KKTK

mutation, separately and in combination, both reduced in vivo liver

gene transfer. The in vivo imaging data for transgene expression

implied potentiated detargeting by the combination. However,

tissue gene expression quantification did not confirm this, which

may be due to differences in sensitivity and specificity of the

respective methods of quantification. Interestingly, regardless of

significant reductions in liver transgene expression by both, the

KKTK mutation and warfarinization, viral particle accumulation

in tissues was not affected at earlier time points, namely 30 minutes

and 3 hours after i.v. administration, and was only somewhat

lower in an experiment with higher dose of viruses. This finding is

in accordance with previous data by Nicol et al. who described

reduced VP counts of Ad5 lacking the KKTK motif in liver and

spleen 5 days, but not 1 hour after intravenous injection in rats

[22]. With regard to warfarinization, our findings agree with

a previous report where virus copy numbers in the liver remained

unchanged at early time points in [49] and previously published

Figure 7. Subtle differences are observed in viral antigen expression pattern and DNA copy numbers in the liver. Mammary fat pad
tumor carrying mice were injected intravenously with 461010 VP of the indicated viruses or NaCl only. The indicated groups had been pretreated
with warfarin to deplete coagulation factors. Immunohistology for adenovirus hexon antigen expression in the liver A) 30 min after virus
administration. Viral antigen (stains brown) is observed within Kupffer cells (arrowheads) and in individual hepatocytes (black arrows) and occasional
leukocytes in sinus (white arrow). Inset: Viral antigen can also be seen in neutrophils in the circulating blood in a central vein (arrowheads) and in an
adjacent sinus (arrow). Note the generally weak antigen expression and its restriction to Kupffer cells (arrowheads) and some random hepatocytes
(arrows) in an Ad5/3lucS*+warfarin treated mouse. Bars = 20 mm for Ad5/3luc1 and Ad5/3lucS* and Ad5/3lucS*+warfarin, Bars = 10 mm for inset and
Ad5/3luc1+ warfarin. B)3h after virus administration. Viral antigen expression in Kupffer cells (arrowheads), hepatocytes (arrows), some leukocytes in
sinuses (white arrows) and occasional neutrophils within portal veins (white arrowheads). PV =portal vein. Inset: Portal vein. Viral antigen expression
in hepatocyte (H), neutrophil (arrow) and endothelial cell (arrowhead). Note the strong antigen expression in an Ad5/3luc1 treated mouse in
hepatocytes surrounding portal areas and the weak antigen expression with restriction to Kupffer cells in an Ad5/3lucS*+warfarin treated mouse.
Bar = 50 mm for Ad5/3luc1, Bars = 20 mm for Ad5/3luc1+warfarin, Ad5/3lucS* and Ad5/3lucS*+warfarin, Bar = 10 mm for inset. C) Semi-quantitative
assessment of virus antigen expression in hepatocytes, n = 2–4 mice/group. D-E) Mice were sacrificed 3 h after virus administration and cells of the
liver were freshly isolated and separated into liver parenchymal cells (PC; hepatocytes) and non-parenchymal cells (NPC; include Kupffer cells and
endothelial cells). D) DNA was extracted and the amount of virus particles determined by quantitative PCR with primers and probes targeting the
adenoviral E4 region. Primers and probes for mouse b-actin were used to normalize viral titers to sample genomic DNA. E) The ratio of virus present in
non-parenchymal versus parenchymal cells was calculated. D-E) Mean+SD, n = 3–4 mice per group.
doi:10.1371/journal.pone.0060032.g007
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data demonstrating reduced gene expression in the liver after

ablation of coagulation factors [46,48,50].

Nicol et al. showed that lack of gene expression by KKTK

mutated virus was not caused by poor cell binding but rather by

retardation of post-internalization steps [22]. An alternative

explanation for the discrepancy between viral particle accumula-

tion and gene expression in the liver with KKTK motif lacking

vectors might be that the KKTK mutation redirects virus entry

from parenchymal to non-parenchymal cells, as suggested by

Koizumi et al. [25]. To investigate this, we performed immuno-

histochemical staining for adenoviral hexon antigen and measured

viral loads in isolated liver parenchymal and non-parenchymal

cells. Indeed, both tests showed a trend of lower Ad5/3lucS*

content in hepatocytes at both investigated early time points. Since

total viral copy numbers in the liver were not reduced, this

indicates that the virus may indeed be preferentially taken up by

Kupffer cells which were the cells that most consistently exhibited

viral antigen in situ. Accordingly, the qPCR results also showed

a trend of relatively more virus DNA in non-parenchymal cells,

although the difference was not significant. Therefore our

observations support those by Koizumi et al. [25], and the

difference between Ad5/3lucS* viral particle accumulation and

gene transfer in liver seems to be caused by more virus

accumulation in the non-parenchymal cells including Kupffer

cells, which results in virus degradation rather than gene

expression. With warfarinization, there was a trend for less virus

antigen in hepatocytes after warfarinization, particularly at the 3 h

time point. However, the ratio of viral DNA accumulation in

parenchymal versus non-parenchymal cells was not affected

radically. Therefore, with warfarinization the distribution of virus

among different non-parenchymal cells, such as endothelial cells

and Kupffer cells, may be relevant. Alternatively, ablation of

coagulation factor binding through warfarin treatment may induce

alterations in the post-internalization steps and these phenomena

are not mutually exclusive.

The results of the histological examination at 30 min and 3 h

post virus administration and the liver enzyme data collected at

48 h did not provide any evidence of major viral hepatotoxicity in

Figure 8. Blood cell counts and liver enzymes after intravenous virus administration.Mammary fat pad tumor carrying mice were injected
intravenously with 461010 VP of the indicated viruses or NaCl only for mock, through the tail vein. Indicated groups had been pretreated with
warfarin to deplete coagulation factors. Blood samples were collected 48 hours after injection. A) White blood cell (WBC) and red blood cell (RBC) and
B) platelet counts were measured. C) Aspartate amino transferase (AST) and alanine amino transferase (AST) levels determined from plasma samples.
D) Serum samples were collected 6 hours after treatment and interleukin (IL)-6, MCP-1 and TNF-alpha levels determined by FACSArray. Mean+SD,
n = 2–5. Neither warfarinization nor KKTK mutation affected circulatory amounts of blood cells and the given virus treatments did not provoke liver
enzyme elevations, but KKTK mutation resulted in milder cytokine responses. Mean+SD, n= 2–5 mice per group, * p,0.05, **p,0.01 vs. Ad5/3luc1,
{p,0.05 vs. mock.
doi:10.1371/journal.pone.0060032.g008
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any of the groups. Blood cell counts were also unaffected. The

variable degree of hepatocellular glycogen loss observed in

particular in periportal areas is indicative of hepatocellular energy

loss and might reflect functional impairment or early degenerative

changes which would only lead to apparent pathologic effects at

a later time point post injection. Intriguingly, liver detargeting by

KKTK mutation reduced inflammatory cytokine responses,

whereas warfarinization did not. Thus it is possible that the

KKTK mutation provides some safety advantages, but this should

be confirmed in other experimental models.

Neither coagulation factor ablation nor the mutation of KKTK

decreased delivery of viral particles to tumors or other organs. In

IVIS imaging transgene expression by Ad5/3lucS* was signifi-

cantly lower in tumor compared to Ad5/3luc1. However, as

transgene expression by Ad5/3lucS* in the liver was decreased

even more, the ratio of transgene expression in tumors relative to

the liver was better with Ad5/3lucS* compared to Ad5/3luc1 in

this assay. However, data from tumor, lung and kidney tissue

homogenates indicated a clear trend of lower level of gene

expression by the KKTK-mutated virus than by the control

viruses. Indeed, in tumor homogenates transgene activity was non-

measurable with Ad5/3lucS*. Sensitivity of luciferase assay in vivo

versus in vitro could explain some of these differences. Neverthe-

less, there was major variation between the relationship of delivery

of physical particles and transgene expression in vivo and in vitro.

Even though the KKTK mutation on a 5/3 chimeric backbone

was tolerated well with respect to gene expression in cancer cells

in vitro, the system is more delicate in vivo. This is not surprising,

since the expression of many molecules relevant for adenovirus

infection, such as coagulation factors and HSPG, is difficult to

reproduce in vitro. The observed reduction in gene expression

regardless of efficient viral particle delivery also sheds light on the

in vivo behavior of the fiber shaft mutated virus, perhaps suggesting

the importance of post-entry steps in tumor cells, more rapid

clearing from cells of the tumor microenvironment or some poorly

understood in vivo factors. Nonetheless, as transgene activity was

low in tumor homogenates, in our opinion the approach would

benefit from further improvements. In contrast, tumor transgene

expression was completely retained with coagulation factor

ablation.

The results of the present study confirm previous findings of our

group and Shashkova et al., with regard to increased tumor

transduction and better antitumor efficacy in warfarinized mice

[49]. However, a contrasting result was reported by Gimenez-

Alejandre et al. who described nearly completely abolished tumor

transduction following intravenous virus administration to warfar-

inized mice [61]. Therefore, while our results are encouraging,

tumor transduction in combination with coagulation factor

ablation needs be more widely investigated in various cancer

models to determine the possible effect of this treatment.

As human DSG-2 is not expressed in mouse tissues, fully

serotype Ad3 viruses cannot infect murine cells and therefore can

only be studied in vivo in transgenic murine models. Our results

here imply that the chimeric serotype 5 virus with knob from

serotype 3 is indeed able to infect various murine tissues efficiently

as demonstrated by equal viral particle accumulation in murine

tissues compared to wild type Ad5 capsid, and also efficient

transgene expression in these tissues. This is in line with previously

published data on Ad5/3 chimeric viruses [8,34], and suggests that

DSG-2 is not needed for in vivo infectivity by Ad5/3 chimeric

viruses. However, human adenoviruses are in many aspects

species-specific and also distribution of receptors used by the Ad5/

3 chimeras is likely different in mice and humans. Therefore, data

from xenograft models must always be interpreted with caution

and experimental models with more resemblance to the human

would be preferable. Eventually, many aspects of distribution of

viral vectors in humans may eventually require clinical data in

order to be fully comprehended.

Taken together, our data on the Ad5/3lucS* virus indicate that

chimeric Ad5/3 may be a more suitable backbone than native

Ad5 for introducing a mutation of the KTKK region, as indicated

by promising transduction capacity in vitro. However, even though

viral particles were efficiently delivered to tumor tissue also in vivo,

transgene expression was nearly absent. Therefore the KKTK

mutation affected distribution of viral particles differently from

gene expression, highlighting the impact of post-internalization

steps of cell transduction and distribution of virus within different

cell types of tissues.

Overall, our study suggests that escaping coagulation factor

binding is an appealing method of improving gene transfer efficacy

of systemic delivery of adenoviral vectors, and KKTK mutation as

an alternative method does not provide advantages over this.

Ablation of coagulation factors leads to a degree of reduction of

liver transduction that is comparable with mutation of the KKTK

region, whereas tumor transduction and transgene expression are

retained more reliably with warfarinization. Even with the 5/3

chimeric backbone the KKTK mutated vector did not deliver

efficient transgene expression to the target tumors. Warfarin is an

easily translatable approach as it is used in millions of patients to

prevent blood clotting. However, the same effect may be

achievable through vector engineering. Vectors mutated in

putative coagulation factor binding sites have been described

and they do indeed detarget the liver efficiently [62,63,64], but

whether distant tumors are transduced equally effectively with this

type of vectors remains to be confirmed.
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